Introduction to Java™

Module 8: Objects and Classes |
D I:I 1. 1| 1| 1| D 1'{ I:I].I DLLDLEI TDLDLLLD] 0004d

I01010100111101000010010L20L0010 4
1101000040000 T 010100100101000 L{JLLDLDU! 101 4000#11111010010L

J

Prepared by Costantinos Costa for EPL 233

EMA233 — Avtikelpevootpedng Mpoypappatiopnos 1

Encapsulation, Polymorphism and Inheritance

e Classic OOP concepts

Binding together the properties of an item = creating
an object combing of objects

Dynamic binding of types

e An object B which is a subclass of object A can be handled by a type A member
field

e Thus we can call method M of class A from object B

Refining a base class
e A new class is derived from the base class

e The accessible methods and fields of the base class are inherited to the new
class

e Inherited methods can be overridden

T b
nooo .-’?
i a |) — ".{-"‘V
EMNA233 LKELpPEVOOTPEDNS MNpoypaAMHATIONOG 11.00 -2

Using Objects

e Creating an object
e Write its class — probably by subclassing
e Write one (or more) constructor(s)
e Write its methods

e Example object:
class myObject extends Object {
int a; // a member field

myObject () {..} // default constructor
myObject (int i) {..} // another constructor

void mehtodl () {..} // a method that does something

qlllj LILUE

,11.01.00001,00101,1,L0100L0 e

L0 o 11401 10L0000L00L0LLLOLO0 L0

Using Objects

e |nitializing an object
e Create it using the operator

e During the creation a constructor is called
anObject = new myObject () ;

e Calling an object’s methods
anObject.methodl () ;
// Calls methodl of the anObject object

l
EﬂAZS3ﬂLKELp€V0mp£¢ﬁc MpoypaIHOTICHOG N1

Defining Methods

e Methods are like functions arein C

e To define a method first we declare what object type it returns (e.g.
toString() {..})

e We can use any of the access modifiers to limit the access to that

method (e.g. String toString() {..})
e We can declare its parameters if any
(e.g. public String toString() {..})

e Finally we can use any other modifiers we wish:

(e.g. public String toString() {..})
(e.g. public String toString(String s) {..})

nooo F ¥
l q | a :‘{‘P
EMNA233 LKELpEVOOoTPEDNS MNpoypappHATIONOG N1 —

The “this” Keyword

e The “this” keyword can be used to access the methods and
member fields of the current object.

e |tis a handle of the current object.

public class foo {
int aInt = 2;

foo() {..}

public int aMehtod () {..}

public foo getMe() { return HE
public static void main(String[] args) {

.alnt = .aMethod () ;
}

(Ll 6

|
Eﬂl\233mm£lu£v00'tp£¢l"]§ MpoypOoppaTiopnos

Access Modifiers
e “Friendly”

No modifier is used - default access limitations
Only classes in the same package can use it
Cannot be inherited by subclasses in foreign packages

Allows access by everyone

Access is forbidden to everybody except the owner class

Access limitations are the same as in the “friendly” case
Can be inherited by subclasses in foreign packages

Applicable in: classes®, constructors, methods, fields

l
EﬂAZS3M\KELpGVOMp£¢t’|q MpoypaIHOTICHOG

Subclassing

e Subclassing involves two classes: the base class and the newly
created derived class.

e When subclassing we inherit from the base class into the derived
class

e Creating a subclass:
public class {
int I;

foo () {
super () ;
I=0;

}

} // This is a subclass of class goo

Y

|
EHI\233m1KEluEVOOTDE¢I’]C MpoypaIHOTICHOG n1.0

Overriding methods

e Methods declared in the subclass as well as the superclass.

e When called, the method in the subclass (not the superclass) will be
executed.
Example:
class One {

public void method1() {
System.out.printin(“This is class One”); }

}

class Two extends One {
Overriding method — public void method1() {
System.out.printin(“This is class Two”); }

l oooo Q:J
ENA233 tKeLpevooTpednG MpoypaprpoTicHOG n1.0 ' 9

Overriding vs. Overloading

public class TestOverriding {

}

C

}

C

}

public static void main(String[] args) {
OverridingA a = new OverridingA();
a.p(10);

}

lass OverridingB {
public void p(int i) {
}

lass OverridingA extends OverridingB {
// This method overrides the method in B
public void p(int i) {
System.out.println(i);

}

public class TestOverloading {

public static void main(String[] args) {
OverloadingA a = new OverloadingA();
a.p(10);

}

}

class OverloadingB {
public void p(int i) {
}

}

class OverloadingA extends OverloadingB {

// This method overloads the method in B
public void p(double i) {
System.out.println(i);

}
}

i y
El1/\23mukstusvoatps¢ﬁq MpoypOUUATIOHOG 1.0 10

Interfaces

e The keyword takes the abstract concept one step
further (“pure” abstract class)
e An provides only a form, but no implementation.

e |t allows the creator to establish the form for a class: method
names, argument lists, and return types, but no method bodies.

can contain fields that are implicitly static and

final.

e Automatically static and final =2 cannot be “blank finals”
e (Can be initialized with nonconstant expressions.

l
EHA233MLKELuevompe¢r'|c MpoypaIHOTICHOG N0 11

Inheritance and Interfaces

e Asan has no implementation at all many
can being combined to form a
new derived class

e Valuable when you need to say

e |[n C++ = multiple inheritance
e Carries some rather sticky baggage because each class can have an
implementation.
e |nJava =2 can perform the same act, but only one of the classes
can have an implementation.

e So the problems seen in C++ do not occur with Java when combining
multiple interfaces

oooofl
: J_
EHA233ﬂLKauevompe¢ﬁc MpoypOoppaTiopnos !‘ 12

Inheritance and Interfaces

e Asan has no implementation at all many
can being combined to form a
new derived class

e Valuable when you need to say

e |[n C++ = multiple inheritance
e Carries some rather sticky baggage because each class can have an
implementation.
e |nJava =2 can perform the same act, but only one of the classes
can have an implementation.

e So the problems seen in C++ do not occur with Java when combining
multiple interfaces

oooofl
: J_
EHA233ﬂLKauevompe¢ﬁc MpoypOoppaTiopnos !‘ 13

Inheritance example

class Animal{
public void move(){System.out.println("Animals can move");}
}
class Dog extends Animal{
public void move(){
super.move(); // invokes the super class method
System.out.println("Dogs can walk and run");}
}
class SheepDog extends Animal{
public void move(){
super.move(); // invokes the super class method
System.out.println("SheepDogs are protecting sheeps");

}
public class TestDog{

public static void main(String args[]){
Animal al = new Dog(); // Animal reference but Dog object
new SheepDog(); // Animal reference but Dog object
al.move();//Runs the method in Dog class
a2.move();//Runs the method in SheepDog class

Animal a2

l
Eﬂl\Z33ﬂtK€tu€vompe¢r'|q MpoypaIHOTICHOG

14

Interface example

// Multiple interfaces.

interface CanFight {void fight();}
interface CanSwim {void swim();}
interface CanFly {void fly();}

class ActionCharacter {public void fight() {}}

class Hero extends ActionCharacter implements CanFight, CanSwim, CanFly {
public void swim() {System.out.println("Hero.swim()");}
public void fly() {System.out.println("Hero.fly()");}

}

public class Adventure {

static void t(CanFight x) {x.fight();}

static void u(CanSwim x) {x.swim();}

static void v(CanFly x) {x.fly();}

static void w(ActionCharacter x) {x.fight();}

public static void main(String[] args) {
Hero h = new Hero();

t(h);// Treat it as a CanFight

u(h);// Treat it as a CanSwim

v(h);// Treat it as a CanFly

w(h);

}

}

\
EHA233mLK£Luevompe¢r'|c MpoypaIHOTICHOG N0 15

Task

e Write a program for the well know game “rock-scissor-paper”. The
program must have N rounds and M players. The only time that the
players should play is when they have the opposite sex. In each

round the program may print the round score. After the N rounds the
program should choose the winner.

e |[MPORTANT: You must use only one Arraylist and the given
files(Person.java and Player.java).

l oooo Q:J
EMNA233 LKELEVOOoTPEDNG MPOYPAUUATICHOG N0 : - 16

