
Context-aware Media Player (CaMP): Developing
context-aware applications with Separation of Concerns∗

Nearchos Paspallis
University of Cyprus

CY-1678, Nicosia, Cyprus
nearchos@cs.ucy.ac.cy

Achilleas Achilleos
University of Cyprus

CY-1678, Nicosia, Cyprus
achilleas@cs.ucy.ac.cy

Konstantinos Kakousis
University of Cyprus

CY-1678, Nicosia, Cyprus
kakousis@cs.ucy.ac.cy

George A. Papadopoulos
University of Cyprus

CY-1678, Nicosia, Cyprus
george@cs.ucy.ac.cy

ABSTRACT
The constant advent of powerful mobile devices has raised
the potential of building novel context-aware applications.
These applications let the users enjoy a better experience by
sensing their context and automating tasks that would oth-
erwise require significant user attention. This paper presents
two context-aware applications, built on top of the MUSIC
middleware’s context management framework. By describ-
ing the development steps, we reveal how development is
facilitated via Separation of Concerns and how code reuse is
enabled in terms of reusable context plug-ins. It is argued
that this approach reduces the required development and
maintenance effort and thus lowers the associated cost.

Categories and Subject Descriptors
D.2.m [Software Engineering]: Miscellaneous—Rapid pro-
totyping, Reusable software

Keywords
Context-awareness, Separation of Concerns, Code reuse, Con-
text sensors, Context plug-ins, Mobile applications, OSGi

1. INTRODUCTION
In recent years, the mobile phone proved to be the fastest

proliferating invention ever [16], quickly reaching a world-
wide penetration that exceeds 60% [1]. Many of these de-
vices are programmable mobile computers with advanced
features, commonly referred to as smartphones. As these de-
vices offer unprecedendent capabilities, users expect a new

∗This research received partian financial support from the
European Union (IST-MUSIC, 6th Framework Programme,
contract number 35166 and ICT-AsTeRICS, 7th Framework
Programme, contract number 247730).

generation of applications to take advantage of them. To-
wards this direction, a lot of research is devoted on context-
aware, self-adaptive applications. The latter improve users’
experience by sensing their context and automating tasks
that would otherwise require significant user attention.

This paper presents two variants of a context-aware ap-
plication, built using the MUSIC development methodology
and deployed on top of the MUSIC middleware [9]. The key
focus is on describing the steps followed for the development
of these applications, thus illustrating how this approach fa-
cilitates Separation of Concerns (SoC) and code reuse.

The paper is organized as follows: Section 2 introduces the
foundations of the MUSIC context management framework,
while section 3 shows how it can be used for the development
of the Context-aware Media Player (CaMP). The experience
of building the CaMP application is then analysed in section
4 and compared to related work in section 5. Finally, section
6 presents briefly the conclusions derived from this work.

2. THE MUSIC FRAMEWORK
As part of a more general framework [5, 15], the MU-

SIC context management framework provides developers a
methodology for developing context-aware applications and
a middleware platform for deploying them [9]. This method-
ology is closely coupled to the notion of context plug-ins:
reusable pieces of code responsible for generating context
data as needed. The middleware collects the generated data
from the plug-ins and processes, stores and provides it to
context listeners. As the whole middleware is built on top
of the OSGi framework [19], the context plug-ins and the
context management components are defined as OSGi bun-
dles; i.e. the main artifact of reusable code in OSGi.

2.1 Context Plug-ins
Context plug-ins are the main components defined in the

MUSIC context management system. They are classified
into context sensors and context reasoners. The former are
pure providers of context information, typically used as wrap-
pers of physical hardware sensors (e.g. Bluetooth or GPS
adapters), while the latter are more elaborate processors
that take as input elementary context data and produce
higher level context information; e.g. a User presence in-
ferer or a WiFi signal strength predictor.

By leveraging OSGi’s features, the context plug-ins are



designed as completely independent components, capable of
enclosing necessary libraries as needed. For instance, a Blue-
tooth sensor may include Java libraries used to access the
Bluetooth functionality as it is provided by the operating
system. Moreover, a plug-in can even leverage native code
(e.g., DLL libraries) when the underlying sensor requires
native access to its resources (e.g., a face-tracking camera
processor). In both cases, the OSGi specification provides
adequate support for enclosing the functionality and the li-
braries in an OSGi bundle; i.e., a JAR file. This provides a
clear-cut approach for searching, selecting and reusing con-
text plug-ins from appropriate component repositories [9].
When deployed, the plug-ins effectively realize a hierar-

chical processing chain, where low-level context data is fed
by sensors to reasoners; the latter are responsible to derive
higher-level context information. This hierarchy forms a log-
ical dependency graph, based on the provided and required
context types of a component. At the top of the hierarchy
are the context-aware applications that act as pure context
consumers. However, since applications are not always ac-
tive, the plug-ins are activated only when required. This led
to an intelligent activation mechanism, which autonomously
decides when each plug-in is activated based on its depen-
dencies and requirements. This approach has experimentally
shown a significant gain in resource consumption [11].

2.2 Context Model
As aforesaid, the context management middleware is re-

sponsible for controlling the plug-ins (i.e. managing their
life-cycle), so as to collect and route the required context
information and delegate it to the requested context clients
as needed. Furthermore, the management middleware is re-
sponsible for managing the context data according to the
predefined model. For this purpose, an elaborate Ontology-
based context model was defined [13]. This model serves two
important roles: First, it enables semantic consistency and,
second, it enables context reasoning in terms of relationships
among context entities as well as in terms of alternative rep-
resentations used to encode the same context data.
In this work we are primarily concerned with the former:

establishing semantic consistency. Since the proposed frame-
work has code reusability as its primary goal, it is important
to adopt a flexible model that enables semantic consistency
(i.e., common dictionary) between various context providers
and context consumers; potentially developed by various de-
velopers. For instance, a developer that needs to use the
“location” context, must know what is the key needed to
access it. Also, the model can serve by disambiguating the
encoding used for abstracting the location information.
In the MUSIC model [13], the keys used to refer to context

information have two components: First, the scope defines
the context type; e.g. “#Thing.Concept.Scope.Location”
refers to location. Next, the entity key disambiguates the
entity to which the scope refers to. Thus, when the scope
refers to a“location” context type, the entity is used to spec-
ify whether this type refers to a person or a device; e.g.
the user is referred as“#Thing.Concept.Entity.User|myself”,
whereas “#Thing.Concept.Entity.Device|this” refers to the
used device. This approach conforms with Dey’s definition
of context, which states that “context is any information
characterizing the interaction between a user and a device,
including the user and the device themselves” [3].

3. DEVELOPING CaMP
This section illustrates the design and implementation of a

context-aware application using the MUSIC context frame-
work. Two variations of the application are described: one
suitable for deployment on a desktop device and another one
for use on a mobile device. The goal of the process described
is twofold: First, we reveal how the design and implementa-
tion of context-aware applications is simplified by leveraging
existing or creating new context plug-ins. Second, we illus-
trate how these plug-ins can be reused in different settings.

The application itself consists of a normal media player,
which features however some context-aware properties: First,
it can detect when the user leaves his desktop—and when
he gets back—to autonomously pause or resume the mu-
sic playback. Second, it monitors the available bandwidth
and switches between local and Internet-based streaming;
default is Internet-based streaming.

Figure 1: Architecture of CaMP

Figure 1 presents the application’s core architecture, which
defines its components and services. The components are:

• Controller : the main component of the application,
realizing the UI and controlling the application state;

• MediaPlayer : provides functionality for media play-
back, as defined in the IMediaPlayer interface;

• LocalFileStreamer : supports streaming media from files
stored locally on the device’s storage system;

• NetworkStreamer : provides functionality for streaming
media from web-based services.

The components interactions are characterized by their
provided or required services, which are defined by the fol-
lowing interfaces:

• IMediaPlayer : Controls the state of the media player
(e.g. pausing or resuming playback);

• IMediaStreaming : Handles generic media streamers by
allowing to connect them and start or stop streaming.

Based on this architecture, we provide two variations of
CaMP: one for desktop and another for mobile deployment.



3.1 Desktop-based CaMP
Initially, CaMP is built for deployment on a desktop com-

puter. As such, it detects whether the user is sitting in front
of his computer and pauses or resumes the media playback
accordingly. In order to identify user’s presence, the appli-
cation leverages information from a“User presence reasoner”
plug-in. In its turn, the reasoner uses input from two addi-
tional plug-ins: a “Bluetooth sensor” and a “Motion sensor”.
The “Bluetooth sensor” connects to a hardware Bluetooth

adapter and maintains a list of nearby Bluetooth devices. It
is assumed that the user carries his phone with its adapter
turned on in a mode allowing its discovery. Hence, the“User
presence” sensor is able to infer whether the user is within
communication range (e.g., < 5 meters) of his desktop.
However, the user might be within range but not necessar-

ily in front of his computer. Thus, another sensor is utilized:
the “Motion sensor”. This sensor utilizes a web camera to
periodically take pictures of the area in front of the com-
puter. Thus, by comparing consecutive images it reports on
the movement activity sensed in front of the desktop.
By combining the context data from the sensors, the“User

presence reasoner” infers whether the user is sitting in front
of his desktop. The derived context is leveraged by the Con-
troller component to pause or resume playback accordingly.
In addition to the automatic control of the media player,

the CaMP application features another context-aware prop-
erty: it can automatically switch between local (file-system)
and Internet-based streaming. The selection is decided solely
based on the connectivity and the available bandwidth.
To realize this functionality, CaMP utilizes an additional

context plug-in; i.e. “Connectivity sensor”. This plug-in
communicates directly with the underlying operating system
and measures the available bandwidth in terms of Kilobytes.
The set of context dependencies defined for the application

are illustrated in Figure 2. While dependencies are expressed
in terms of context types, in practice each type corresponds
to one of the above plug-ins, as well as their own dependen-
cies. For instance, the“User presence reasoner”has a depen-
dency on both the “Bluetooth sensor” and “Motion sensor”.
Finally, the “Connectivity sensor” has no dependencies.

Figure 2: Context dependencies of Desktop CaMP

From a practical perspective, the actual binding of the
application with the context management system is real-
ized through an OSGi service published by the latter: the
context access service [9]. This service provides the func-
tionality for explicitly requesting values of a context type
(i.e., synchronous access), as well as for subscribing for no-
tification when new values are sensed for certain context

types (i.e. asynchronous access). In addition to specifying
simple queries, based merely on the requested context type,
the clients can specify certain conditions used to filter the
resulting context values as per the CQL dialect [14].

For example, the Controller could register for asynchronous
notification to changes in the user presence as follows:

IEntity me = createEntity("#...Entity.User|myself");
IScope usrPrsn = createScope("#...Scope.UserPresence");
contextAccess.addContextListener(me, usrPrsn, this);

The Controller implements a specialized interface that de-
fines a method for handling asynchronously communicated
events. Internally, this method checks the encoded values
(i.e. user presence: true or false) and acts accordingly (i.e.
resumes or pauses playback). Similarly, the MediaPlayer
registers for variations in the network bandwidth and selects
the appropriate media streamer. Evidently, the application
is only loosely coupled with the context management system
(by means of context type dependencies), allowing for easy
reuse of alternative realizations for each context provider.

3.2 Mobile CaMP
The Mobile CaMP is a variation of the Desktop CaMP,

customized for deployment on smartphones. Thus, it does
not provide automatic media start/stop, but provides a more
sophisticated mechanism for selecting and adjusting the me-
dia streamer. The sophistication pertains the ability of the
application to monitor the location and WiFi signal strength
as the user moves about in space. Using this information a
prediction is provided for the signal strength in the immedi-
ate future and exploited by the application for two purposes.
First, select local file streaming when the network bandwidth
is limited and, second, adjust the buffer size of the network-
based streamer based on the predicted bandwidth.

Figure 3: Context dependencies of Mobile CaMP

The functional architecture of the application remains the
same as before; Figure 1. However, as illustrated in Fig-
ure 3, context dependencies have changed. In this case, the
application—and in particular theMediaPlayer component—
has a dependency on connectivity prediction. Hence, the
“Connectivity prediction reasoner”has additional dependen-
cies on network connectivity (i.e., current value of WiFi sig-
nal strength provided by the “Connectivity sensor”) and on
location prediction (i.e., projected location in the immediate
future). The latter is provided by the “Location prediction
sensor”, which uses as input information concerning the cur-
rent location, as provided by a “Location sensor”.

While details on the implementation of the prediction



plug-ins is beyond the scope of this paper, it should be
pointed out that a simple polynomial regression algorithm
can be used. The algorithm takes the most recent user co-
ordinates (as a function of time), in order to project an esti-
mate for coordinates in a close future instant. More details
on the context plug-ins implementation can be found in [9].

3.3 Deployment
The application’s deployment is straightforward. Never-

theless, the user needs to ensure that the deployment plat-
form includes the required context sensors (an obvious mid-
dleware limitation that could be overcome via a public plug-
ins repository that allows discovery and automatic retrieval).

Figure 4: Screenshots of Desktop-based CaMP

For instance, the Desktop-based CaMP is deployed by en-
suring that the required plug-ins (i.e. “User presence rea-
soner”, “Bluetooth sensor”, “Motion sensor” and“Connectiv-
ity sensor”) are installed. Moreover, it is assumed that the
context framework’s bundles are deployed on the platform.
A screenshot of the application is illustrated in Figure 4.

This application features multiple tabs. The first tab dis-
plays the media player’s functional logic, which includes a
video/audio player and controls for resuming/pausing play-
back, adjusting the volume, selecting tracks, etc. The sec-
ond tab, is an under-the-hood view, which visually reveals
the functionality of context plug-ins (i.e. for testing and
demonstrating purposes). In this case, the three plug-ins
used for identifying the user’s presence are illustrated visu-
ally: The “Bluetooth sensor” provides a list with the IDs
of all detected devices. The “Motion sensor” periodically
captures and compares consecutive images, indicating their
difference as a percentage (with those exceeding a threshold
colored in red). Finally, the “User presence reasoner” com-
bines information from the other two plug-ins and generates
a true/false value when the predefined user (e.g. as indi-
cated by their email) is present in the Bluetooth list while
at the same time activity is sensed by the web-camera.

4. DEVELOPMENT EXPERIENCE
The previous section described two variations of the CaMP.

Both variations use the same architecture for their functional
logic (see Figure 1) but have different context dependencies
and implement a different context-aware logic. It is argued
that this approach promotes two important properties: de-
velopment with Separation of Concerns and Code reusability.

4.1 Developing with Separation of Concerns
Arguably, Separation of Concerns (SoC) is an important

method for relaxing the complexity which is inherent in
modern software systems [8]. In effect, this method allows
the developers to focus on different aspects of the software

at a time, or even assign individual developers to work on
each one of them in parallel.

The development method supported by the MUSIC con-
text framework, facilitates such separation in two main ways:

• It separates the development of the functional aspects
of an application (see Figure 1) from that of imple-
menting its context-aware behaviour. The latter is
partly implemented inside the plug-ins (e.g., WiFi sig-
nal strength prediction) and partly in the application
(e.g., method that receives asynchronous notifications
on registered context types and reacts accordingly).

• It separates the development of the context-aware be-
haviour in context producing and context consuming
aspects. Hence, some context sensors act as pure con-
text providers, while end-user applications act as pure
context consumers. Occasionally, some context plug-
ins serve both roles, where they are asked to handle
low-level context data and infer higher-level context
information, e.g. the “Connectivity prediction sensor”.

4.2 Code reusability
Code reusability is closely related to SoC. In this work,

reusability is enabled in terms of both functional and extra-
functional logic [10]:

• Functional code can be reused in different applica-
tions, almost seamlessly. Leveraged by the SoC ap-
proach adopted in the developed applications, it is
possible to port individual components of an applica-
tion completely transparently—when the components
do not include any context-awareness code; e.g., in
the case of the two media streamers. This is in con-
formance to the component-oriented paradigm [18].
On the other hand, when ported components include
context-aware logic that is concentrated inside a single
method (see subsection 3.1), this code can be omitted
altogether (e.g., see Controller component when its
ported to Mobile CaMP) or edited as needed (e.g., see
theMediaPlayer component when it is ported from the
Desktop-based CaMP to the Mobile CaMP).

• The extra-functional code is fully reusable in terms
of both the middleware infrastructure and the con-
text plug-ins. The former refers to code supporting
the plug-in lifecycle, the ontology model and compo-
nents providing specialized functionality. Naturally,
this is a common feature—and one of the main goals—
of any middleware architecture. Conversely, reusabil-
ity in terms of context plug-ins is a novel and handy
feature, which enables context-aware functionality out-
of-the-box. In the example of the two variants of CaMP,
the “Connectivity sensor” is reused without change.
Additionally, the available plug-ins can be further re-
used in completely different applications. For instance,
an email client application could reuse the WiFi con-
nectivity prediction in order to optimize its mail polling
schedule. Finally, it should be noted that while the
main advantage of using context plug-ins is their abil-
ity to facilitate code reuse at development time, it can
extend even at run-time when multiple concurrently
deployed applications share the plug-ins by requesting
the same context types (e.g. the email client applica-
tion described above).



5. RELATED WORK
Initial research on reusable code for context-aware appli-

cations was perfomed by Dey and Abowd [4], who stress
out the lack of uniform support for developing and deploy-
ing context-aware applications. In particular, the authors
denote that these types of applications are developed in an
ad-hoc manner that is heavily influenced by the underlying
implementation. Moreover, context independence is consid-
ered since developers should be able to build context-aware
components separately from the application logic, so as to
enable reuse of those components in miscellaneous applica-
tions. Hence, a Java-based Context Toolkit is defined that
enables developers to built context-aware components (i.e.,
widgets, aggregators, interpreters) and use context informa-
tion provided by them in order to develop different appli-
cations. Overall, the toolkit provides architectural support
and delivers the generic mechanisms necessary to rapidly
develop context-aware applications.
Another OSGi-based approach is the Service-oriented, con-

text-aware middleware (SOCAM) [6]. Unlike our approach,
SOCAM aims at offloading heavy context reasoning on res-
idential gateways. However, because the individual context
reasoning components (similar to the plug-ins of our ap-
proach) are directly bound to each other, component life-
cycle is hindered and also combining context values from
multiple sources becomes overly complex.
A more recent approach defined by Pokraev et al [12] pro-

poses a Web Services platform for the rapid development
and deployment of context-aware mobile applications. The
platform is built with SoC in mind, since the platform’s
context-aware components are developed separately from
the implementation of the application’s logic. Consequently,
each application is built on the basis of the context adapta-
tion capabilities of the platform to provide a personalised,
customised and dynamic user experience. In particular, the
platform is tailored towards reuse of software components
that are exposed as Web Services to the network to support
the computing tasks of context-aware applications. Some
examples of existing core components composing the plat-
form are the Context Manager, Notification Manager, etc.
Additional components are also implemented as third party
services (e.g., context services), which interact with the core
components to provide the context information and services
required by applications.
Kapitsaki et al [7] define a Web Service architecture and

a context adaptation process that supports the development
and provision of context-aware applications. The architec-
ture facilitates the execution of context management tasks
that support the development of context-aware applications.
In particular, applications are build by integrating software
components (i.e., Web Services) and by utilising context
plug-ins that manage context information. The approach
aims towards reuse of the developed Web Service compo-
nents and the context plug-ins, by keeping the logic of the
context-aware application discrete from the context adapta-
tion mechanisms, which can be independently plugged in.
According to the authors, the main benefit of the approach
lies in the complete separation of context adaptation tasks
from both the application logic (i.e., combined Web Service
components) and the thin client (i.e., web browser) of the
application. Hence, the maintenance or modification of the
context adaptation tasks is transparent from the client ap-
plication, the Web Services and the user.

Finally, Serral et al [17] define a model-driven develop-
ment method that allows defining context-aware applica-
tions as pervasive service models. These models allow de-
scribing both the functionality of the system and the context
adaptation tasks. This means that once again the concepts
of code reuse and SoC are taken into consideration but at a
higher level of abstraction. In particular, a Pervasive system
Modelling Language (PervML) is defined for specifying the
system functionality in an abstract manner and a PervML
ontology is defined for describing the concepts introduced
in PervML. Consequently, from the defined PervML models
the OSGi-based Java code and the OWL specification are
generated using the corresponding transformation engines.
The Java code implements the system’s functionality and
the OWL specification describes the system’s context infor-
mation used for adaptation-specific purposes. In overall, the
approach allows reusing previously defined PervML models
and automating the development of context-aware systems
by transforming the models to the necessary artefacts.

5.1 Prototypes of Context-Aware Applications
One of the earliest context-aware application prototypes

[4] was developed by Dey and Abowd: The CybreMinder, a
context-aware system for supporting reminders. The proto-
type was developed using the Context Toolkit [2] and sup-
ports users in sending and receiving reminders. These re-
minders can be directly associated to contextual situations
that involve time, place and other context types. The pro-
totype includes three editors that are namely: the reminder
creator, the context situation and the current reminders ed-
itor. First, the reminder editor allows defining reminders
and, second, the situation editor enables dynamic construc-
tion of a rich contextual situation that is associated to the
reminder. Finally, the current reminders editor displays a
list of pending, completed, expired and delivered messages.

Pokraev et al developed the Context-aware Mobile Per-
sonal ASSistant (COMPASS) prototype [12] using the con-
text-adaptation capabilities of their proposed platform. The
prototype is a tourist guide that provides the user with infor-
mation and services, which are of particular interest to the
user given his current situation. For instance, a user that
requires a place to spend the night is presented with a list of
city hotels that match his accommodation preferences. Fur-
thermore, the prototype’s platform is open for third parties
to integrate their information and services, so as applica-
tion users can locate them and use them in a transparent
manner.

The final prototype presented in this paper is a context-
aware cinema application [7]. It integrates three web ser-
vices: First, the Greeting service used to display a welcome
message to the user based on his native language and cur-
rent location, second the ShowMovies service that displays
movies on the basis of the user’s preferences and, third,
the Payment service that selects the user preferred payment
method. These services use the context adaptation capabil-
ities provided by independently developed context plug-ins,
which can be invoked when required using the platform’s
mechanisms; i.e., to automatically provide the context re-
quired by these services. The prototype demonstrates how
it is possible to develop and use the context plug-ins with-
out changing the application’s logic. This is beneficial since
the context plug-ins or the application logic can be indepen-
dently modified or enhanced.



Unlike the discussed related work and the presented pro-
totypes, CaMP offers a fully component-oriented solution,
where the functional logic of the application (media streamer
and player) is clearly separated from its extra-functional
context-aware behavior. Arguably, this separation not only
eases the development of the application but also it allows
for quick prototyping of other applications (completely dif-
ferent, or derived as is the case of mobile/desktop CaMP)
in a straightforward way.

6. CONCLUSIONS
In this paper we described the development steps required

for creating two variants of the CaMP application. The pro-
posed methodology provides significant benefits to develop-
ers of context-aware applications in terms of both Separation
of Concerns—which eases development complexity and fa-
cilitates maintenance—and code reuse—in terms of reusable
context plug-ins. Our experience has indicated that the pro-
posed approach provides significant advantages in the hands
of developers of context-aware applications targeting both
mobile and ubiquitous computing settings. In the future, we
aim at enabling further customization and a more elaborate
lifecycle of plug-ins, as to enable for instance their finetun-
ing in runtime depending on the needs of the applications
that are using them.

7. REFERENCES
[1] Measuring the Information Society: The ICT

Development Index. International Telecommunication
Union, 2009.

[2] A. K. Dey. Providing architectural support for building
context-aware applications. PhD thesis, Georgia
Institute of Technology, 2000.

[3] A. K. Dey. Understanding and using context. Personal
Ubiquitous Computing, 5(1):4–7, 2001.

[4] A. K. Dey and G. D. Abowd. The context toolkit:
Aiding the development of context-aware applications.
In Proceedings of the ICSE Workshop on Software
Engineering for Wearable and Pervasive Computing,
International Conference on Software Engineering,
Limerick, Ireland, 2000.

[5] K. Geihs, R. Reichle, M. Wagner, and M. Khan.
Modeling of context-aware self-adaptive applications
in ubiquitous and service-oriented environments. In
Software Engineering for Self-Adaptive Systems,
volume 5525 of LNCS, pages 146–163. Springer
Verlag, 2009.

[6] T. Gu, H. K. Pung, and D. Q. Zhang. Toward an
OSGi-Based infrastructure for Context-Aware
applications. IEEE Pervasive Computing, 3(4):66–74,
2004.

[7] G. M. Kapitsaki, D. A. Kateros, and I. S. Venieris.
Architecture for provision of context-aware web
applications based on web services. In Proceedings of
the IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications, pages 1–5,
Cannes, France, 2008.

[8] G. Kiczales and M. Mezini. Separation of concerns
with procedures, annotations, advice and pointcuts. In
Proceedings of the 19th European Conference on
Object-Oriented Programming (ECOOP’05), volume

3586 of LNCS, pages 195–213, Glasgow, Scotland, UK,
2005. Springer Verlag.

[9] N. Paspallis. Middleware-based development of
context-aware applications with reusable components.
PhD thesis, University of Cyprus, Sept. 2009.

[10] N. Paspallis and G. A. Papadopoulos. An approach for
developing adaptive, mobile applications with
separation of concerns. In Proceedings of the 30th
Annual International Computer Software and
Applications Conference (COMPSAC ’06), volume 1,
pages 299–306, Chicago, USA, 2006. IEEE Computer
Society Press.

[11] N. Paspallis, R. Rouvoy, P. Barone, G. A.
Papadopoulos, F. Eliassen, and A. Mamelli. A
pluggable and reconfigurable architecture for a
context-aware enabling middleware system. In
Proceedings of the 10th International Symposium on
Distributed Objects, Middleware, and Applications
(DOA’08), volume 5331 of LNCS, pages 553–570,
Monterrey, Mexico, 2008. Springer Verlag.

[12] S. Pokraev, J. Koolwaaij, M. V. Setten, P. D. C.
T. Broens, M. Wibbels, P. Ebben, and P. Strating.
Service platform for rapid development and
deployment of context-aware mobile applications. In
Proceedings of the IEEE International Conference on
Web Services, pages 639–646, Florida, USA, 2005.

[13] R. Reichle, M. Wagner, M. Khan, K. Geihs,
J. Lorenzo, M. Valla, C. Fra, N. Paspallis, and G. A.
Papadopoulos. A comprehensive context modeling
framework for pervasive computing systems. In
Proceedings of the 8th IFIP International Conference
on Distributed Applications and Interoperable Systems
(DAIS’08), volume 5053 of LNCS, pages 281–295,
Oslo, Norway, 2008. Springer Verlag.

[14] R. Reichle, M. Wagner, M. U. Khan, K. Geihs,
M. Valla, C. Fra, N. Paspallis, and G. A. Papa. A
context query language for pervasive computing
environments. In Proceedings of the 5th IEEE
Workshop on Context Modeling and Reasoning
(CoMoRea’08) in conjunction with the 6th IEEE
International Conference on Pervasive Computing and
Communication (PerCom’08), pages 434–440, Hong
Kong, Mar. 2008. IEEE Computer Society.

[15] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen,
S. Hallsteinsen, J. Lorenzo, A. Mamelli, and U. Scholz.
MUSIC: middleware support for self-adaptation in
ubiquitous and service-oriented environments. In
Software Engineering for Self-Adaptive Systems, pages
164–182. 2009.

[16] A. Rubin. The future of mobile, Sept. 2008.

[17] E. Serral, P. Valderasa, and V. Pelechano. Towards
the model driven development of context-aware
pervasive systems. Journal of Pervasive and Mobile
Computing, 2009.

[18] C. Szyperski. Component technology - what, where,
and how? In Proceedings of the International
Conference on Software Engineering (ICSE), pages
684–693, Los Alamitos, CA, USA, 2003. IEEE
Computer Society.

[19] A. L. Tavares and M. T. Valente. A gentle
introduction to OSGi. SIGSOFT Software Engineering
Notes, 33(5):1–5, 2008.




