
Real-Time Rendering of Densely Populated
Urban Environments

Franco Tecchia
Laboratorio Percro - Scuola Superiore S. Anna, Pisa, Italy

Yiorgos Chrysanthou
Department of Computer Science, University College London, London, UK

Abstract. In this paper we present some preliminary results concerning a real-
time visualisation system for densely populated urban environments. In order to
be able to render the large number of humans without compromising too much
the image quality, we developed a method based on Image-Based Rendering tech-
niques. To allow them to move freely in the city while avoiding collisions against
the environment and other humans, we developed a simplified collision test that
makes use of the graphics hardware to quickly generate a discretization of the en-
vironment. Although our research is at an early stage, the results are already quite
promising; we are able to render in real-time a virtual city with thousands of walk-
ing humans on a standard PC. Several avenues for further investigation are finally
proposed.

1 Introduction

Recently we have seen the appearance of many geometric models of towns and cities
around the world with an enormous number of potential applications. There has been
a lot of work in accelerating the rendering of such models. Many different techniques
have been used such as visibility culling [3] and image based rendering [6, 11], to the
point where we can now render quite substantial models in real-time. At UCL we have a
polygonal model of London that covers a large portion of the city, 160 km in total, with
some parts of it modelled in great detail. This model was original developed through the
COVEN project [4] for use in various VR simulations. However, without any humans
populating it, it did not look very real. Our overall objective is to render in real-time the
virtual model of London, simulating also the crowds and traffic of the city. There are sev-
eral problems to be addressed before this can be realised, such as rendering, simulating
the behaviours, avoiding collisions both among the crowd and with the environment. In
this paper we will concentrate mainly on fast crowd rendering and collision avoidance,
the implemented behaviour is random, constrained only by collisions.

The algorithms we will describe are better viewed in the context of a level-of-detail
system where different techniques are applied in order to produce the best possible im-
age while maintaining a high frame rate. At the lowest level, when the viewer is some
distance above the crowded city and potentially has in view a very large number of ob-
jects and moving humans, the techniques described here can be used. As the viewer gets
closer some individuals become more visually important but at the same time the num-
ber of visible objects becomes smaller. Higher detail solutions should be used as the
avatars get too close [14, 12].

In Section 2 we describe the rendering of the avatars and in Section 3 we touch briefly



on the collision solution. Some implementation details and results are presented in Sec-
tion 4 followed by conclusions and some proposals for future directions and improve-
ments.

2 Rendering the virtual humans using image based rendering

The main difficulty in the rendering process of the crowd resides in the high number of
independent elements to visualise and animate. Clearly using detailed geometric rep-
resentations will not scale enough. An attractive alternative is the use of image based
rendering (IBR) techniques [9, 10]. Aubel et al. [1] applied such ideas recently to vir-
tual humans. However, they use dynamically computed impostors which can only be
used for a few frames before being discarded.

The basic idea of our approach is to make use of only one polygon per human, using
a pre-computed texture in a way that it shows a good approximation to the human aspect
as seen from a given viewpoint. Taking in account that the amount of dedicated texture
memory on low-cost workstations is increasing at an exponential rate in the recent years
we decided to make wide use of it in order to store a high number of different views
of a human character sampled while performing a walking animation. We decided not
to use interpolation between views as that would be too cpu-intensive for our purpose.
Instead, we opted for a simple solution that allows us to take the maximum advantage
of the graphics hardware available today on the market.

The first phase of the algorithm consists of the generation of a sufficiently large set
of sample views of an object. An example is shown in Figure 2.

In our tests we produced 16*8 different images. Each row of images represents the
object as seen from 16 different viewpoints at a certain height, rotating around the Y
axis. Mirroring them we are able to generate 32 different views of the object with a
difference of 11.25 degree one from the other. Each row of images corresponds to a dif-
ferent elevation of the viewpoint. The images, inclusive of the appropriate alpha values,
are stored as textures, and the visualisation of every single human is obtained by pasting
one of these images to a single polygon having the right orientation toward the camera.

This kind of approach might at first appear to be very expensive in terms of memory
requirement. Fortunately, when applied to the visualisation of a virtual crowd there are
some constraints that allow us to reduce the number of necessary images:

1. In scenes that show a high number of humans, the vast majority of them appear
to be far from the viewpoint (see Figures 5 and 6.)

2. Every human can have his own movement direction but the possible rotations of
each human is usually limited to the y-axis.

3. We will rarely have a view of some human as seen from below, so we can under-
sample these views.

At each frame, to select the correct image from the set of the different images avail-
able we disctretize the direction between each human and the viewpoint (Figure 1). From
this process we get two indices (one referring to the elevation of the viewport over the
human, and the other referring to the direction around the human) that permit us to select
the right row and column of the image stored. Adding an integer number to the column
index when retrieving the right image permit us to simulate a rotation of a human around
the y-axis with intervals of 11.25 degrees. As the human-camera direction changes we
select different images from the set that we have, so as to get the better possible approx-
imation.



Fig. 1. Discretising the view direction be-
tween the object and the viewpoint

Fig. 2. Views of the human from the set of discrete
directions

Storing in the texture memory snapshots from different frames of an animation for
the same model and selecting different textures at each frame we are then able to visu-
alise animated figures. The result of the animation can be seen in Figure 6.

Our algorithm result to be fast enough to allow the visualisation of virtual environ-
ments populated by thousands of humans in real time. Because of the limited number of
memorised images and the absence of procedures to warp them the visualisation turns
out to be slightly imprecise and if one focuses his attention on a single human it is some-
times possible to perceive a popping effect in the passage between two different images.
However, when the scene is populated, like in our case, with thousands of animated indi-
viduals, or if the viewpoint is sufficiently far, the popping effect becomes unnoticeable.

3 Collision avoidance using rasterisation

We need to consider two factors for the collision method. The first is the huge num-
ber of moving entities and second is the large (and rapidly increasing) complexity of the
static model. Thus the algorithm needs to be fast and scalable; ideally the speed of the
collision test should not depend on the polygonal complexity of the model. Space dis-
cretization methods [7, 8] are probably the most likely to satisfy these criteria. Graphics
rasterisation hardware can be used to make the discretisation easy to implement and fast.

With an outdoor model such as a city these algorithms are well suited since the en-
vironment can be seen as a 2D plan with heights1. In [13] we described an approach
that takes advantage of that property. Briefly, a height-map is created by taking an or-
thographic rendering of the static model with the camera looking down from above and
then reading the z-buffer. This map constitutes a discreet representation of the height
at each point in the environment and it is maintained in main memory as an array. At
each frame we can test for collision by just mapping the position of each avatar on to this
array and comparing the elevation of the avatar against the corresponding value on the
height-map. If the difference between them is above a threshold, it means that the step
necessary in order to climb up or down from the actual avatar position is too big and we
classify the object as “unclimbable” forcing the avatar to change direction. Otherwise
we allow the avatar to move to the new position and update its height using the value
stored in the height-map.

1There are exceptions such as bridges and under-passes but these can be dealt with by adding another 2D
level of rasterisation



Here we extend the idea of discretisation to inter-avatar collision, using another map
which we call collision-map. However this is an integer array and it is not necessarily of
the same resolutionas the height-map. It is used not only for avoidingdirect collisionbut
also for keeping the avatars from coming too close to each other. The allowed proximity
is determined by the size of the map pixels. Initially the values of all pixels in the map
are set to zero. A pixel with a value zero indicates a free position in space while one
with value � 0 is considered occupied (or too close to someone else). For each avatar
its position in the map as well as its neighbourhood (the eight positions surrounding it)
are found and their value incremented by one. When an avatar is to move, the target
position is sampled. If it is already occupied then a different direction has to be chosen,
otherwise it is allowed to move there. The move is done in two steps, first the current
pixel position and neighbourhoodare decremented by one and then the new positionand
neighbourhood are incremented by one. Notice that the neighbourhood of avatars are
allowed to overlap (and thus a map pixel might have a value greater than one), however
avatar-neighbourhood overlaps are not allowed. In this way avatars can come to within
one map pixel away but no closer.

4 Implementation and Results

We developed the system using a low-end Intel workstation equipped with a 350 Mhz
PentiumII processor, 256Mb RAM and an OpenGL compliant videocard with 32 MB
video memory. We tried to maximise the rendering efficiency on this kind of architecture
by following some basic principles. In particular we tried to limit the number of texture
changes during the simulation, since this operation is very expensive in terms of time.
To achieve this we grouped together all the different view images of an object for each
animation frame into one single texture. In this particular implementation each image
has a resolution of 64*64 pixels - we found this to be the best compromise in terms of
image quality produced and memory requirements - therefore a texture of size 1024*512
pixels can hold all 16*8 views.

The animation stored was composed of 10 different frames of a walking human, pro-
duced using two commercial package: Kinetix 3DStudioMax and MetaCreations Poser.
To build the single images we rendered the polygonal version of the humans from the
sample directions and then copied every rendered image from the framebuffer into the
texture memory, using alpha values for the transparent zones. Since we were not at-
tempting to get the highest precision impostors and in order to reduce memory occu-
pancy we store them with just 16 bits - 5 for each ofR, G andB and 1 bit forA. In this
way we need 1 Mb of uncompressed texture memory to store each single frame.

To test the rendering and the collisiondetection we run two tests, the results of which
can be seen in Figures 3 and 4. In both graphs the Y axis shows milliseconds per frame
and all three curves include the rendering of the static model and the impostor polygon
for each avatar. However for the lower curve both collision and texturing of impostors
is turned off, for the middle curve collision is turned on and for the higher one both col-
lision and textured impostors are enabled.

For the first test we used a small city model of 2368 polygons. The aim was to mea-
sure the scalability of the method when the number of simulated individuals increases.
With the second test we want to measure the scalability with regards to the polygonal
complexity of the virtual environment. We kept the population steady at 10,000 avatars
and varied the static model from a simple box like city block of 267 polygons to a frac-
tion of the London model available here at UCL composed of 32128 polygons. As we
can see from both tests we got almost linear curves which re-enforces our argument of



0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16 18 20 22

re
nd

er
in

g 
tim

e 
pe

r 
fr

am
e 

(m
se

c)

number of individuals (’000)

collision + textured impostors
collision + simple polygon

no collision + simple polygons

Fig. 3. Time to render against increasing num-
ber of particles

0

10

20

30

40

50

60

70

80

0 4000 8000 12000 16000 20000 24000 28000 32000

re
nd

er
in

g 
tim

e 
pe

r 
fr

am
e 

(m
se

c)

number of polygons in the city model

collision + textured impostors
collision + simple polygons

no collision + simple polygons

Fig. 4. Time to render against increasing com-
plexity of the city model

scalability for both the avatar rendering and the collision. Just to read out one sam-
ple from Figure 3 above, a model with 2368 polygons using full collision detection and
10,000 textured impostors runs at 25 frames per second.

In terms of artifacts due to the discrete nature of the impostors, such as popping for
example, they turned out to be scarcely notable because of the high number of animated
figures visualised at the same time and the limited dimensions of these on the screen.
This can also be verified from accompanying video.

5 Conclusions and future work

Using the algorithms described is possible to populate virtual environments with thou-
sands of animated virtualhumans in real-time even on low end machines. However there
is great scope for extension and improvement.

In terms of rendering, a disadvantage of our algorithm resides in the big amount of
texture memory necessary for storing the avatar views. One way to improve the method
is rationalising the memorisation process of the set of views in a single texture. The
current strategy relies on a regular subdivision of the texture; in this way there is a large
portion of unused space in the final image (see Figure 2). An alternative is to use an ir-
regular subdivisionof the texture so as to be able to store more views in the same amount
of space. We expect that using a smaller portion of the texture will produce also bene-
fits on the fill-rate requirement for the visualisation of the crowd. It would be also very
interesting to try our algorithm using some of the devices presents on the market that
employ compression algorithms on the texture memory; on these devices is possible to
reach compression ratios in the order of 6:1.

At the moment all the avatars have the same colour. One way of avoiding this is to
use more than one textured polygon per avatar. For example one for each body member
(hand, leg, torso, head), along the spirit of [1]. This will of course increase the rendering
time however it has several potential benefits. The different parts could be interchanged
between avatars, their color can be modulated during the frame providing more variety
and they can also be packed more tight saving texture memory.

Adding behaviour would benefit the system immensely however it can also be quite
expensive [14, 12]. At a low level of detail, we could at-least achieve more realistic
walking patterns by making use of the pedestrian movement data made available, for
example, by the UCL Bartlett School of Architecture [2]. These provide the density of
the pedestrians along each pavement at each hour of the day. We can be represented the



data as color on polygons corresponding to the pavements. These color polygons can
then be rendered with an orthographic projection to provide a density-map of the scene.
Avatars can then move and decide their paths by probabilistically sampling this map.
The behaviour of the avatars can be interactively updated by changing the map. For
example a crowd can be attracted towards a jogglerby rendering a darker (ie more dense)
polygon using interpolated shading over his neighbourhood. In fact such a density map
can almost make the collision height-map redundant since we can set the density over
the obstacles to zero and thus preventing any avatar from deciding to go over them.

If we are walking at street level then at any moment the largest part of the static and
dynamic scene is not visible. There is a variety of efficient algorithms for culling away
the hidden static regions. However visibility culling with such a number of dynamic
entities is very much an open problem. Extending one of the cell visibility algorithms
(eg [5]) seems like a good avenue to follow. Lets assume we are using the density map
described above. At pre-processing the scene and the map are hierarchically subdivided
into cells. When the viewer first moves into a region, the culling algorithm is applied
which outputs the set of cells which are potentially visible (PVC) while the viewer stays
within the region. We can restrict the simulation to only the avatars within the PVC’s.
However this will make the number of visible avatars drop to potentially zero if we
stay in the same view-region long enough, since some avatars will be moving out of
the PVC’s but none will be coming in. To eliminate this problem we can use the density
information. During the culling (which happens only once every several frames) we can
identify the edges of the visible cells which form the boundary between visible and non-
visible. There we can define ’avatar generators’ process which will sample the densities
on either side and periodically send in some avatars.

References

1. A. Aubel, R. Boulic, and D. Thalmann. Lowering the cost of virtual human rendering with
structured animated impostors. In Proceedings of WSCG 99, Plzen, Czech Republic, 1999.

2. Ucl bartlett school of architecture, pedestrian movement project.
http://www.bartlett.ucl.ac.uk/spacesyntax/pedestrian/pedestrian.html.

3. Daniel Cohen-Or, Gadi Fibich, Dan Halperin, and Eyal Zadicario. Conservative visibility and
strong occlusion for viewspace partitioning of densely occluded scenes. Computer Graphics
Forum, 17(3):243–254, 1998. ISSN 1067-7055.

4. Collaborative virtual environments project. http://coven.lancs.ac.uk/.
5. Frédo Durand, George Drettakis, Joëlle Thollot, and Claude Puech. Conservative visibility

preprocessing using extended projections. To appear in the proceedingsof SIGGRAPH 2000,
2000.

6. Paulo W. C. Maciel and Peter Shirley. Visual navigation of large environments using textured
clusters. In Pat Hanrahan and Jim Winget, editors, ACM Computer Graphics (Symp. on Inter-
active 3D Graphics), pages 95–102. ACM SIGGRAPH, April 1995. ISBN 0-89791-736-7.

7. Karol Myszkowski, Oleg G. Okunev, and Tosiyasu L. Kunii. Fast collision detection between
complex solids using rasterizing graphics hardware. The Visual Computer, 11(9):497–512,
1995. ISSN 0178-2789.

8. Jarek Rossignac, Abe Megahed, and Bengt-Olaf Schneider. Interactive inspection of solids:
Cross-sections and interferences. Computer Graphics, 26(2):353–360, July 1992.

9. Germot Schaufler and Wolfgang Sturzlinger. A three-dimensional image cache for virtual
reality. Computer Graphics Forum, 15(3):C227–C235, C471–C472, September 1996.

10. Jonathan Shade, Dani Lischinski, David Salesin, Tony DeRose, and John Snyder. Hierarchi-
cal image caching for accelerated walkthroughs of complex environments. In Holly Rush-
meier, editor, SIGGRAPH 96 ConferenceProceedings, Annual Conference Series, pages 75–



82. ACM SIGGRAPH, Addison Wesley, August 1996. held in New Orleans, Louisiana, 04-
09 August 1996.

11. François Sillion, G. Drettakis, and B. Bodelet. Efficient impostor manipulationfor real-time
visualization of urban scenery. Computer Graphics Forum, 16(3):207–218, August 1997.
Proceedings of Eurographics ’97. ISSN 1067-7055.

12. D.Thalmann S.R. Musse, F. Garat. Guiding and interacting with virtual crowds in real-time.
In Proceedings of Eurographics Workshop on Animation and Simulation, pages 23–34, Mi-
lan, Italy, 1999.

13. F. Tecchia and Y.Chrysanthou. Real-time visualisation of densely populated urban environ-
ments: a simple and fast algorithm for collision detection. In Eurographics UK, April 2000.
to appear.

14. Xiaoyuan Tu and Demetri Terzopoulos. Artificial fishes: Physics, locomotion, perception,
behavior. In Andrew Glassner, editor, Proceedings of SIGGRAPH ’94 (Orlando, Florida,
July 24–29, 1994), Computer Graphics Proceedings, Annual Conference Series, pages 43–
50. ACM SIGGRAPH, ACM Press, July 1994. ISBN 0-89791-667-0.

Fig. 5. Views from a distance, of central London populated with 10,000 humans

Fig. 6. A view from closer down at Regent Street Fig. 7. The climbing of the stairs is done using only in-
formation from the height-map


