
A Runtime Middleware for Enabling
Application Integration and Rapid Re-

Engineering

a Department of Computer Science, University of Cyprus, Nicosia, Cyprus

b Institute of Embedded Systems, University of Applied Sciences (UAS) Technikum
Wien Vienna, Austria

c LIFEtool gemeinnützige GmbH, Linz, Austria

Abstract. Assistive Technologies devices and systems aim to improve the quality
of life of people with disabilities by providing a wide range of assistive services.
The AsTeRICS framework provides a Runtime Environment and a toolset that can
be highly adapted to the changing needs of each individual and targets to reduce
time, effort and costs of developing assistive applications. A key limitation of the
platform, as well as similar platforms, is that the integration of accessibility
features into existing software applications is difficult due to heterogeneous
implementation technologies. Moreover, the capabilities offered by sensors,
actuators and other mobile devices deployed on different machines cannot be
exploited for the development of AT applications. This paper presents substantial
improvements and changes to the Runtime Environment that address these issues
and offer the capability to integrate applications built with different technologies
and thus to improve the accessibility of an application. In fact, the middleware
environment enables to rapidly re-engineer existing software applications. Two
examples are re-developed in this work, the “FlashWords” and “EURO”
applications, which are extended in a way so that they can also be used by children
with motor disabilities.

Keywords. Assistive Technologies, Runtime Environment, Application
Integration, Rapid Re-Engineering, Accessibility, Middleware

1. Introduction

A significant number of people with disabilities worldwide are supported by Assistive
Technologies (AT) [1, 2]. Available AT devices and systems provide a wide range of
assistive functionality, improving thus the quality of life of people with disabilities.
However, AT devices often require adaptation, since they have been designed for
explicit applications, and thus cannot be used in slightly different environments without
serious customizations. In this respect, routine activities of people with disabilities may
be restricted, either because AT devices cannot be adapted based on their needs, or
because the device itself or its adaptations introduce unaffordable costs.

Marios KOMODROMOSa, Christos METTOURISa, Achilleas P.

ACHILLEOSa, George A. PAPADOPOULOSa, Martin DEINHOFERb,

Christoph VEIGLb, Alfred DOPPLERc and Stefan SCHURZc

New Trends in Software Methodologies, Tools and Techniques
H. Fujita and G.A. Papadopoulos (Eds.)
IOS Press, 2016
© 2016 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-61499-674-3-221

221

The AsTeRICS (Assistive Technology Rapid Integration & Construction Set)
project [3] has built a hardware and software framework, which targets to reduce the
time, effort and costs of developing Assistive Technology applications. It offers a
flexible and affordable components set that enables building assistive functionalities,
which can be highly adapted to the dynamically changing needs of each individual. The
system is scalable and extensible and allows easy integration of new functionalities
without major changes. It enables people with disabilities to gain access to the standard
desktop computer, as well as to embedded and mobile services that did not offer highly
specialised user interfaces until present. By using its scalable and extensible
architecture, it provides easy means for designing and running specialized AT
applications, which can simplify and assist the daily routine of people with disabilities.

A key limitation of the platform, as well as comparable platforms, is that they do
not permit reuse and quick integration of the functions offered by its assistive
components to an existing application developed using another technology. In specific,
the work presented in this paper simplifies and expedites integration of assistive
functionalities in existing software applications built using different technologies, as
well as improving the accessibility of the application. Another new feature offered by
the refined runtime middleware environment is the capability to exploit the capabilities
offered by sensors, actuators and other mobile devices deployed on different machines
for the development of assistive applications. The runtime environment is re-designed
and developed as a Java-OSGi middleware, which offers assistive functionalities via
the pool of existing OSGi components (sensors, actuators, etc.), which are exposed now
as REST services.

This paper presents the runtime environment and validates it through two use cases
for the rapid re-development of two software applications, namely FlashWords and
EURO. This is performed via the rapid integration of additional assistive functionalities,
transparently via the developed REST-enabled runtime environment, into these
software applications. FlashWords is an application that targets persons who can hardly
speak or have insufficient speech abilities. According to their condition, children with
Down Syndrome have special problems with their speech development (hearing,
speech motor function, short auditory memory, comprehension). FlashWords is based
on a concept described in the series Small Steps, called Early Reading that allows
helping children with auditory problems. The environment enables to rapidly re-
implement the FlashWords application into an application that can be used also by
children that have motor disabilities. EURO on the other hand is an application that
assists children and adults with learning disabilities to get to know money. Also in this
scenario, the runtime environment enables to rapidly re-implement the EURO
application, so that it can be used also by people who are not able to control their hands
or feet with precision in order to use ordinary physical buttons.

M. Komodromos et al. / Runtime Middleware222

Figure 1. AsTeRICS AT model designed via the ACS graphical tool.

The rest of the paper is structured as follows. Section 2 presents related work, while
Section 3 provides a technical description of the architecture and implementation of the
runtime middleware environment. In Sections 4 and 5 the FlashWords and EURO
application scenarios are presented and the demonstrators of the re-developed
applications are presented. Finally, the paper presents conclusions and future work in
Section 6.

2. Related Work

A number of AT systems have been developed, mainly in European Projects. The TOBI
project [4] focuses on the design of non-invasive BNCI prototypes that combine
existing Assistive Technologies and rehabilitation protocols. The aim is to improve
people's communication by supporting access to devices such as virtual keyboards,
internet, email, telephony, fax, SMS and environmental control. The BRAIN [5] project
enhances intercommunication and interaction skills of disabled people via the
development and integration of Brain-Computer Interfaces into practical assistive tools.
The aim of the BRAIN system is at improving interaction of the user with people, home
appliances, assistive devices, personal computers, internet technologies, and more.
BrainAble’s [6] main objective is to assist people with disabilities on overcoming
exclusion from home and social activities by providing an ICT-based Human Computer
Interface (HCI), as well as producing a set of technologies suitable for assisting people
with physical disabilities regardless of cause.

M. Komodromos et al. / Runtime Middleware 223

A project with many similarities with AsTeRICS both in terms of the concept, the
implementation and the system architecture is OpenHAB. It provides a scalable and
modular architecture that integrates components and technologies in a single solution.
OpenHAB is open-source with an active community, which enables new features and
functionalities to be added, as with AsTeRICS. It is also based on JAVA OSGi [7] and
provides APIs for integration with other systems. In addition, it provides remote
communication with a REST API and intra communication. The “new thing” that
OpenHAB introduces is that it gives the ability to the user to define the interaction of
things and devices. The restriction of OpenHAB, in comparison to the AsTeRICS
framework, is that an expert developer is needed to define in the form of text-based
scripts the interactions amongst the components even for a simple AT scenario in the
Smart Home. In contrast, the AsTeRICS system enables a non-expert AT designer to
use a simple modelling interface to easily model or reuse existing models to provide
the necessary functionality to the user.

The contribution of this work is related to the substantial improvements and
changes identified and performed to the Runtime Environment of the AsTeRICS
framework. These improvements were performed so as to offer the capability to
integrate applications built with different technologies and thus to improve the
accessibility of applications. In specific, via the REST-enabled runtime environment,
existing applications can be transformed into assistive applications enable people with
motor disabilities to use them.

The reader can refer to [8] and [9] for two surveys on middleware for pervasive
and assistive systems, which lack integration of the concepts and architectures of REST
and middleware. The concept of REST-enabled middleware is gaining momentum in
IoT as shown in [10].

3. Implementation

3.1. The AsTeRICS Architecture

In AsTeRICS, a model is considered as the container that holds the information to
describe the orchestration of the components that will produce a specific solution. The
components of each model are classified into three categories: sensors, processors and
actuators. Sensors monitor the environment and transmit input information to the rest
of the model components. Processors are then responsible for receiving, processing and
forwarding this information. Finally, actuators receive data and carry out accordingly
the desired actions.

AsTeRICS is constituted by two main components. The AsTeRICS Configuration
Suite (ACS), a graphical tool for creating AT models (see Figure 1), and the AsTeRICS
Runtime Environment (ARE), which is responsible for the deployment and runtime
execution of the models. In the early stages, the two of them co-existed necessarily on
the same machine and the communication was accomplished by exploiting the
AsTeRICS Application Programming Interface [11] (ASAPI) protocol. In principle,
ASAPI is a service that is provided by the ARE and can be consumed by different
clients, such as the ACS, allowing them to control the runtime environment according
to their needs.

M. Komodromos et al. / Runtime Middleware224

The ARE is a Java OSGi-based [7] middleware. The OSGi technology provides
component-based modularity and parallel execution for an application. Bounded by the
OSGi principles, everything that lives in the application has to be defined as an OSGi
bundle (i.e., self-contained component). Hence, each model component (i.e., sensor,
processor, and actuator) must have an OSGi bundle instance inside the ARE. The
AsTeRICS framework offers a models@runtime approach, since the ACS
communicates with the ARE to deploy the models and handle the models via the ARE
at runtime. ARE enables the communication between OSGi bundles at runtime, which
refers to the interactions and exchange of data between the sensor, processor and
actuator components. Figure 2 presents the abstract view of AsTeRICS’ architecture.

Figure 2. The original AsTeRICS architecture.

3.2. Enabling Multi-Platform Accessibility

A serious architectural limitation was that the AsTeRICS Runtime Environment
integration method (ASAPI) was primary and mainly designed for communication with
ACS. It is a not widely known technology and furthermore it is a proprietary protocol,
almost prohibitive for a third party client to implement. It naturally prevents any
exploitation of the AsTeRICS Runtime Environment’s technical qualities. Taking into
account the above, it was essential to substitute the ASAPI protocol with an API that
allows integration with minimal effort, as well as communication over the network.

M. Komodromos et al. / Runtime Middleware 225

Figure 3. The REST-enabled AsTeRICS architecture.

Due to the aforementioned reasons, Representational State Transfer (REST) API
for the AsTeRICS Runtime Environment was defined and implemented [12]. REST is
an architectural style that builds on the benefits of the Internet and the World Wide
Web, such as scalability, remote communication, and easy access from everywhere and
from any application. It is important to note here that the ASAPI protocol can also
support remote communication, but since it’s a proprietary protocol and difficult to
implement, the widely-used REST architecture that is based on the well-known HTTP
protocol is selected to perform the necessary architectural improvements to the runtime
environment. The REST services were defined while respecting and utilising the OSGi
implementation of the existing components. Therefore, the HTTP server where the
REST services are deployed, was defined and implemented itself as an OSGi
bundle/component. Exploiting the Grizzly NIO framework [13], an OSGi bundle was
implemented that allows hosting an embedded HTTP server, through which the REST
API can be accessed. Figure 3 presents the refined architecture of the runtime
environment.

The main requirement for refining the runtime environment architecture was to
provide the capability to integrate the very large set of assistive functionalities offered
by the implemented components into existing applications. In fact, the target was to
still facilitate the design and development of assistive applications through the use of
the ACS, but at the same time enable integration of assistive functionalities into existing
software applications implemented in different technologies. In specific, the ASAPI
substitution offers platform and language independence. This means that a developer is
able to reuse and integrate assistive functions into existing software applications,
without any concerns about the language and/or the platform used to implement and
deploy the applications. Finally, the development effort is reduced and the development

M. Komodromos et al. / Runtime Middleware226

process is simplified since these assistive functionalities are implemented, reducing
also the costs of integration.

4. The FlashWords Use Case

For the first scenario we have used an application called FlashWords developed by
LIFEtool, which mainly targets at children with or without Down Syndrome who have
insufficient speech abilities or special problems with their speech development
(hearing, speech motor function, short auditory memory, comprehension). The
application is based on an internationally acknowledged method called Early Reading
and was developed by the special education centre at the Macquarie University in
Sydney. The main idea is that the visualisation of words (see Figure 4) can help to
compensate auditory problems, as the visual memory is available as working memory
at an early stage and can support the auditory memory. This application is available in
the Apple Store. [14]

Figure 4. Screenshot of the FlashWords App.

Through the AsTeRICS runtime environment REST API it was possible and easy
to integrate the FlashWords application with the assistive functionalities offered by the
components of the AsTeRICS platform, in order to achieve improvement of the
accessibility of the FlashWords application. Although AsTeRICS features a MS
Windows-only camera mouse library in Java, it was not possible for FlashWords to
directly use it as FlashWords is developed on different technologies, namely Adobe
ActionScript. In this aspect, the REST API was ideal to loosely couple these two totally
different technologies running on either the same machine or even distributed.

M. Komodromos et al. / Runtime Middleware 227

Figure 5. The communication between AsTeRICS and the Advanced Rest Client.

4.1. AsTeRICS Camera-Mouse Model

The AsTeRICS Configuration Suite was used to design a model that captures the
movement of the head to control the mouse. First it was confirmed that controlling the
mouse by using the head is possible and that it functions adequately within the
AsTeRICS framework. Next, the communication between the Runtime Environment
and FlashWords was accomplished by developing a REST client. In specific, the
needed functionality provided to FlashWords by the REST client was to load different
models into the Runtime Environment via REST calls and to manage (start, stop and
pause) models remotely so as to offer the assistive functions to the FlashWords software
application.

For the above purposes a Google Chrome extension called “Advanced Rest Client”
was used (see Figure 5). Other REST clients would also be an option; however, the
“Advanced Rest Client” is easy to use with a clean interface and a good history function.
The tool was used to precisely define the commands to be used to control the AsTeRICS
Runtime Environment.

M. Komodromos et al. / Runtime Middleware228

Figure 6. People with limited movement abilities can control the mouse cursor via head movement and in

this way use FlashWords.

4.2. The Integrated Application

The ability to communicate and utilise the assistive functionalities provided by the
Runtime Environment opens up a new world of controlling FlashWords and providing
enhanced user accessibility. With the help of the camera-mouse tracking and movement
AT function, people with limited movement capabilities, for example people who can
only move their head, can now easily control the mouse cursor and start to learn new
words with FlashWords (see Figure 6). LIFEtool already supports a number of different
ways to control the mouse (1-button scanning, 2 button scanning, dwelling, etc.).
However this alternative user accessibility and interaction method is a valuable
addition, which also satisfies assistive technology scenarios.

5. The EURO Use Case

The Runtime Environment was also tested and validated through the EURO
application. EURO is an application that assists users to get to know money, not only
the knowledge of the individual coins and banknotes, but also the knowledge of the
value of money itself (see Figure 7). Target groups include children and adults with
learning disabilities that use the EURO application to get a feeling for how much daily
life costs, such as food and drug products, as well as electronic equipment and other
everyday-life objects.

M. Komodromos et al. / Runtime Middleware 229

Figure 7. By using this application users get to know individual coins and banknotes, as well as the value

of money itself.

5.1. AsTeRICS Accelerometer Gyro Model

The REST API was used to achieve communication between the Runtime Environment
and the EURO application in a similar manner as it was used for the FlashWords
application described in Section 4. The AsTeRICS “Accelerometer” model was used to
send mouse clicks by using the gyro sensor. As with the FlashWords application, the
model is able to be loaded, started and stopped from within the EURO application via
REST and offers the assistive functions within the application. The Gyro sensor control
method was added to EURO options menu.

5.2. The Integrated Application

As with the FlashWords application, the REST API defines new ways of interaction
and control of the EURO application. The user wears the Gyro sensor and is able to
control the EURO application with simple wrist movements (see Figure 8). The main
target group of the accelerometer input modality are people who are not able to control
their hands or feet with precision in order to use an ordinary physical button.

Figure 8. Controlling the EURO application with simple wrist movements - for people who are not able to

control their hands or feet with precision.

M. Komodromos et al. / Runtime Middleware230

6. Conclusions and Future Work

This paper describes how the novel REST-enabled runtime environment built over the
AsTeRICS framework. This environment enables, simplifies and expedites integration
of assistive functionalities into software applications that are built using different
technologies. Also, the runtime middleware environment offers exploitation of the
capabilities of sensors, actuators and other mobile devices deployed even on different
machines for the development of assistive applications.

Through the two use cases it was demonstrated that new ways of AT interaction
can be easily and rapidly integrated into existing software applications. This is
supported by the REST-enabled runtime environment. The scenarios can be perceived
as examples of rapid re-development of two AT applications, by including further
important assistive functionalities and improving accessibility. In the first scenario the
FlashWords application can now be used also by children with motor disabilities.
Furthermore, the EURO application was upgraded in terms of AT capabilities to be
able to be used also by people who are not able to control their hands or feet with
precision in order to use ordinary physical buttons.

For future work, the target is to enrich the AsTeRICS Runtime REST API, so as to
provide the capability for remote communication, not only at the level of the AsTeRICS
Runtime Environment, but also at a lower level, the level of the AsTeRICS model
components. By achieving this goal, models can be defined that use components
available on different AsTeRICS-enabled machines. This will enable a component A
available on one AsTeRICS machine to communicate with a component B available on
another AsTeRICS machine. In this manner, advanced interaction capabilities between
remote components will be provided for realising even more complex AT scenarios.

Acknowledgements. This work is supported by the European Commission as part of
the Prosperity4All (Large Contribution) EU project funded by the Seventh Framework
Programme – under grant agreement no 610510.

References

[1] Eurostat: Population and Social Conditions: Percentual Distribution of Types of Disability by Sex and
Age Group. Online. http://epp.eurostat.cec.eu.int

[2] Assistive Technologies: Principles and Practice (2nd Edition) (15 December 2001) by Albert M. Cook,
Susan Hussey

[3] AsTeRICS Homepage (2015, April 17). Retrieved from http://www.asterics.eu/index.php
[4] TOBI: Tools for Brain Computer Interaction, http://www.tobi-project.org
[5] BRAIN: Brain-computer interfaces with Rapid Automated Interfaces for Nonexperts, https://www.brain-

project.org/
[6] BrainAble: Autonomy and social inclusion through mixed reality Brain-Computer Interfaces: Connecting

the disabled to their physical and social world, http://www.brainable.org/
[7] OSGi Alliance Homepage (2015, April 17). Retrieved from http://www.osgi.org/Main/HomePage
[8] K.E. Kjær, A Survey of Context-Aware Middleware, In Proc. Software Engineering 2007, ACTA Press,

pp.148-155, 2007.
[9] M. Memon, S.R. Wagner, C.F. Pedersen, F.H. Beevi, F.O. Hansen, Ambient assisted living healthcare

frameworks, platforms, standards, and quality attributes. Sensors. 2014;14:4312–4341. doi:
10.3390/s140304312.

M. Komodromos et al. / Runtime Middleware 231

[10] J. Rykowski, D. Wilusz, Comparison of architectures for service management in IoT and sensor
networks by means of OSGi and REST services, Computer Science and Information Systems (FedCSIS),
2014 Federated Conference on, Warsaw, 2014, pp. 1207-1214. doi: 10.15439/2014F324

[11] AsTeRICS Developers Manual, Chapter 8. Retrieved online:
http://www.asterics.eu/download/DeveloperManual.pdf

[12] L. Richardson, M. Amundsen, S. Ruby, RESTful Web APIs. O’Reilly Media, September 2013.
[13] Project Grizzly (2015, April 17). Retrieved from https://grizzly.java.net.
[14] FlashWords App (2016, March 11) http://www.lifetool.at/assistive-technology/lifetool-

developments/apps-for-tablet-computers/flash-words.html?L=1

M. Komodromos et al. / Runtime Middleware232

