Introduction to Java™

Module 3: Arrays

010010101400001211101001010100111101000010010011010010 4
11010101010 Lwi.nunuuwnam.rr 010100100101000 L{JLLDLU{I] 101 4000#11111010010L

_ | J
DLDDEQDLDDL L110LA0LE e

Prepared by Costantinos Costa for EPL 233

EMA233 — Avtikelpevootpedng Mpoypappatiopnos 1

An Introduction to Arrays

e Arrays in Java are just as they exist on all
programming languages
e Come in handy when you want to organize multiple
values of logically related items
e They are static objects (meaning: Cannot be resized
dynamically)

e The syntax used for arrays is: [subscript]
(eg. Array1][5])

e The refers to the array as a whole

e While the subscript refers to a specific element of the
array

N 5
| nonof A T
ENA233 WKEWUEVOOTPEDIS MPOYPOUUATIONAG N0 -)

Creating Arrays

To create an array first you must declare it :
int numbers|[]; orint|[] numbers;

Java lets you create arrays only using the new operator,
like this:

number= new int|[x];

// x is an integer stating the size of
the array

For primitive types that is enough...

However for an array of some other class type there is the
need to initialize every object of your array manually

This is necessary because so far you have an array of null
objects

nooo g)
| ! W
EHI\233m1KEluEVOOTDE¢I’]C MpoypaIHOTICHOG n1.0 3

Initializing an Array

e To properly initialize an array (not of primitive type)
you have to initialize every element of the array like
this:

MyStrangeObject [] ;
= new MyStrangeObject[20];
for (int I=0;I<20;I++)
[I] = new MyStrangeObject();

objs[0]; is the first element of the array.

nooo 2 {
: J_
EHA233MLKEluevompe¢r'|c MpoypOoppaTiopnos [4

More on Arrays

Don’t try to access a nonexistent array element.
For example:

int numbers]|];
numbers = new int[10];

n = numbers[1l5];

would go beyond the boundaries of the array and so Java
would generate the exception

|
EnA233MLKEluevompe¢ﬁc MpoypaIHOTICHOG

Number of Elements Vs Array Size

The member
An array may have less elements than its size.

gives the size of an array.

To find the number of elements in an array a counter should be used.

Alternatively use a for loop to check how many positions of the array

are initialized.

for

(int I=0;I<nums. ;I++)

1if

(

) counter++;

|
Eﬂl\233mm£lu£v00'tp£¢l"]§ MpoypOoppaTiopnos

(Ll 6

Copying an Array

To copy an array one should

Create a new array with the size of the origin array:
String[] copy=new String[origin.length()];

Copy each object of the origin array manually:
for (int I=0;I<origin.length();I++)
copy[I]=new String(origin[I]);
The following code would result to reference to the same

darray.

String[] origin;

String[] copy;

origin = new {“one”, “two”, “three”};
cCopy = 0Origin;

// A common mistake where one would think that
// he has two different arrays

l
EHA233MLKELuevompe¢r'|c MpoypaIHOTICHOG N0 7

Multidimensional Arrays

e Java doesn't support multidimensional arrays in the conventional
sense

e Possible to create arrays of arrays

e To create a two-dimensional array of integers you would write
something like this:

int table = new 1int ;

0 1 2 3 0 1 2 3

One-Dimensional Array

W M = o

Two-Dimensional Array

l oooo Q:J
ENA233 tKeLeVooTpedNG MPoypaUpOTIGHOG n1.0 ' - 8

Multidimensional Arrays

e You refer to a value stored in a n-dimensional array by

using subscripts for all the dimensions like this:
int value = table[3]..[2];

e A quick way to initialize an n-dimensional array is to use
nested for loops

| nooo { J
EMNA233 LKELEVOOoTPEDNG MPOYPAUUATICHOG n1.0 ‘ : 9

A Bit About Collections

e Collections vs Arrays
e Dynamic sizing
e Any type of object can be put in a collection
e No support for primitive types

Like a dynamic array of objects
A vector of bits (minimum size 64 bits)

An dynamic array (links a
with a)

A last-in, first-out (LIFO) collection with push and
pop methods

l ooog F ﬂ’!
ENA233 WKELUEVOOTPEDIS MPOYPOLUHATIONOG N0 10

ArrayList: Another collection

e Resizable-array implementation of the List interface

e |[mplements all optional list operations, and permits all
elements, including null

e |n addition it provides methods to manipulate the size of the array
that is used internally to store the list

e Roughly equivalent to Vector, except that it is
unsynchronized

l
EnA233MLKELuevompe¢r'|q MpoypaIHOTICHOG N0 11

More on Arraylist

e Fach instance has a

e The capacity is the size of the array used to store the
elements in the list

e |tis always at least as large as the list size

e As elements are added to an Arraylist, its capacity grows
automatically

e The details of the growth policy are not specified
e Adding an element has constant amortized time cost

T b
nooo .-’?
| n | W’
EMNA233 LKELPEVOOTPEDNS MNpOoypaAMHATIONOG 11.00 - 12

More on Arraylist

e Note that this implementation is not synchronized

e |f multiple threads access an ArrayList instance concurrently, and at
least one of the threads modifies the list structurally, it must be
synchronized externally.

e A structural modification is any operation that adds or deletes one
or more elements, or explicitly resizes the backing array
e setting the value of an element is not a structural modification

e Typically accomplished by synchronizing on some object that
naturally encapsulates the list

e |f no such object exists, the list should be "wrapped" using the
Collections.synchronizedList method

e This is best done at creation time, to prevent accidental
unsynchronized access to the list:
List list = Collections.synchronizedList(new ArrayList(...));

l oooo Q:J
ENA233 tKeLeVooTpedNG MPoypaUpOTIGHOG N0 : - 13

ArraylList Usage

a = new ArrayList (cap) /| Creates ArrayList with initial int capacity cap
/| Adding elements

a.add(e) /] adds e to end of ArrayList a

a.add (i, e) /[Inserts e at index i, shifting elements up as necessary.

/] Replacing an element
a.set(i,e) /| Sets the element at index i to e.

/] Getting the elements

e = (E) a.get (1) /| Returns the object at index .
oarray = a.toArray() /IReturns values in array of objects.
earray = a.toArray(E[]) /| The array parameter should be of the E class.

L01L00001.00101110100L 0%

ArraylList Usage

// Searching
b = a.contains(e) /| Returns true if ArrayList a contains e
i = a.indexOf (e) /| Returns index of first occurrence of e, or -1 if not there.

i = a.lastIndexOf (e) /] Returnsindex of last occurrence of e, or -1 if not there.

// Removing elements

a.clear () /| Removes all elements from ArrayList a
a.remove (1) /| Removes the element at position i.
a.removeRange (i, j) /I Removesthe elementsfrom positionsithruj.

// Other
i = a.size() /| Returns the number of elements in ArrayList a.
a.trimToSize () /| Trims the capacity of this ArrayList instance to be the
/[list's current size.
a.ilsEmpty () /| Tests if this list has no elements.
', 01L00L0L0LO0LLLLO L DDDL 0 Elllﬁlll EILI 0L 8 .

Example-Exercise

e A anagram is a word that can be created by rearranging the letters of
another given word. We ignore white spaces and letter case. The all
letters of “Fillers" can be rearranged to the phrase "refills".

e |mplement a Java program that checks to given Strings whether one
is an anagram of the other.

e Hint: Objects s of type String can be converted to lower case
with s.toLowerCase(). s.toCharArray() returns the content of the
String as an char-array. Note that char values can be used in Java
everywhere where an int value is allowed.

e Here some dnagrams
o Refills=> fillers
e Relayed - layered

e Rentals =2 antlers
e Rebuild =2 builder

oooof
| N O
EﬂAZ33ﬂLK£luevompe¢ﬁc NpoypoppaTiopnos N0 16

