
EPL 342 1

Introduction to Java™

Database connectivity with
JDBC

Introduction

o Working with JDBC involves these steps:
 Install the needed JDBC driver
Just download the driver and put it in your classpath

 Establish a connection to the DB
 Send statements to the DB
These can be either SQL statement or calls to

stored procedures
 Get their result
Utilizing the notion of result sets

EPL 342 2

Establishing a Connection

o First, you need to establish a connection with the DBMS you
want to use. Typically, a JDBC application connects to a target
data source using one of two mechanisms:
 DriverManager: This fully implemented class requires an

application to load a specific driver, using a hardcoded URL.
 As part of its initialization, the DriverManager class attempts to load the

driver classes referenced in the jdbc.drivers system property.
 This allows you to customize the JDBC Drivers used by your applications.

 DataSource: This interface is preferred over DriverManager
because it allows details about the underlying data source to be
transparent to your application.
 A DataSource object's properties are set so that it represents a particular

data source.
o Establishing a connection involves two steps: Loading the driver,

and making the connection.

EPL 342 3

Loading the Driver

o Loading the driver you want to use is very
simple. It involves just one line of code in
your program. To use the Java DB driver,
add the following line of code:

Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver");

 In this example, we load the driver for MS SQL
http://msdn.microsoft.com/library/ms378672.aspx

EPL 342 4

Loading the Driver

o Calling the Class.forName automatically
creates an instance of a driver and registers it
with the DriverManager.
 You don't need to create an instance of the class.
 If you were to create your own instance, you would

be creating an unnecessary duplicate, but it would
do no harm.

o After you have loaded a driver, it can make a
connection with a DBMS.

o The second step in establishing a connection is
to have the appropriate driver connect to the
DBMS.

EPL 342 5

Connecting to a DB:
Using the DriverManager Class

o Connection URLs have the following form:
 jdbc:<subprotocol>:<dbName>[propertyList]
 The subprotocol portion of the URL identifies a the DBMS to use.

 For example, if the driver developer has registered the name sqlserver as
the subprotocol, the first and second parts of the JDBC URL will be
jdbc:sqlserver .

 The dbName portion of the URL identifies a specific database.
 A database can be in one of many locations: in the current working

directory, on the classpath, in a JAR file, in a specific Java DB
database home directory, or in an absolute location on your file
system.

 The driver documentation will also give you guidelines for the rest
of the JDBC URL.

 This last part of the JDBC URL supplies information for identifying
the data source.

EPL 342 6

Connecting to a DB:
Using the DriverManager Class

o The getConnection method establishes a connection:

Connection conn =
DriverManager.getConnection("jdbc:sqlserver://[serverName
[\instanceName][:portNumber]][;property=value[;property=v
alue]]");

o For more details for MS SQL connection URL refer to
http://msdn.microsoft.com/library/ms378672.aspx

o So, if you log in to your MS SQL (local) server with a login name of
“Fernanda” and a password of “J8”, just these two lines of code will
establish a connection:

String url =
"jdbc:sqlserver://localhost:1433;databaseName=Northwind;
user=Fernanda;password=J8;"
Connection con = DriverManager.getConnection(url);

EPL 342 7

Retrieving Values from Result Sets

o The ResultSet interface provides methods for retrieving
and manipulating the results of executed queries.

o ResultSet objects can have different functionality and
characteristics.
 These characteristics are result set type, result set

concurrency, and cursor holdability.
 A table of data representing a database result set is usually

generated by executing a statement that queries the
database.

o The type of a ResultSet object determines the level of its
functionality in two areas:
 the ways in which the cursor can be manipulated.
 how concurrent changes made to the underlying data source

are reflected by the ResultSet object.

EPL 342 8

Retrieving Values from Result Sets

o The sensitivity of the ResultSet object is determined by
one of three different ResultSet types:
 TYPE_FORWARD_ONLY — The result set is not scrollable;

its cursor moves forward only, from before the first row to
after the last row. The rows contained in the result set
depend on how the underlying database materializes the
results. That is, it contains the rows that satisfy the query
at either the time the query is executed or as the rows are
retrieved.

 TYPE_SCROLL_INSENSITIVE — The result set is
scrollable; its cursor can move both forward and backward
relative to the current position, and it can move to an
absolute position.

 TYPE_SCROLL_SENSITIVE — The result set is scrollable;
its cursor can move both forward and backward relative to
the current position, and it can move to an absolute position.

EPL 342 9

Sending SELECT statements from a
Java program to the DB

o JDBC returns results in a ResultSet
object, so we need to declare an
instance of the class ResultSet to hold
our results.

o In addition, the Statement methods
executeQuery and getResultSet both
return a ResultSet object, as do various
DatabaseMetaData methods.

EPL 342 10

Using the executeQuery method

o First you need to create a scrollable ResultSet object.

Statement stmt =
con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_READ_ONLY);

ResultSet srs = stmt.executeQuery("SELECT * FROM COFFEES");

o The first argument is one of three constants added to the
ResultSet API to indicate the type of a ResultSet object:
TYPE_FORWARD_ONLY, TYPE_SCROLL_INSENSITIVE, and
TYPE_SCROLL_SENSITIVE.

o The second argument is one of two ResultSet constants for
specifying whether a result set is read-only or updatable:
CONCUR_READ_ONLY and CONCUR_UPDATABLE.

EPL 342 11

Using the executeQuery method

o The point to remember here is that if you specify a type, you
must also specify whether it is read-only or updatable.
 Also, you must specify the type first, and because both parameters

are of type int, the compiler will not complain if you switch the
order.

o If you do not specify any constants for the type and
updatability of a ResultSet object, you will automatically get
one that is TYPE_FORWARD_ONLY and
CONCUR_READ_ONLY.

o The variable srs, which is an instance of ResultSet, contains the
rows of coffees and prices stored in the table COFFEES.

o In order to access the names and prices a ResultSet object
maintains a cursor, which points to its current row of data.

o When a ResultSet object is first created, the cursor is
positioned before the first row.

EPL 342 12

Using the ResultSet Methods
o To move the cursor, you can use the following methods:

 next() - moves the cursor forward one row. Returns true if the cursor is now
positioned on a row and false if the cursor is positioned after the last row.

 previous() - moves the cursor backwards one row. Returns true if the cursor is
now positioned on a row and false if the cursor is positioned before the first
row.

 first() - moves the cursor to the first row in the ResultSet object. Returns true
if the cursor is now positioned on the first row and false if the ResultSet object
does not contain any rows.

 last() - moves the cursor to the last row in the ResultSet object. Returns true if
the cursor is now positioned on the last row and false if the ResultSet object
does not contain any rows.

 beforeFirst() - positions the cursor at the start of the ResultSet object, before
the first row. If the ResultSet object does not contain any rows, this method
has no effect.

 afterLast() - positions the cursor at the end of the ResultSet object, after the
last row. If the ResultSet object does not contain any rows, this method has no
effect.

 relative(int rows) - moves the cursor relative to its current position.
 absolute(int row) - positions the cursor on the row-th row of the ResultSet

object.

EPL 342 13

Using the ResultSet Methods

o Once you have a scrollable ResultSet object,
srs in the previous example, you can use it to
move the cursor around in the result set.

o Since the cursor is initially positioned just
above the first row of a ResultSet object, the
first call to the method next moves the cursor
to the first row and makes it the current row.

o Successive invocations of the method next
move the cursor down one row at a time from
top to bottom.

EPL 342 14

Using the getXXX Methods

o The ResultSet interface declares getter methods
(getBoolean, getLong, and so on) for retrieving
column values from the current row.

o Your application can retrieve values using either
the index number of the column or the name of the
column.
 The column index is usually more efficient.
 Columns are numbered from 1.
 For maximum portability, result set columns within

each row should be read in left-to-right order, and
each column should be read only once.

 Column names used as input to getter methods are case
insensitive.

EPL 342 15

Using the getXXX Methods

o When a getter method is called with a column
name and several columns have the same name,
the value of the first matching column will be
returned.
 The column name option is designed to be used

when column names are used in the SQL query
that generated the result set.

 For columns that are NOT explicitly named in the
query, it is best to use column numbers.

 If column names are used, the programmer should
take care to guarantee that they uniquely refer to
the intended columns, which can be assured with
the SQL AS clause.

EPL 342 16

Using the getXXX Methods

o The getXXX method of the appropriate type
retrieves the value in each column.
 For example, the first column in each row of srs is

COF_NAME, which stores a value of SQL type
VARCHAR.

 The method for retrieving a value of SQL type
VARCHAR is getString.

 The second column in each row stores a value of
SQL type FLOAT, and the method for retrieving
values of that type is getFloat.

 The following code accesses the values stored in
the current row of srs and prints a line with the
name followed by three spaces and the price.

EPL 342 17

Using the getXXX Methods

o Each time the method next is invoked, the next row becomes the
current row, and the loop continues until there are no more rows in rs.

o The method getString is invoked on the ResultSet object srs, so
getString retrieves (gets) the value stored in the column COF_NAME
in the current row of srs.
 The value that getString retrieves has been converted from an SQL VARCHAR

to a String in the Java programming language, and it is assigned to the String
object s.

 Note that although the method getString is recommended for retrieving the
SQL types CHAR and VARCHAR, it is possible to retrieve any of the basic SQL
types with it.
 You cannot, however, retrieve the new SQL3 datatypes with it.

o Getting all values with getString can be very useful, but it also has its
limitations.
 If it is used to retrieve a numeric type, getString converts the numeric value to

a Java String object, and the value has to be converted back to a numeric type
before it can be operated on as a number.

EPL 342 18

Example
Statement stmt =

con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_READ_ONLY);

ResultSet srs =
stmt.executeQuery("SELECT COF_NAME, PRICE FROM COFFEES");

while (srs.next()) {
String name = srs.getString("COF_NAME");
float price = srs.getFloat("PRICE");
System.out.println(name + " " + price);

}

o The output will look something like this:
Colombian 7.99
Colombian_Decaf 8.99
French_Roast_Decaf 9.99

EPL 342 19

Example

o You can process all of the rows is srs going
backward, but to do this, the cursor must start
out located after the last row.
 You can move the cursor explicitly to the position

after the last row with the method afterLast.
 Then the method previous() moves the cursor from

the position after the last row to the last row, and
then to the previous row with each iteration
through the while loop.

 The loop ends when the cursor reaches the
position before the first row, where the method
previous() returns false .

EPL 342 20

Example
Statement stmt =

con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY);

ResultSet srs =
stmt.executeQuery("SELECT COF_NAME, PRICE FROM COFFEES");

srs.afterLast();
while (srs.previous()) {

String name = srs.getString("COF_NAME");
float price = srs.getFloat("PRICE");
System.out.println(name + " " + price);

}

o The printout will look similar to this:
French_Roast_Decaf 9.99
Colombian_Decaf 8.99
Colombian 7.99

EPL 342 21

Using the getXXX Methods

o JDBC offers two ways to identify the column from which
a getXXX method gets a value.
 One way is to give the column name, as was done in the

example above.
 The second way is to give the column index (number of the

column).
 Using the column number instead of the column name looks like this:
String s = srs.getString(1);
float n = srs.getFloat(2);

 The first line of code gets the value in the first column of the
current row of rs (column COF_NAME), converts it to a Java
String object, and assigns it to s.

 The second line of code gets the value stored in the second column
of the current row of rs , converts it to a Java float, and assigns it
to n.

 Note that the column number refers to the column number in the
result set, not in the original table.

EPL 342 22

Moving in a ResultSet

o You can move the cursor to a particular row in a ResultSet
object.
 The methods first, last, beforeFirst, and afterLast move

the cursor to the row indicated in their names.
 The method absolute will move the cursor to the row number

indicated in the argument passed to it.
 If the number is positive, the cursor moves the given number from

the beginning, so calling absolute(1) puts the cursor on the first
row.

 If the number is negative, the cursor moves the given number from
the end, so calling absolute(-1) puts the cursor on the last row.

 The following code moves the cursor to the fourth row of srs:
srs.absolute(4);

 If srs has 500 rows, the following moves the cursor to row 497:
srs.absolute(-4);

EPL 342 23

Moving in a ResultSet

o Three methods move the cursor to a position
relative to its current position.
 The method next moves the cursor forward one

row, and the method previous moves the cursor
backward one row.

 With the method relative, you can specify how
many rows to move from the current row and also
the direction in which to move.
A positive number moves the cursor forward the given

number of rows; a negative number moves the cursor
backward the given number of rows.
srs.absolute(4); // cursor is on the fourth row . . .
srs.relative(-3); // cursor is on the first row . . .
srs.relative(2); // cursor is on the third row

EPL 342 24

Other ResultSet methods

o The method getRow lets you check the number
of the row where the cursor is positioned.
 For example, you can use getRow to verify the

current position of the cursor in the previous
example as follows:
srs.absolute(4);
int rowNum = srs.getRow();
// rowNum should be 4
srs.relative(-3);
int rowNum = srs.getRow();
// rowNum should be 1
srs.relative(2);
int rowNum = srs.getRow();
// rowNum should be 3

EPL 342 25

Other ResultSet methods

o Four additional methods let you verify whether the cursor
is at a particular position.
 The position is stated in their names: isFirst, isLast,

isBeforeFirst, isAfterLast.
 These methods all return a boolean and can therefore be

used in a conditional statement.
 For example

if (srs.isAfterLast() == false) {
srs.afterLast();

}
while (srs.previous()) {

String name = srs.getString("COF_NAME");
float price = srs.getFloat("PRICE");
System.out.println(name + " " + price);

}

EPL 342 26

Using the getXXX Methods

o JDBC allows a lot of latitude as far as
which getXXX methods you can use to
retrieve the different SQL types.
 For example, the method getInt can be used

to retrieve any of the numeric or character
types.
The data it retrieves will be converted to an int;

that is, if the SQL type is VARCHAR , JDBC will
attempt to parse an integer out of the VARCHAR.
The method getInt is recommended for retrieving

only SQL INTEGER types, however, and it cannot be
used for the SQL types BINARY, VARBINARY,
LONGVARBINARY, DATE , TIME, or TIMESTAMP.

EPL 342 27

Updating Tables

o Updating a row in a ResultSet object is a two-phase
process.
 First, the new value for each column being updated is set.
 Then the change is applied to the row.
 The row in the underlying data source is not updated until

the second phase is completed.
o The ResultSet interface contains two update methods for

each JDBC type, one specifying the column to be updated
as an index and one specifying the column name as it
appears in the select list.
 Column names supplied to updater methods are case

insensitive.
 If a select list contains the same column more than once, the

first instance of the column will be updated.

EPL 342 28

Updating Tables

o First, you need to create a ResultSet object that is
updatable.

o To do this, supply the ResultSet constant
CONCUR_UPDATABLE to the createStatement method
 The Statement object it creates produces an updatable

ResultSet object each time it executes a query
 An updatable ResultSet object does not necessarily have to

be scrollable, but when you are making changes to a result
set, you generally want to be able to move around in it.
With a scrollable result set, you can move to rows you want to

change, and if the type is TYPE_SCROLL_SENSITIVE, you can get
the new value in a row after you have changed it.

EPL 342 29

Example

o The method updateRow applies all column changes to the
current row.
 The changes are not made to the row until updateRow has

been called.
 You can use the cancelUpdates method to back out changes

made to the row before the updateRow method is called.

Statement stmt =
conn.createStatement(ResultSet.TYPE_FORWARD_ONLY,
ResultSet.CONCUR_UPDATABLE);

ResultSet srs =
stmt.executeQuery("select COF_Name from COFFEES
where price = 7.99");

srs.next();
srs.updateString("COF_NAME", "Foldgers");
srs.updateRow();

EPL 342 30

Using the updateXXX Methods

o An update is the modification of a column value in the current
row.
 Update operations affect column values in the row where the

cursor is positioned.
 All of the update methods you call will operate on that row until you

move the cursor to another row.
o The ResultSet. updateXXX methods take two parameters: the

column to update and the new value to put in that column.
o As with the ResultSet.getXXX methods, the parameter

designating the column may be either the column name or the
column number.

o There is a different updateXXX method for updating each
datatype (updateString, updateBigDecimal, updateInt, and so
on) just as there are different getXXX methods for retrieving
different datatypes.

EPL 342 31

Using the updateXXX Methods

o To make the update take effect in the
database and not just the result set, we must
call the ResultSet method updateRow.
 E.g.
uprs.last();
uprs.updateFloat("PRICE", 10.99f);
uprs.updateRow();

o If you had moved the cursor to a different row
before calling the method updateRow, the
update would have been lost.

EPL 342 32

Using the updateXXX Methods

o You can cancel the update by calling the method
cancelRowUpdates.
 You have to invoke cancelRowUpdates before invoking the method

updateRow.
 Once updateRow is called, calling the method cancelRowUpdates does

nothing.
 Note that cancelRowUpdates cancels all of the updates in a row.

 If there are many invocations of the updateXXX methods on the same row,
you cannot cancel just one of them.

o The concept to remember is that updates and related
operations apply to the row where the cursor is positioned.
 Even if there are many calls to updateXXX methods, it takes only

one call to the method updateRow to update the database with all
of the changes made in the current row.

EPL 342 33

ResultSet movement

o All cursor movements refer to rows in a ResultSet object,
not rows in the underlying database.
 If a query selects five rows from a database table, there

will be five rows in the result set, with the first row being
row 1, the second row being row 2, and so on.

 Row 1 can also be identified as the first, and, in a result set
with five rows, row 5 is the last.

 The ordering of the rows in the result set has nothing at all
to do with the order of the rows in the base table.

 In fact, the order of the rows in a database table is
indeterminate. The DBMS keeps track of which rows were
selected, and it makes updates to the proper rows, but they
may be located anywhere in the table.
 When a row is inserted, for example, there is no way to know

where in the table it has been inserted.

EPL 342 34

Inserting with Identity Columns
CREATE TABLE TestTable Col1 int IDENTITY, Col2 varchar(50), Col3 int);

String SQL = "INSERT INTO TestTable (Col2, Col3) VALUES ('S', 50)";
Statement stmt = con.createStatement();
int count = stmt.executeUpdate(SQL, Statement.RETURN_GENERATED_KEYS);
ResultSet rs = stmt.getGeneratedKeys();
ResultSetMetaData rsmd = rs.getMetaData();
int columnCount = rsmd.getColumnCount();
if (rs.next()) {

do {
for (int i=1; i<=columnCount; i++) {
System.out.println("KEY " + i + " = " + rs.getString(i));

}
} while(rs.next());

} else {
System.out.println("NO KEYS WERE GENERATED.");

}
rs.close();

EPL 342 35

Using Prepared Statements

o Sometimes it is more convenient to use a PreparedStatement
object for sending SQL statements to the database.
 This special type of statement is derived from the more general

class, Statement.
 If you want to execute a Statement object many times, it normally

reduces execution time to use a PreparedStatement object instead.
o The main feature of a PreparedStatement object is that, unlike

a Statement object, it is given an SQL statement when it is
created.
 The advantage to this is that in most cases, this SQL statement is

sent to the DBMS right away, where it is compiled.
 As a result, the PreparedStatement object contains an SQL statement that

has been precompiled.
 Thus the DBMS can just run the PreparedStatement SQL statement

without having to compile it first.

EPL 342 36

Using Prepared Statements

o Although PreparedStatement objects
can be used for SQL statements with
no parameters, you probably use them
most often for SQL statements that
take parameters.
 The advantage of using SQL statements

that take parameters is that you can use
the same statement and supply it with
different values each time you execute it.

EPL 342 37

Creating a PreparedStatement
Object

o As with Statement objects, you create
PreparedStatement objects with a Connection
method.

PreparedStatement updateSales =
con.prepareStatement("UPDATE COFFEES

SET SALES = ? WHERE COF_NAME LIKE ?");

o The variable updateSales now contains the SQL
statement, "UPDATE COFFEES SET SALES = ?
WHERE COF_NAME LIKE ?",
 In most cases, it has also been sent to the DBMS

and been precompiled.

EPL 342 38

Supplying Values for
PreparedStatement Parameters

o You need to supply values to be used in place of the question mark
placeholders (if there are any) before you can execute a
PreparedStatement object.
 You do this by calling one of the setXXX methods defined in the

PreparedStatement class.
 If the value you want to substitute for a question mark is a Java int, you call the

method setInt.
 If the value you want to substitute for a question mark is a Java String, you call

the method setString, and so on.
 In general, there is a setXXX method for each primitive type declared in the

Java programming language.
o Example:

updateSales.setInt(1, 75);
updateSales.setString(2, "Colombian");
 The first argument given to a setXXX method indicates which question mark

placeholder is to be set, and the second argument indicates the value to which it
is to be set.

EPL 342 39

Supplying Values for
PreparedStatement Parameters

Code Fragment 1:
Statement stmt =
con.createStatement(ResultSet.TYP
E_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);

String updateString = "UPDATE
COFFEES SET SALES = 75 " +
"WHERE COF_NAME LIKE
'Colombian'";

stmt.executeUpdate(updateString);

Code Fragment 2:
PreparedStatement
updateSales =
con.prepareStatement(
"UPDATE COFFEES SET SALES =
? WHERE COF_NAME LIKE ? ");

updateSales.setInt(1, 75);
updateSales.setString(2,
"Colombian");

updateSales.executeUpdate();

EPL 342 40

Using Prepared Statements

o The method executeUpdate was used to execute both the Statement
stmt and the PreparedStatement updateSales.
 Notice, however, that no argument is supplied to executeUpdate when it is used

to execute updateSales.
 This is because updateSales already contains the SQL statement to be executed.

o Looking at these examples, you might wonder why you would choose to
use a PreparedStatement object with parameters instead of just a
simple statement, since the simple statement involves fewer steps.
 If you were going to update the SALES column only once or twice, then there

would be no need to use an SQL statement with input parameters.
 If you will be updating often, on the other hand, it might be much easier to use a

PreparedStatement object, especially in situations where you can use a for loop
or while loop to set a parameter to a succession of values.

o Once a parameter has been set with a value, it retains that value until
it is reset to another value, or the method clearParameters is called.

EPL 342 41

Reusing a Prepared Statement

updateSales.setInt(1, 100);
updateSales.setString(2, "French_Roast");
updateSales.executeUpdate();
// changes SALES column of French Roast row to 100

updateSales.setString(2, "Espresso");
updateSales.executeUpdate();
// changes SALES column of Espresso row to 100
// (the first parameter stayed 100, and the second
// parameter was reset to "Espresso“)

o You can often make coding easier by using a for
loop or a while loop to set values for input
parameters.

EPL 342 42

Reusing a Prepared Statement

PreparedStatement updateSales;

String updateString = "update COFFEES " + "set SALES
= ? where COF_NAME like ?";

updateSales = con.prepareStatement(updateString);
int [] salesForWeek = {175, 150, 60, 155, 90};

String [] coffees = {"Colombian", "French_Roast",
"Espresso", "Colombian_Decaf",
"French_Roast_Decaf"};

for(int i = 0; i < coffees.length; i++) {
updateSales.setInt(1, salesForWeek[i]);
updateSales.setString(2, coffees[i]);
updateSales.executeUpdate();

}
EPL 342 43

Return Values for the
executeUpdate Method

o Whereas executeQuery returns a ResultSet
object containing the results of the query sent to
the DBMS, the return value for executeUpdate is
an int that indicates how many rows of a table were
updated.
 Example:
updateSales.setInt(1, 50);
updateSales.setString(2, "Espresso");
int n = updateSales.executeUpdate();
// n = 1 because one row had a change in it
The table COFFEES was updated by having the value 50

replace the value in the column SALES in the row for
Espresso.

That update affected one row in the table, so n is equal to 1.

EPL 342 44

Return Values for the
executeUpdate Method

o When the method executeUpdate is used
to execute a DDL statement, such as in
creating a table, it returns 0.

o Note that when the return value for
executeUpdate is 0, it can mean one of
two things:
 the statement executed was an update

statement that affected zero rows
 the statement executed was a DDL statement.

EPL 342 45

Stored Procedures

o A stored procedure is a group of SQL statements that form a
logical unit and perform a particular task.

o Stored procedures are used to encapsulate a set of operations
or queries to execute on a database server.
 For example, operations on an employee database (hire, fire,

promote, lookup) could be coded as stored procedures executed by
application code.

 Stored procedures can be compiled and executed with different
parameters and results, and they may have any combination of
input, output, and input/output parameters.

o Stored procedures are supported by most DBMSs, but there is
a fair amount of variation in their syntax and capabilities.

o A simple example of like and how a MS SQL server stored
procedure is invoked from JDBC follows.
 http://msdn.microsoft.com/library/ms378672.aspx

EPL 342 46

Calling a Stored Procedure from
JDBC (for MS SQL Server)

o The first step is to create a CallableStatement object.
 As with Statement and PreparedStatement objects, this is done

with an open Connection object.
o A CallableStatement object contains a call to a stored

procedure.
 It does not contain the stored procedure itself.

o The first line of code below creates a call to the stored
procedure SHOW_SUPPLIERS using the connection con.
 The part that is enclosed in curly braces is the escape syntax for

stored procedures.
 When the driver encounters "{call dbo.SHOW_SUPPLIERS}", it will

translate this escape syntax into the native SQL used by the
database to call the stored procedure named SHOW_SUPPLIERS.

CallableStatement cs =
con.prepareCall("{call dbo.SHOW_SUPPLIERS}");

ResultSet rs = cs.executeQuery();

EPL 342 47

Calling a Stored Procedure from
JDBC (for MS SQL Server)
o The JDBC API provides a stored procedure SQL escape syntax that

allows stored procedures to be called in a standard way for all
RDBMSs.
 This escape syntax has one form that includes a result parameter and one that

does not.
 If used, the result parameter must be registered as an OUT parameter.
 The other parameters can be used for input, output or both. Parameters are

referred to sequentially, by number, with the first parameter being 1.
o Escape syntax:

 {call <procedure-name>[(<arg1>,<arg2>, ...)]}
 Examples: {call proc1(?,?,?) } {call proc2(?) }

o IN parameter values are set using the set methods inherited from
PreparedStatement.

o The type of all OUT parameters must be registered prior to executing
the stored procedure.
 This is done with method registerOutParameter of the CallableStatement class.
 Their values are retrieved after execution via the get methods provided here.

EPL 342 48

Calling a Stored Procedure from JDBC
(for MS SQL Server) - Example

CREATE PROCEDURE GetManager @employeeID INT, @managerID INT OUTPUT AS
BEGIN

SELECT @managerID = ManagerID
FROM HumanResources.Employee
WHERE EmployeeID = @employeeID

END

CallableStatement cstmt = con.prepareCall("{call
dbo.GetManager(?, ?)}");

cstmt.setInt(1, 5);
cstmt.registerOutParameter(2, java.sql.Types.INTEGER);
cstmt.execute();
System.out.println("MANAGER ID: " + cstmt.getInt(2));
cstmt.close();

EPL 342 49

Calling a Stored Procedure from JDBC
(for MS SQL Server) - Example

CREATE PROCEDURE CheckContactCity (@cityName CHAR(50)) AS
BEGIN

IF ((SELECT COUNT(*) FROM Person.Address WHERE City = @cityName) > 1)
RETURN 1

ELSE
RETURN 0

END

CallableStatement cstmt = con.prepareCall("{? = call
dbo.CheckContactCity(?)}");

cstmt.registerOutParameter(1, java.sql.Types.INTEGER);
cstmt.setString(2, "Atlanta");
cstmt.execute();
System.out.println("RETURN STATUS: " + cstmt.getInt(1));
cstmt.close();

EPL 342 50

Calling a Stored Procedure from
JDBC

o Note that the method used to execute cs is
executeQuery because cs calls a stored procedure
that contains one query and thus produces one
result set.
 If the procedure had contained one update or one DDL

statement, the method executeUpdate would have
been the one to use.

 If a stored procedure contains more than one SQL
statement (thus producing more than one result set, or
more than one update count, or some combination of
result sets and update counts) the method execute
should be used to execute the CallableStatement .

o INOUT parameters and the method execute are
used rarely.

EPL 342 51

Calling a Function from JDBC
o This is highly dependent on the DBMS and the JDBC driver

used.
 Most vendors provide a specific escape syntax to enable this

functionality.
 MS SQL JDBC driver provides the following syntax (for built-in

functions): {fn functionName}
 functionName is a function supported by the JDBC driver. For example:
SELECT {fn UCASE(Name)} FROM Employee

 For MS SQL server it will work even without using the escape syntax (just
use the function name).

 User defined functions (UDF) can be called in the same way as
stored procedures.
 To call a UDF as part of a SELECT statement you should use the fully

qualified name of the UDF (e.g. dbo.myFunction()).

EPL 342 52

String sql = “SELECT dbo.myFunction([Full Name]) AS Lname, FROM Employees”;
ResultSet rs = stmt.executeQuery(sql);
while (rs.next()) {

System.out.println(rs.getString("LName"));
}

A simple JDBC program

o Check out the SimpleJDBC.java file for
a full example of a simple JDBC
program

EPL 342 53

