
Real-Time Coordination in Distributed Multimedia
Systems

Theophilos A. Limniotes and George A. Papadopoulos

Department of Computer Science
University of Cyprus

75 Kallipoleos Str, P.O.B. 20537
CY-1678 Nicosia

Cyprus
E-mail: {theo,george}@cs.ucy.ac.cy

Abstract. The coordination paradigm has been used extensively as a
mechanism for software composition and integration. However, little work has
been done for the cases where the software components involved have real-time
requirements. The paper presents an extension to a state-of-the-art control- or
event-driven coordination language with real-time capabilities. It then shows
the capability of the proposed model in modelling distributed multimedia
environments

1 Introduction

The concept of coordinating a number of activities, possibly created independently
from each other, such that they can run concurrently in a parallel and/or distributed
fashion has received wide attention and a number of coordination models and
associated languages ([4]) have been developed for many application areas such as
high-performance computing or distributed systems.

Nevertheless, most of the proposed coordination frameworks are suited for
environments where the sub-components comprising an application are conventional
ones in the sense that they do not adhere to any real-time constraints. Those few that
are addressing this issue of real-time coordination either rely on the ability of the
underlying architecture apparatus to provide real-time support ([3]) and/or are
confined to using a specific real-time language ([5]).

In this paper we address the issue of real-time coordination but with a number of
self imposed constraints, which we feel, if satisfied, will render the proposed model
suitable for a wide variety of applications. These constraints are:
• The coordination model should not rely on any specific architecture configuration
supporting real-time response.
• The real-time capabilities of the coordination framework should be able to be met
in a variety of systems including distributed ones.
• Language interoperability should not be sacrificed and the real-time framework
should not be based on the use of specific language formalisms.

J. Rolim et al. (Eds.): IPDPS 2000 Workshops, LNCS 1800, pp. 685-691, 2000.
 Springer-Verlag Berlin Heidelberg 2000

We attempt to meet the above-mentioned targets by extending a state-of-the-art
coordination language with real-time capabilities. In particular, we concentrate on the
so-called control- or event-driven coordination languages ([4]) which we feel they are
particularly suited for this purpose, and more to the point the language Manifold ([1]).
We show that it is quite natural to extend such a language with primitives enforcing
real-time coordination and we apply the proposed model to the area of distributed
multimedia systems.

2 The Coordination Language Manifold

Manifold ([1]) is a control- or event-driven coordination language, and is a realisation
of a rather recent type of coordination models, namely the Ideal Worker Ideal
Manager (IWIM) one. In Manifold there exist two different types of processes:
managers (or coordinators) and workers. A manager is responsible for setting up and
taking care of the communication needs of the group of worker processes it controls
(non-exclusively). A worker on the other hand is completely unaware of who (if
anyone) needs the results it computes or from where it itself receives the data to
process. Manifold possess the following characteristics:
• Processes. A process is a black box with well-defined ports of connection through
which it exchanges units of information with the rest of the world.
• Ports. These are named openings in the boundary walls of a process through which
units of information are exchanged using standard I/O type primitives analogous to
read and write. Without loss of generality, we assume that each port is used for the
exchange of information in only one direction: either into (input port) or out of
(output port) a process. We use the notation p.i to refer to the port i of a process
instance p.
• Streams. These are the means by which interconnections between the ports of
processes are realised. A stream connects a (port of a) producer (process) to a (port of
a) consumer (process). We write p.o -> q.i to denote a stream connecting the
port o of a producer process p to the port i of a consumer process q.
• Events. Independent of streams, there is also an event mechanism for information
exchange. Events are broadcast by their sources in the environment, yielding event
occurrences. In principle, any process in the environment can pick up a broadcast
event; in practice though, usually only a subset of the potential receivers is interested
in an event occurrence. We say that these processes are tuned in to the sources of the
events they receive. We write e.p to refer to the event e raised by a source p.

Activity in a Manifold configuration is event driven. A coordinator process waits to
observe an occurrence of some specific event (usually raised by a worker process it
coordinates) which triggers it to enter a certain state and perform some actions. These
actions typically consist of setting up or breaking off connections of ports and
streams. It then remains in that state until it observes the occurrence of some other
event, which causes the preemption of the current state in favour of a new one
corresponding to that event. Once an event has been raised, its source generally
continues with its activities, while the event occurrence propagates through the

686 T.A. Limniotes and G.A. Papadopoulos

environment independently and is observed (if at all) by the other processes according
to each observer’s own sense of priorities.

More information on Manifold can be found in [1]; the language has already been
implemented on top of PVM and has been successfully ported to a number of
platforms including Sun, Silicon Graphics, Linux, and IBM AIX, SP1 and SP2.

3 Extending Manifold with a Real-Time Event Manager

The IWIM coordination model and its associated language Manifold have some
inherent characteristics, which are particularly suited to the modelling of real-time
software systems. Probably the most important of these is the fact that the
coordination formalism has no concern about the nature of the data being transmitted
between input and output ports since they play no role at all in setting up coordination
patterns. More to the point, a stream connection between a pair of input-output ports,
simply passes anything that flows within it from the output to the input port.
Furthermore, the processes involved in some coordination or cooperation scenario are
treated by the coordination formalism (and in return treat each other) as black boxes
without any concern being raised as to their very nature or what exactly they do.
Thus, for all practical purposes, some of those black boxes may well be devices
(rather than software modules) and the information being sent or received by their
output and input ports respectively may well be signals (rather than ordinary data).
Note also that the notion of stream connections as a communication metaphor,
captures both the case of transmitting discrete signals (from some device) but also
continuous signals (from, say, a media player). Thus, IWIM and Manifold are ideal
starting points for developing a real-time coordination framework.

In fact, a natural way to enhance the model with real-time capabilities is by
extending its event manager. More to the point, we enhance the event manager with
the ability to express real-time constraints associated with the raising of events but
also reacting in bound time to observing them. Thus, while in the ordinary Manifold
system the raising of some event e by a process p and its subsequent observation by
some other process q are done completely asynchronously, in our extended
framework timing constraints can be imposed regarding when p will raise e but also
when q should react to observing it. Effectively, an event is not any more a pair
<e,p> , but a triple <e,p,t> where t denotes the moment in time at which the
event occurs. With events that can be raised and detected respecting timing
constraints, we essentially have a real-time coordination framework, since we can
now guarantee that changes in the configuration of some system’s infrastructure will
be done in bounded time. Thus, our real-time Manifold system goes beyond ordinary
coordination to providing temporal synchronization.

3.1 Recording Time

A number of primitives exist for capturing the notion of time, either relative to world
time, the occurrence of some event, etc. during the execution of a multimedia

687Real-Time Coordination in Distributed Multimedia Systems

application which we refer to below as presentation. These primitives have been
implemented as atomic (i.e. not Manifold) processes in C and Unix. In particular:
• AP_CurrTime(int timemode)
returns the current time according to the parameter timemode. It could be world time
or relative.
• AP_OccTime(AP_Event anevent, int timemode)
returns the time point (in world or relative mode) of an event. Time points represent
single instance in time; two time points form a basic interval of time.
• AP_PutEventTimeAssociation(AP_Event anevent)
creates a record for every event that is to be used in the presentation and inserts it in
the events table mentioned above.
• AP_PutEventTimeAssociation_W(AP_Event anevent)
is a similar primitive which additionally marks the world time when a presentation
starts, so that the rest of the events can relate their time points to it.

3.2 Expressing Temporal Relationships

There are two primitives for expressing temporal constraints among events raised
and/or observed. The first is used to specify when an event must be triggered while
the second is used to specify when the triggering of an event must be delayed for
some time period.
• AP_Cause(AP_Event anevent, AP_Event another, AP_Port
delay, AP_Port timemode)
enables the triggering of the event another based on the time point of anevent.
• AP_Defer(AP_Event eventa, AP_Event eventb, AP_Event
eventc, AP_Port delay)
inhibits the triggering of the event eventc for the time interval specified by the
events eventa and eventb . This inhibition of eventc may be delayed for a
period of time specified by the parameter delay .

4 Coordination of RT Components in a Multimedia Presentation

We show the applicability of our proposed model by modelling an interactive
multimedia example with video, sound, and music. A video accompanied by some
music is played at the beginning. Then, three successive slides appear with a question.
For every slide, if the answer given by the user is correct the next slide appears;
otherwise the part of the presentation that contains the correct answer is re-played
before the next question is asked. There are two sound streams, one for English and
another one for German.

For each such medium, there exists a separate manifold process. Each such
manifold process is a “building block”. The coordination set up with the stream
connections between the involved processes is shown below (the functionality of
some of these boxes is explained later on):

688 T.A. Limniotes and G.A. Papadopoulos

Video
Server

Audio
Server

Splitter

Zoom
Pre
sen

tation

Ser
ver

english

german

zero

one

three

two

We now show in more detail some of the most important components of our set up.
We start with the manifold that coordinates the execution of atomics that take a video
from the media object server and transfer it to a presentation server.

manifold tv1()
{

begin:(activate(cause1,cause2,mosvideo,splitter,zoom),c
ause1,WAIT).
 start_tv1:(cause2,mosvideo -> (-> splitter),
 splitter.zoom ->zoom,
 zoom-> (->ps.zero),ps.out1->stdout,WAIT).
 end_tv1:post(end).
 end:(activate(ts1),ts1).
}

In addition to the begin and end states which apply at the beginning and the end
of the manifold’s execution respectively, two more states are invoked by the
AP_Cause commands, namely start_tv1 and end_tv1 . At the begin state the
instances of the atomics cause1 , cause2 , mosvideo, splitter, and zoom
are activated. These activations introduce them as observable sources of events. This
state is synchronized to preempt to start_tv1 with the execution of cause1 .
More to the point, the declaration of the instance cause1

process cause1 is
AP_Cause(eventPS,start_tv1,3,CLOCK_P_REL)

indicates that the preemption to start_tv1 should occur 3 seconds (relative time)
after the raise of the presentation start event eventPS.

Within start_tv1 the other three instances, cause2 , mosvideo, and
splitter , are executed in parallel. cause2 synchronizes the preemption to
end_tv1 and its declaration

process cause2 is
AP_Cause(eventPS,end_tv1,13,CLOCK_P_REL)

indicates that the currently running state must execute the other two atomic instances
within 13 seconds. So the process for the media object mosvideo keeps sending its
data to splitter until the state is preempted to end_tv1 . The mosvideo
coordinating instance supplies the video frames to the splitter manifold. The role

689Real-Time Coordination in Distributed Multimedia Systems

of splitter here is to process the video frames in two ways. One with the intention
to be magnified (by the zoom manifold) and the other at normal size directly to a
presentation port. zoom is an instance of an atomic which takes care of the video
magnification and supplies its output to another port of the presentation server. The
presentation server instance ps filters out the input from the supplying instances, i.e.
it arranges the audio language (English or German) and the video magnification
selection. At the end_tv1 state the presentation ceases and control is passed to the
end state. Finally at the end state, the tv1 manifold is activated and performs the
first question slide manifold ts1 . This prompts a question, which if answered
correctly prompts in return the next question slide. A wrong answer leads to the
replaying of the presentation that relates to the correct answer, before going on with
the next question slide. The code for a slide manifold is given below.

manifold tslide1()
{
 begin:(activate(cause7),cause7,WAIT).
 start_tslide1:(activate(testslide),testslide,WAIT).
 tslide1_correct: "your answer is correct"->stdout;
 (activate(cause8),cause8,WAIT).
 tslide1_wrong:"your answer is wrong"->stdout;
 (activate(cause9),cause9,WAIT).
 end_tslide1:(post(end),WAIT).
 start_replay1:
(activate(replay1,cause10),replay1,cause10,WAIT).
 end_replay1: (activate(cause11),cause11,WAIT).
 end:(activate(ts2),ts2).
}

The instance cause7 is responsible for invoking the start_tslide state. The
declaration for the cause7 instance is

process cause7 is
AP_Cause(end_tv1,start_slide1,3,CLOCK_P_REL)

Here we specify that start_slide1 will start 3 seconds after the occurrence of
end_tv1 . Inside that, the testslide instance is activated and eventually causes
preemption to either tslide_correct or tslide1_wrong , depending on the
reply.

The tslide_wrong instance causes transition to the start_replay1 state
which causes the replay of the required part of the presentation and then preempts
through cause10 , to end_replay1 . That in turn preempts through cause11 , to
end_replay1 , after replaying the relevant presentation. The end_replay marks
the end of the repeated presentation and preempts to end_ts l ide1 . The
tslide_correct state, also causes the end_tslide1 event through the
instance cause8 . The end_tslide1 , simply preempts to the end state that
contains the execution of the next slide’s instance.

The main program begins with the declaration of the events used in the program.

AP_PutEventTimeAssociation_W(eventPS)

690 T.A. Limniotes and G.A. Papadopoulos

is the first event of the presentation and puts the current time as its time point. For the
rest of the events the function

AP_PutEventTimeAssociation(event)

is used which leaves the time point empty. Then the implicit instances of the media
manifolds, are executed in parallel at the end of the block. These are

(tv1,eng_tv1,ger_tv1,music_tv1)

tv1 is the manifold for the video transmission, eng_tv1 is the manifold for the
English narration transmission, ger_tv1 is the manifold for the German narration
transmission and music_tv1 is the manifold for the music transmission.

5 Conclusions

In this paper we have addressed the issue of real-time coordination in parallel and
distributed systems. In particular, we have extended a control- or event-driven
coordination language with a real-time event manager that allows expressing timing
constraints in the raising, observing, and reacting to events. Thus, state transitions are
done in a temporal sequence and affect accordingly the real-time behaviour of the
system. We have tested our model with a scenario from the area of multimedia
systems where recently issues of coordination and temporal synchronization at the
middleware level have been of much interest to researchers ([2]).

References

1. F. Arbab, “The IWIM Model for Coordination of Concurrent Activities”, First
International Conference on Coordination Models, Languages and Applications
(Coordination’96), Cesena, Italy, 15-17 April, 1996, LNCS 1061, Springer Verlag, pp.
34-56.

2. G, Blair, J-B. Stefani, Open Distributed Processing and Multimedia, Addison-Wesley,
1998.

3. IEEE Inc., “Another Look at Real-Time Programming”, Special Section of the
Proceedings of the IEEE 79(9), September, 1991.

4. G. A. Papadopoulos and F. Arbab, “Coordination Models and Languages”, Advances in
Computers, Marvin V. Zelkowitz (ed.), Academic Press, Vol. 46, August, 1998, 329-400.

5. M. Papathomas. G. S. Blair and G. Coulson, “A Model for Active Object Coordination
and its Use for Distributed Multimedia Applications”, LNCS, Springer Verlag, 1995, pp.
162-175.

6. S. Ren and G. A. Agha, “RTsynchronizer: Language Support for Real-Time
Specifications in Distributed Systems”, ACM SIGPLAN Workshop on Languages,
Compilers and Tools for Real-Time Systems, La Jolla, California, 21-22 June, 1995.

691Real-Time Coordination in Distributed Multimedia Systems

