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Abstract—Most Content Delivery Networks (CDNs) are oper-
ated as a Software as a Service (SaaS): Many cloud providers
build their custom CDNs to benefit from content users, as
well as reduce demand on their own telecommunications
infrastructure. More importantly, though, CDNs contribute
to cloud adoption, as they can address network problems of
cloud computing. With multimedia content providers requiring
CDN services to enable the delivery of bandwindth-demanding
media to end-users, and the growth of HTTP traffic due to
media files circulating over Online Social Networks (OSNs),
a social-awareness mechanism over a CDN becomes essential,
to mitigate the considerable weight placed on bandwidth. A
social awareness mechanism augmented to a stand-alone CDN
traffic simulator addresses the issue of which content will
be copied in the surrogate servers of a CDN infrastructure
and to what extent. Hence, it ensures an optimized content
diffusion placement. Herein, we further address the issue of
temporal diffusion, related to the most efficient timing of
the content placement. We exploit the knowledge of peak
times for upload and download, so that content is prefetched
in the hours with less traffic. We also incorporate other
contextual information, such as the viewership within the media
service, to ensure performance optimization. Our variations
are experimentally proven to contribute toward maximization
of CDNs’ performance and minimization of content replication
costs.

Keywords-Cloud Computing tools, delivery networks and
services, Cloud Applications: social networks, Big Data and
Analytics, Social Video Sharing, Social Cascading, YouTube,
Twitter, Internet Measurements, Content Delivery Networks

I. INTRODUCTION

CDNs, often operated as SaaS in cloud providers (Ama-
zon CloudFront, Microsoft Azure CDN, etc.) aim at ad-
dressing the problem of smooth and transparent content
delivery. A CDN actually drives cloud adoption through
enhanced performance, scalability and cost reduction. With
the limitation for both CDNs and cloud services being the
geographic distance between a user asking for content and
the server where the content resides, cloud acceleration and
CDN networks are both complementary to achieving a goal
of delivering data in the fastest possible way. Although
cloud mainly handles constantly changing and, thus, not
easily cached dynamic content, utilization of CDNs in cloud
computing is likely to have profound effects on large data
download [1].

The general principle of CDNs is to replicate data dynam-
ically in various places of the world as near as possible to
the user that consumes it. They are, however, very dissimilar
in terms of the services provided and their geographic
coverage. The optimization of their overall efficiency, as
far as user is concerned, is practically achieved with the
automatic detection of the medium (either computer or
mobile -smartphone / tablet-), optimised management of the
browser cache, server load-balancing, the consideration of
specific nature of the content of the media provider (video
content may include video on demand, live videos, geo-
blocked content, etc.) or features of certain operators, such
as real-time compression, session management, etc.

In a manner that is complementary to the above, they
address in general the major issues of (i) the most efficient
placement of surrogate servers in terms of high performance
and less infrastructure cost; (ii) the best content diffusion
placement, namely the decision of which content will be
copied in the surrogate servers and to what extent; and (iii)
the temporal diffusion, related to the most efficient timing
of the content placement [2].

Extended use of OSNs [3], [4], [5], and the increasing
popularity of streaming media are the factors that determine
the HTTP traffic growth [6]. The amount of traffic generated
on a daily basis by online multimedia streaming providers
is multiplied by the transmission over OSNs (with more
than 400 tweets per minute including a YouTube video link
[7] being published per minute). Hence, CDN users can
benefit from an incorporated mechanism of social-awareness
over the CDN infrastructure. In [2] Kilanioti incorporates
a dynamic mechanism of preactive copying of content to
an existing validated CDN simulation tool and proposes
an efficient copying policy. The latter can be based on
prediction of demand in social networks.

A. Why is our Approach Necessary: An Example

Let us consider Bob, located in London and assigned to
the London CDN servers of an OSN service. Most of Bob’s
social friends are geographically close to him, but he also
has a few friends in Europe and Australia assigned to their
nearest servers. Bob logs into the OSN and posts a video
that he wants to share. Pushing the video content to all other
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geographically distributed servers immediately before any
requests occur would be the naive way to ensure that this
content is as close as possible to all users. Aggregated over
all users, pushing can lead to traffic congestion, and users
would experience latency in accessing the content, which,
moreover, could not be consumed at all. The problem of
caching would be intensified when Alice, the only friend of
Bob in Athens, would be interested in that content, and with
many such Alices in various places.

Rather than pushing data to all surrogates, we can proac-
tively distribute it only to friends of Bob likely to consume
it and only at the time window that signifies a non-peak-
time for the upload in London area and a non-peak-time
for the download in Athens area, thus taking advantage of
the timezone differences of our geo-diverse system. The
content will be copied only under certain conditions (content
with high viewership within the media service, copied to
geographically close timezones where the user has mutual
friends with high influence impact). This would contribute to
smaller response times for the content to be consumed (for
the users) and lower bandwidth costs (for the OSN provider).

B. Contributions

Herein, we perform experiments over a large corpus of
YouTube videos. We use Twitter, one of the most popular
OSNs centered around the idea of spreading information
and propagating it via retweeting across multiple hops in
the network [8]. This work extends the Social Prefetcher
algorithm [2] to include information about peak-time of
various timezones of our geo-diverse system, as well as
contextual information about the viewership of video content
within the media service. It implements extensions in two
variations and incorporates them in a validated simulator for
CDNs. A multitude of experiments shows improved metrics
for performance measurement over content delivery.

A real dataset of User Generated Content (UGC) is used.
It includes multimedia links over an OSN platform, thus
social cascades are directly analyzed. Real restrictions of a
CDN infrastructure (storage issues, network topology) are
taken into account. The proposed algorithm also suggests a
mechanism that overcomes the testing limitations of other
existing CDN platforms, that either treat CDN policies as
black boxes or need third users for experimentation.

Experimentation is conducted on a Twitter dataset con-
taining geographic locations, follower lists and tweets for 37
million users, spreading of more than one million YouTube
videos over this network, a corpus of more than 2 billions
messages and approximately 1.3 million single messages
with an extracted video URL. The wide popularity and
massive user base of YouTube and Twitter allow us to obtain
safe insights regarding user navigation behavior on other
similar media and microblogging platforms, respectively.

In terms of performance, comparison with similar imple-
mentations such as [9] is not directly feasible. We note,

though, that with the proposed policy, there is a significant
improvement over their respective improvement (30%) in
pull-based methods, that are employed by most CDNs.
We also use a more refined topology of data centers and
take storage issues into account. Despite the reductions
in storage costs that cloud computing advancements have
caused, storage costs still remain an important factor that
can be reduced under certain conditions.

As for the main findings of our work, they can be
exploited for future policies complementary to existing CDN
solutions or incorporated to OSN providers mechanisms, to
handle larger scale data. In this work we examine which
parameters (number of timezones examined, time threshold
duration) affect the CDN metrics the most. The optimization
of our algorithm is proved in [2], whereas herein the
incorporation of peak hours and popularity of circulating
objects information are examined to furthermore enhance
its performance.

The remainder of this paper is organized as follows. Sec-
tion II reviews previous related work. Section III formally
describes the addressed problem. The proposed algorithm is
described in Section IV. Section V gives an outline of the
methodology, along with the preparation of the employed
datasets. Our main findings are presented in Section VI.
Section VII concludes the paper and discusses directions
for future work.

II. RELATED WORK

The algorithm [2] gives a near-optimal solution to the
problem of content delivery and addresses memory usage
issues related to the very large graph dataset accommodated.
Efforts to incorporate the information extracted from OSNs
in the way that users share content have various research
goals: the decision for copying content, improvement of
policy for temporary caching, etc. These goals along with
phenomena related to bandwidth-intensive media content
and its outspread via OSNs, as well as measurement studies
on OSNs that support CDN infrastructure decisions for
replicating the content, are described in [10]. Other systems
that leverage information from OSNs include [11], [9], and
[12]. Traverso et al. in [9] improve QoS by exploiting time
differences among sites and the access patterns that users
follow. Rather than naively pushing UGC immediately, and
unnecessarily contributing to a traffic spike in case the
content is not consumed, the system follows a pull-based
approach, when the first friend of a user in a Point of
Presence (PoP) asks for the content. It also considers the
traffic peaks of the regions where the user and the friend
are located.

In [2] the parameters of a CDN infrastructure are taken
into account and heuristics introduced from more recent
works are applied. A real dataset from multimedia links
spread over an OSN platform is used to directly analyze
social cascades and access to social profiles is not conducted
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via a third-party page [11]. The proposed algorithm suggests
a mechanism added to a CDN simulator that overcomes the
testing limitations of other existing CDN platforms, such as
the blackbox treatment of CDN policies or the need for the
participation of third users.

Another branch of the bibliography studies users’ behav-
iors in different media services. The traffic characterization
of YouTube is described in several studies ([13], [6], [14],
[15], [16]), with emphasis on the characteristics of YouTube
content, such as file size, bitrate, usage patterns and popu-
larity. In [15], the authors study the YouTube workload to
discover that there are many similarities between traditional
Web and media streaming workloads. The authors in [17]
find a strong correlation among YouTube videos, because
the links to related videos generated by uploaders depict
small-world characteristics. In [18] the authors analyze how
the popularity of individual YouTube videos evolves.

III. PROBLEM DESCRIPTION

We aim at improving the performance of the CDN infras-
tructure in terms of reducing the response time, improving
the hit ratio of our request, as well as restricting the cost
of copying from the origin server to surrogate servers.
We consider the network topology, the server location, and
restrictions in the cache capacity of the server. Taking as
input data from OSNs and actions of users over them, we
aim at recognizing objects that will eventually be popular in
the realm of the OSN platform.

We search a policy such that given a graph G(V,E), a
set of R regions, where the nodes of the social network
are distributed, and the posts P of the nodes, it recognizes
the set of objects O that will be popular only in a sub-
set of the regions (Table I). There is the content likely
to be copied. The policy is represented by the function
Put(ni, P redict(G,P,R,O)), which takes as input a sur-
rogate server ni ∈ N and the results of function Predict
(set of g objects that will be globally popular and λ objects
that will be locally popular), such that:

Qhit

Qtotal
(1)

is maximum, whereas constraint∑
∀i∈O

Sifik ≤ Ck (2)

is fulfilled, where:

fik =

{
1 if object i exists in the cache of surrogate server k
0 if object does not exist

(3)
It returns the set of objects o ∈ O that have to be placed

in surrogate server ni ∈ N . For x, 1 < x < w, objects that
will be copied in the surrogate server and the capacity Cni
of ni, (2) has to be fulfilled:

Table I: Notation Overview

G(V,E) Graph representing
the social network

V = {V1, ..., Vn} Nodes representing
the social network
users

E = {E11, ..., E1n, ..., Enn} Edges representing
the social network
connections, where
Eij stands for
friendship between
i and j

R = {r1, r2, ..., rτ} Regions set

N = {n1, n2, ..., nu} The surrogate
servers set. Every
surrogate server
belongs to a region
ri

Ci, i ∈ N Capacity of surro-
gate server i in
bytes

O = {o1, o2, ..., ow} Objects set (videos),
denoting the objects
users can ask for
and share

Si, oi ∈ O Size of object i in
bytes

Πi Popularity of object
i, i ∈ O

qi = {t, Vψ , ox}, 1 < x < w, 1 < ψ < n Request i, consists
of a timestamp, the
id of the user that
asked for the object,
and the object id

P = {p12, p13, ..., pnw} User posts in the
social network,
where pij denotes
that node i has
shared object j in
the social network

ptsi, ptei, 1 < i < τ peak time start and
peak time end for
each region in secs

Q = {q1, q2, ..., qζ} Object requests
from page
containing the
media objects,
where qi denotes
a request for an
object of set O

Qhit, Qtotal Number of requests
served from surro-
gate servers of the
region of the user/
total number of re-
quests

X,Y ∈ R Closest timezones
with mutual
followers/ with
highest centrality
metric (HITS)
values
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Request Handler
Surrogate server 1

Surrogate server 2
Surrogate server 3

Surrogate server 4
Surrogate server 5

. . .
Surrogate server u

Predict (G,P,R,O)

Prefetching Unit

Servicing
Unit

Figure 1: The Prefetching Unit.

S1 + S2 + S3 + ...+ Sx ≤ Cni(1) (4)

IV. PROPOSED DYNAMIC POLICY

The proposed algorithm encompasses an algorithm for
each new request arriving in the CDN and an algorithm
for each new object in the surrogate server. Internally,
the module communicates with the module processing the
requests and each addressed server separately (Fig. 1).

A. For Every New Request in the CDN:

The main idea is to check whether specific time has passed
after the start of the cascade, and then define to what extent
the object will be copied. Initially, we check whether it is
the first appearance of the object. The variable o.timestamp
depicts the timestamp of the last appearance of the object
in a request and helps in calculating the timer related to
the duration of the cascade. If it is the first appearance of
the object, the timer for the object cascade is initialized
and o.timestamp takes the value of the timestamp of the
request. If the cascade is not yet complete (its timer has
not surpassed a threshold), we check the importance of the
user applying the Hubs Authorities (HITS) algorithm and
checking its authority score, as well as the viewership of
the object in the media service platform (Variation-1, Fig.
2). In Variation-2 (Fig. 3) we check the importance of the
user, as well as if the time of the transmission is not within
the peak-time range of the region of the user ([19]).

For users with a high authority score, we copy the object
to all surrogate servers of the user’s timezone and to the
surrogate servers serving the timezones of all followers of
the user (global prefetching). Otherwise, selective copying
includes only the surrogates that the subpolicy decides (local
prefetching).

Centrality is measured with the HITS algorithm, described
in Section V. Subpolicy (Fig. 4) checks the X closest
timezones where a user has mutual friends and out of them,
the Y with the highest value of the centrality metric as an
average. Highest value of the metric means that the object
is likely to be asked for more times. Copying is performed
to the surrogate servers that serve the above timezones.

1: if o.timestamp == 0 then
2: o.timer = 0;
3: o.timestamp = request timestamp;
4: else if o.timestamp != 0 then
5: o.timer = o.timer + (request timestamp -

o.timestamp);
6: o.timestamp = request timestamp;
7: end if
8: if o.timer > time threshold then
9: o.timer = 0;

10: o.timestamp = 0;
11: else if o.timer < time threshold and

user.authority score > authority threshold
then

12: copy object o to surrogate that serves user’s Vi
timezone;

13: for all user Vy that follows user Vi do
14: find surrogate server nj that serves Vy’s timezone;
15: copy object o to nj ;
16: end for
17: else if o.timer < time threshold and o.Πi >

Πi threshold then
18: copy object o to surrogates nj that Subpolicy I

decides;
19: end if

Figure 2: Variation-1 - Algorithm for every new request
(timestamp, Vi, o) in the CDN

B. For Every New Object in the Surrogate Server:

For both variations, in the case that the new object
does not fit in the surrogate server’s cache, we define the
time threshold as the parameter for the duration that an
object remains cached. We find the oldest objects and delete
them. In the case that there are no such objects, we delete
those with the largest timestamp in the cascade. In all other
cases, the Least Recently Used (LRU) policy is applied for
the removal of objects. The above are depicted in Fig. 5.

The heuristics applied in our approach are based on
the following observations [2]: Users are more influenced
by geographically close friends, and moreover by mutual
followers, with the most popular users acting as authorities.
Social cascades have a short duration (about 80% of the
cascades end within 24 hours, with 40% ending in less
than 3 hours). In our prefetching algorithm, we take into
account the observation that the majority of cascades end
within 24 hours. However, we introduce a varying time
threshold for the cascade effect and the time that an object
remains in cache. Values given in the time threshold variable
also include 48 hours, as well as threshold covering the
entire percentage of requests. The idea is to check whether
specific time has passed after the start of cascade and, only
in the case that the cascade has not ended, define to what
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1: if o.timestamp == 0 then
2: o.timer = 0;
3: o.timestamp = request timestamp;
4: else if o.timestamp != 0 then
5: o.timer = o.timer + (request timestamp -

o.timestamp);
6: o.timestamp = request timestamp;
7: end if
8: if o.timer > time threshold then
9: o.timer = 0;

10: o.timestamp = 0;
11: else if o.timer < time threshold and

user.authority score > authority threshold
then

12: copy object o to surrogate that serves user’s Vi
timezone;

13: for all user Vy that follows user Vi do
14: find surrogate server nj that serves Vy’s timezone;
15: copy object o to nj ;
16: end for
17: else if o.timer < time threshold then
18: if o.timestamp 3 (ptsrVi

, pterVi
) and

o.timestamp 3 (ptsrnj
, pternj

) then
19: copy object o to surrogates nj that Subpolicy I

decides;
20: end if
21: end if

Figure 3: Variation-2 - Algorithm for every new request
(timestamp, Vi, o) in the CDN

1: find X timezones where (user Vi has mutual followers
and they are closer to user’s Vi timezone);

2: find the Y ⊆ X that (belong to X and have the highest
HITS score);

3: for all timezones that belong to Y do
4: find surrogate server nj that serves timezone;
5: copy object o to nj ;
6: end for

Figure 4: Subpolicy I

extent the object will be copied (algorithm for every new
request). This check is also performed in algorithm for every
new object, where we define the time threshold. The latter
roughly expresses the average cascade duration, as it defines
the duration that an object remains cached.

V. EXPERIMENTAL EVALUATION

For the experimental evaluation, we used the CDNsim
simulator for CDNs [20]. The configuration of the simulation
values is shown in Table II. We conducted a multitude of
experiments (110, 55 for each variation), in which the time
thresholds varied. For the extraction of reliable output, we
had to conclude to a specific network topology, as well as

1: if o.size + current cache size ≤ total cache size
then

2: copy object o to cache of surrogate nk;
3: else if o.size + current cache size >
total cache size then

4: while o.size + current cache size >
total cache size do

5: for all object o′ in current cache do
6: if (current timestamp - o′.timestamp) +

o′.timer > time threshold then
7: copy o′ in CandidateList;
8: end if
9: if CandidateList.size>0 and

CandidateList.size != total cache size
then

10: find o′ that o′.timestamp is maximum and
delete it;

11: else if CandidateList.size==0 or
CandidateList.size==total cache size
then

12: use LRU to delete any object o ∈ O;
13: end if
14: end for
15: end while
16: put object o to cache of surrogate nk;
17: end if

Figure 5: Algorithm for every new object o in the surrogate
server nk

Table II: Simulation Characteristics

Number of nodes in the topology 3500

Redirection Policy Cooperative
Environment
(closest
surrogate)

Number of origin servers 1

Number of surrogate servers 423

Number of users 162

Bandwidth 100 Mbit/sec

make assumptions regarding the input dataset. The simulator
takes as input files describing the underlying CDN and the
traffic in the network, and provides an output of statistical
results, discussed in the next Section.

A. Network Topology

There follows a short description of the process to define
the nodes in the topology. These nodes represent the sur-
rogate servers, the origin servers, and the users making the
object requests (Fig. 6). For an in-depth analysis you can
refer to [2].

To simulate our policy and place the servers in a real
geographical position, we used the geographical distribution
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We define the regions with surrogate servers (Limelight)

We define the number of surrogate servers in every region (Limelight – 10% reduction)

We assign surrogate servers for serving request in every time zone

We convert the topology coordinates into geographical coordinates (NetGeo)

We assign the surrogate servers to nodes in the topology

Figure 6: Methodology followed

Table III: Distribution of Servers over the World for the
Experimental Evaluation

City Servers City Servers
Washington DC 55 Toronto 12

New York 43 Amsterdam 20

Atlanta 11 London 30

Miami 11 Frankfurt 31

Chicago 37 Paris 12

Dallas 19 Moscow 10

Los Angeles 52 Hong Kong 8

San Jose 37 Tokyo 12

Seattle 15 Changi 5

Phoenix 3 Sydney 1

of the Limelight network [21]. For the smooth operation of
the simulator the number of surrogate servers was reduced
by the ratio of 10%, to ultimately include 423 servers
(Table III). Depending on which surrogate region of the 20
the Limelight network defines is closer to each of the 142
Twitter timezones, we decided where the requests from this
timezone will be redirected. The population of each time-
zone was also taken into consideration. The INET generator
[6] allowed us to create an AS-level representation of the
network topology. Topology coordinates were converted to
geographical coordinates with the NetGeo tool from CAIDA,
a tool that maps IP addresses and Autonomous System (AS)
coordinates to geographical coordinates [22], and surrogate
servers were assigned to topology nodes.

After grouping users per timezone (due to the limitations
the large dataset imposes), each team of users was placed in
a topology node. We placed the users in the nodes closer to
those comprising the servers that serve the respective time-
zone requests, contributing this way to a realistic network
depiction.

B. Number of Requests

1 million requests were considered sufficient, as CDNsim
handles satisfyingly up to so many in general, with the
number of objects being the dominant factor increasing the
memory use of the tool. Also similar concept approaches
use similar number of requests ([9] on a daily basis and
[12]), and same number of distinct videos for generation
of requests. With the requests generated from the generator
following a long-tail distribution, 15 % of the whole catalog
size was considered to be sufficient.

C. Threshold Values

Experimenting was conducted for time thresholds of 24
hours and 48 hours, as well as for the time threshold that
covered all the requests. The threshold value for media ser-
vice viewership was moderately chosen as 402408 (average
media viewership in the dataset). The authority threshold
score was tested for various values (0.006 / 0.02 / 0.04).

D. Influence Measurement Metrics

HITS algorithm [23] is a link analysis algorithm that rates
web pages. Twitter uses a HITS style algorithm to suggest
to users which accounts to follow [24], as well. A so-called
good hub represents a page that points to many other pages,
and a so-called good authority represents a page that is
linked by many different hubs. We had to address memory
usage issues for the very large graph dataset accommodated,
and HITS was calculated using the MapReduce technique.

VI. MAIN FINDINGS

The statistic reports produced by the simulator are used
to evaluate the proposed policy. A short explanation of the
metrics used in our experiments for extracting statistical
results follows. They are described in detail in [20], along
with various other metrics.

A. Metrics Used

1) Client Side Measurements: They refer to activities of
clients, i.e. the requests for objects.
• Mean Response Time: indicates how fast a client is

satisfied. It is defined as

M−1∑
i=0

ti

M , where M is the number
of satisfied requests and ti is the response time of the
ith request. It starts at the timestamp when the request
begins and ends at the timestamp when the connection
closes.

2) Surrogate Side Measurements: They are focused on
the operations of the surrogate servers.
• Hit Ratio: is the percentage of the client-to-CDN re-

quests resulting in a cache hit. High values indicate
high quality content placement in the surrogate servers.
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Table IV: Average Metric Values for X = 10 Timezones of
Close Mutual Friends

Mean response time
(Avg, 10−2 sec.)

Hit ratio
(Avg, %)

Active
servers

Mean utility
(Avg, %)

Variation-1 - 24-h 1.1383 32.81 326 96.01
Variation-1 - 48-h 1.1352 33.08 326 96.01
Variation-1 - all-h 1.1172 34.58 325 96.04
Variation-2 - 24-h 1.1411 32.13 325 95.98
Variation-2 - 48-h 1.1376 32.43 326 96.00
Variation-2 - all-h 1.1174 34.38 324 96.03
Social Prefetcher 24-h 1.1412 32.12 325 95.98
Social Prefetcher 48-h 1.1377 32.42 326 96.00
Social Prefetcher all-h 1.1181 34.16 325 96.01

3) Network Statistics: They run on top of TCP/IP and
concern the entire network topology.
• Active Surrogate Servers: refers to the servers being

active serving clients.
• Mean Surrogate Servers Utility: is a value that ex-

presses the relation between the number of bytes of
the served content against the number of bytes of the
pulled content (from the origin server or other surrogate
servers). It is bounded to the range [0, 1] and provides
an indication about the CDN performance. High net
utility values indicate good content outsourcing policy
and improved mean response times for the clients.

After conducting a multitude of experiments (55 for each
variation) with varying threshold values, we reached the
following conclusions.

Table IV presents the average values of four parameters
for six cases of testing. The lowest mean response times
appear for the cases of the time threshold covering all
requests for both variations. In general, we observe a better
performance in terms of mean response times and hit ratios
achieved for the Variation-1, where the viewership within
the YouTube platform is considered. Both variations perform
better than the Social Prefetcher approach.

Comparison with the experimental results of [9] is not
directly feasible because the authors do not address the
storage issue and because the response times of a CDN
infrastructure do not coincide with the download times for
buffering stage of videos. In terms of performance, though,
we note that with the policy proposed herein, there is a
significant improvement over their respective improvement
(30%) in pull-based methods employed by most CDNs, as
we surpass the Social Prefetcher performance.

B. Impact of Time Threshold Duration

• on Mean Response Time:
As the time threshold increases from 24 to 48 h
and to hours covering the entire set of requests, we
observe that the mean response time decreases steadily.
Here, we present indicative values for the 10 closest
timezones of mutual followers and varying subsets
of 1, 5 and 10 timezones with the highest influence
metric, respectively, where copying will ultimately be
performed (Fig. 7) for both variations.
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Figure 7: Effect of time threshold duration on mean response
time for X closest timezones with mutual followers and
Y timezones with the highest metric, where copying is
ultimately performed for (i)Variation-1 and (ii)Variation-2
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Figure 8: Effect of time threshold duration on mean util-
ity of the surrogate servers for X closest timezones with
mutual followers and Y timezones with the highest metric,
where copying is ultimately performed for (i)Variation-1 and
(ii)Variation-2

• on Mean Utility of the Surrogate Servers:
With the exception of time threshold of 48 h for
Variation-2, the mean utility of the surrogate servers
shows a peak for both variations for the hours covering
the entire set of requests. Here, we present indicative
values for the 10 closest timezones of mutual followers
and varying subsets of 1, 5 and 10 timezones with the
highest influence metric (Fig. 8).

• on Hit Ratio: As the time threshold increases from 24
to 48 h and to hours covering the entire set of requests,
we observe that the hit ratio steadily increases for both
variations. This result is not unexpected because more
requests are examined and more copies are likely to be
performed (Fig. 9).

C. Impact of the Number of Timezones

• on Active Servers:
For a fixed number of 10 closest timezones with mutual
followers Variation-1 appears to use less active servers
after the first timezone of highest centrality in the 24-h
scenario. In the 48-h scenario Variation-1 depicts higher
values than Variation-2 for the cases of 1, 6 and 10
timezones examined (Fig. 10).

• on Mean Response Time: The trade-off between the
reduction of the response time and the cost of copying
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Figure 9: Effect of time threshold duration on hit ratio for
X closest timezones with mutual followers and Y timezones
with the highest metric, where copying is ultimately per-
formed for (i)Variation-1 and (ii)Variation-2
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Figure 10: Effect of timezones used as Y on active servers
for X = 10 closest timezones with mutual followers for
(i)24-h and (ii)48-h
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Figure 11: Effect of timezones used as Y on mean response
time for X = 10 closest timezones with mutual followers
for (i)24-h and (ii)48-h
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Figure 12: Effect of timezones used as Y on mean response
time for X = 10 closest timezones with mutual followers
for (i)Variation-1 and (ii)Variation-2

in servers is expressed with a decrease of the mean
response time as the timezones increase, and a point
after which the mean response time starts to increase
again (Fig. 11 and Fig. 12).
For both variations this decrease in the mean response
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Figure 13: Mean response time for X=10 closest timezones
with mutual followers and all possible Y values, Y ∈ [1, 10]
for (i)Variation-1 and (ii)Variation-2

time occurs with approximately 4 timezones out of the
10 used (for a fixed number of closest timezones with
mutual followers). After this point the slight increase
in the mean response time is attributed to the delay for
copying content to surrogate servers.
The cost for every copy is related to the number of hops
among the client asking for it and the server where
copying is likely to be made, according to the Put
function. This point-of-change is also depicted for our
variations in Fig. 13 for the most representative case of
all requests.

VII. CONCLUSIONS

In this work, we further extended a dynamic policy of
OSN content prefetching with temporal and other contextual
parameters, depicting how OSNs can affect the content
delivery infrastructure. We have presented how geo-social
properties of users participating in social cascades prove to
be of great importance toward improving the performance
of CDNs and cloud, in the long-term. Bandwidth-intensive
multimedia delivery over a CDN infrastructure is experimen-
tally evaluated with realistic workloads, that many works in
the related literature lack.

Whereas our study is limited to a specific OSN and
media service, our results are generally applicable with a
potentially high impact for large-scale systems with traffic
generated by online social services and microblogging plat-
forms. As the number of internet users increases dramati-
cally and OSNs open new perspectives in the improvement
of Internet-based content technologies, new issues in the
architecture, design and implementation of existing CDNs
arise. Our research agenda includes the generalization of
proposed policy to deal with multiple OSN platforms and
mobile CDN providers.

ACKNOWLEDGMENTS

For the development of algorithms and to conduct the
accompanying experiments, the cloud infrastructure of the
Department of Computer Science of the University of
Cyprus, as well as Amazon Web Services, were used.

307307



REFERENCES

[1] Y. Li, Y. Shen, and Y. Liu, “Utilizing content delivery
network in cloud computing,” in Computational Problem-
Solving (ICCP), 2012 International Conference on, Oct 2012,
pp. 137–143.

[2] I. Kilanioti, “Improving multimedia content delivery via
augmentation with social information. The Social Prefetcher
approach.” Multimedia, IEEE Transactions on, vol. 17, no. 9,
pp. 1–1, 2015. [Online]. Available: http://bit.ly/1fUm7nD

[3] D. A. Easley and J. M. Kleinberg, Networks,
Crowds, and Markets - Reasoning About a Highly
Connected World. Cambridge University Press, 2010. [On-
line]. Available: http://www.cambridge.org/gb/knowledge/
isbn/item2705443/?site locale=en GB

[4] E. Bakshy, I. Rosenn, C. Marlow, and L. A. Adamic,
“The role of social networks in information diffusion,”
in Proceedings of the 21st World Wide Web Conference
2012, WWW 2012, Lyon, France, April 16-20, 2012, 2012,
pp. 519–528. [Online]. Available: http://doi.acm.org/10.1145/
2187836.2187907

[5] K. Chard, S. Caton, O. Rana, and K. Bubendorfer, “Social
Cloud: cloud computing in social networks,” in IEEE
International Conference on Cloud Computing, CLOUD
2010, Miami, FL, USA, 5-10 July, 2010, 2010, pp. 99–106.
[Online]. Available: http://dx.doi.org/10.1109/CLOUD.2010.
28

[6] M. Cha, H. Kwak, P. Rodriguez, Y. Ahn, and S. B.
Moon, “I tube, you tube, everybody tubes: analyzing the
world’s largest user generated content video system,” in
Proceedings of the 7th ACM SIGCOMM Conference on
Internet Measurement 2007, San Diego, California, USA,
October 24-26, 2007, 2007, pp. 1–14. [Online]. Available:
http://doi.acm.org/10.1145/1298306.1298309

[7] A. Brodersen, S. Scellato, and M. Wattenhofer, “YouTube
around the world: geographic popularity of videos,” in
Proceedings of the 21st World Wide Web Conference
2012, WWW 2012, Lyon, France, April 16-20, 2012, 2012,
pp. 241–250. [Online]. Available: http://doi.acm.org/10.1145/
2187836.2187870

[8] T. Rodrigues, F. Benevenuto, M. Cha, P. K. Gummadi,
and V. A. F. Almeida, “On word-of-mouth based discovery
of the web,” in Proceedings of the 11th ACM SIGCOMM
Conference on Internet Measurement, IMC ’11, Berlin,
Germany, November 2-, 2011, 2011, pp. 381–396. [Online].
Available: http://doi.acm.org/10.1145/2068816.2068852

[9] S. Traverso, K. Huguenin, I. Trestian, V. Erramilli,
N. Laoutaris, and K. Papagiannaki, “Tailgate: handling long-
tail content with a little help from friends,” in Proceedings of
the 21st World Wide Web Conference 2012, WWW 2012, Lyon,
France, April 16-20, 2012, 2012, pp. 151–160. [Online].
Available: http://doi.acm.org/10.1145/2187836.2187858

[10] I. Kilanioti, C. Georgiou, and G. Pallis, “On the impact
of online social networks in content delivery,” in Advanced
Content Delivery and Streaming in the Cloud, M. Pathan,
R. Sitaraman, and D. Robinson, Eds. Wiley, 2014.

[11] N. Sastry, E. Yoneki, and J. Crowcroft, “Buzztraq: predicting
geographical access patterns of social cascades using social
networks,” in Proceedings of the Second ACM EuroSys
Workshop on Social Network Systems, SNS 2009, Nuremberg,
Germany, March 31, 2009, 2009, pp. 39–45. [Online].
Available: http://doi.acm.org/10.1145/1578002.1578009

[12] S. Scellato, C. Mascolo, M. Musolesi, and J. Crowcroft,
“Track globally, deliver locally: improving content delivery
networks by tracking geographic social cascades,” in
Proceedings of the 20th International Conference on World
Wide Web, WWW 2011, Hyderabad, India, March 28 -
April 1, 2011, 2011, pp. 457–466. [Online]. Available:
http://doi.acm.org/10.1145/1963405.1963471

[13] S. Mitra, M. Agrawal, A. Yadav, N. Carlsson, D. L. Eager,
and A. Mahanti, “Characterizing web-based video sharing
workloads,” TWEB, vol. 5, no. 2, p. 8, 2011. [Online].
Available: http://doi.acm.org/10.1145/1961659.1961662

[14] A. Finamore, M. Mellia, M. M. Munafò, R. Torres, and
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