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ABSTRACT

The work described in this document examines the potential of Dactl as a common
implementatton language for parallel logic languages. Dactl is a compurtational model based on
graph reduction where programs are written as sets of rewrite rules. The language 1s intended to
serve as a common intermediate compiler target language between logic and tuncrional languages
and novel computer architectures. In partcular, we show that PARLOG and the flat subset of
Guarded FHorn Clauses can be easily mapped onto Dactl. We also show that all the features of these
languages (back unitication, difference lists, stream parallelism, or-parallelism a fa PARLOG. etc.)
are directly supported by, or can be easily implemented in Dactl. We provide a substantial number
of examples to support our arguments including the implermentation of the non-trivial 'set” and
'subset’ primiuves of PARLOG.
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1. INTRODUCTION

The last two decades we have watched the continuous development and widespread use of
declarative languages. On the one hand we have funcrional and eguarional languages based o2
A—calculus and reducrion and on the other hand we have logic languages based on predicare logic
and reselurion. Both formalisms have proved their potential for parallel execution, In functional or
equational languages (ML, HOPE, KRC, SASL) independent subexpressions can be reduced in
parallel and in logic languages body calls can be executed in parallel (and-parailelism) and search
for candidate clauses can be done in parallel (or-parallelism). In the former formalism. funciion
compositions and applications as well as the existence of a unique solution restrict the degree of
parallelism to manageable levels. In the latter formalism however, the parallelism involved can
cause an exponential growth in the number of active processes and many techniques have beer
devised 1o restrict it ([Papa87al). In particular, the so called paraliel logic languages (PARLOG,
Guarded Horn Clauses, Concurrent Prolog) that support stream and-parallelism  und
commited-choice or-parallelism stand out as suitable candidates for efficient parallel
implementations. These languages have themselves undergone major changes as their use gave
nsight to better ways of implementing them and new feanires to be incorporated in them.

At the same time a number of suitable parallel architectures have evolved which aim a:
supporting the implementation of these declarative languages. Among others we have the
Manchester Dataflow Machine, ALICE, ZAPP, GRIP, Flagship, Mago's cellular machine, erc.
Again, these proposals have undergone changes as in the case of languages.

Although this continuous change is a proof of development and improvement it also creates
some problems, mainly the inability to stabilize the particular implementations. Any major change at
the language or architecture level renders the corresponding implementation out of date at least. On
the other hand such a high degree of coupling between the language and architecture level forces the
language designer to consider the low-level implementaton details for the particular architectures
concerned. This led to the development of Dactl {Declarative Alvey Compiler Target Language,
[GKSHS87]), a computational model which can act as a bridge between the designers of languages
and architectures. The use of Dactl as an intermediate compiler target language not oniv decouples
the development of the language from that of the architecture but it also reduces the number of
required implementations (see figures 1 and 2 below).
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In this report we examine the potential of Ductl for implementing parallel logic languages. In
particular, we consider PARLOG and the flat subset of Guarded Homn Clauses (GHC). In section 2
we brietly describe Dactl, PARLOG and GHC, in section 3 we describe the translations or
PARLOG and flat GHC to Dacil and in section 4 we comment on our techniques and suggest
possible improvements. Then we brietly decribe related work and suggest directions for further
research (section 3): finally, we present out conclusions (section 6). “The appendices list two
non-trivial programs; the first one is the PARLOG 'set’ constructor and the second one illustrates
the way exhaustive search is done in GHC.

2, THE LANGUAGES

[n this section we briefly describe the three languages involved. However the description 15
essentially condensed and we urge the interested reader to consult the appropriate documents
{(I{GHSHS87], [Greg87], [Leda86]) for more information and details.

2.1 Dactl

Dactl is a graph-rewriting based compiler target language. A Dactl program is a set of rewr:te
rules which specity a binarv reducrion relation that defines the way a collection of ofyjecrs (the data
structures) are mampulated In Dactl there is no predefined reduction strategy and the language
allows the formation ot a varietv of rewriting svstems which we will call abswract rewriiing
svstems. Here we are particularly interested mn “the so called term rewriting svsrems {[HuOp80].
It can be shown that any functional program can be mapped onto an equiv alent canonical term
rewriting system, that is one that 1s confluent (Church-Rosser) and possibly noetherian
{terminating), On the other hand, a logic program can also be viewed as 1 set of
cquivalence-preserving rewrite rules ([Ders85]). This is especiallv rue for the parallef logic
languages where onlv one solution is sought and the program can be viewed as Such a set of
possibly conditonal (1.e. guarded) and not necessarily canonical rewrite rules.

In partcular, a Dactd program comprises i set of possibly non-linear rev ;'tc rules {whete
repeated vanasle in the lert hand side denotes pomtzr e*maht») and an inizial zraph. These rules
define the graph rransformarions that ] it applied 1o the 1nigal graph, a stage will be r::’icncd where no
more transiormations are possible; 11 this case a normal teom has heen computed. Each rule is of
the form

Ted
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Actiwvations

cmtracTum, Rediresticns,
The pattern may be matched against any suitable part of the graph: it can be simple or it can contain
pattern operaiors. After such a successful matching, a copy of the contractum, the right hand side
of the rule, is built which specifies new nodes 0 be added to the graph. The contractum may
contain references to the original graph. Secondly, the redirections part is performed to redirect
some arcs from the original graph to link to the new structure. Although the most frequent kind of
redirection 1s similar to the classical roor-overwrite, Dactl allows the effect of overwriting anv node.
As well as dictaung the way in which the graph is transformed, a Dacd rule can also contol
evaluation. Only activated nodes will be considered for matching. New nodes in the contractum
may be created active, and also, the final acrivarions part of the rale may indicate that some nodes
from the original graph are to be made active.

2.2 PARLOG
A PARLOG program is a set of 'guarded clauses' of the form

R{Tq, o-.,Tn) <— Zuard ;. Sody

mode R{mn,...,mk).

Each = corresponds to one t© and denotes the mode of that argument; a '?" indicates that the
argument 18 input and a N indicates that it 1s ourput. During evaluation of a relation call all clauses
that define the relation in question are tried in parallel; that is all head unifications are attempted in
parallel and all guard evaluations are done in paraliel. If during head unification an attempt is made
to instantiate a variable in the environment of the call, the call suspends. Upon commitment, full
output unification is performed for the clause. Everv PARLOG clause can be manslated to its
Kerne! PARLOG cquivalent form. Kernel PARLOG is the ‘unsugared’ version of PARILOG; there
are no mode declarations and input marwching and curput unification are done by explicit calls to
appropriate unificaton primitives in the guard and body respectively for each clause.

We have based our implementation on a variant of the AND 1ree mode! which is close 1o rerm
rewtiting and is fully described in [Greg87]. In this model everv PARLOG clause is mansformed
10 a set of flat clauses of the form

Ripa, . -.pq) < [g-8...6g,] [(op-s...sbpi)a]ibe-, ..., kc

sl

where ¢, to p. are distinct variables, ¢, to 5. are guard primitives, bp, 10 =p. are body
primitives and cc- to ke, are user defined body calls. The brackets are uséd to derote oprional
paris. For example the PARLOG =:meslist program

—imeslisciv, (v'vl, lwlzl) <— timesic,v,w), timeslisc{=,v,z).

ransiates 1o the following AND tree program:

Tim2slisT i, 0A, D=0 <— DATA{p~) & SET-LIS5T({gm,v,v] Ce= w7
] P Y e - .
& {fimss(g.,v,w), Timesl st ;1,y,z])

=

-
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2.3 GHC

GHC 15 verv close to PARLOG; however, whereas in PARLOG svnchronization 1s achieved
bv means of mode declaranons that designate certain arguments of relaton cails as either producers
or consumers, in GHC the required svnchronization is achieved by means of two rules of
suspension ([Ueda86]):

— Unificaton invoked directly or indirectly in the head or guard of a clause C called by a goat
G cannot Wnstanuate variables in G.

— Unification invoked directly or indirectly in the body of a clause cannor instantiate vanables
1n the guard of C or G undl this clause 1s selected for commitment.

Note that if arbitrary user defined calls are allowed in the guard, there 1s a need for a (someumes
non-trivial) run-time test to check if the variables involved in unifications are global or local.
However it we resmrict the language to its tlat subset, the resulting sublanguage 1s very similar o
Kernel PARLOG.

3. THE IMPLEMENTATIONS
3.1 PARLOG —=> Dactl

We start by showing that all the Kernel PARLOG primitives are directly supported by Dactl.
These are:

1
B
14
1l

e o —vv

SATA ()

ZINC (7, %)

CET-CIONSTANT ik, v)

GET-LZIET (v, RN, '.:'2)
GET-3TRUCTURE (B o, v, Wa, oo, 7t

plus some arithmetic and input/output primitives. The ¢G=T-.. primiuves are all pattern matching
primitives and since matching is direcdy supported by Dactl, we simply move the required patterns
to the left hand side of appropriate rules. The same holds for the vaz primitive since a PARLOG
variable 1s represented in Dactl as a node (+ say) with the pattern va-. The 3230 (v, &) instnicdons
are represented as redirections of the form v:=t. Finally the pa~a v} instruction is equivalent to
annotating the node that references a variable + with the '+’ control marking that causes the
blocking of the nodes to which it is attached. The node that references ~ then will remain suspended
untl 1t becomes instantiated. For example the AND tree code for the =imes1:st program could be
represented as follows:

plus rules that define fatlure to match. However we will be using a different technique as described
below.

A PARLOG program is represented as follows: For each procedure there 1s a top rewrite rule
that defines an or-process tor that procedure. This process performs the required search ror
candicare clauses either sequentially or in pseudo-parallel (depending on the search strategy
dicated n the original program). It does this by fining a set of rewrite rules, one for each clause ot
the procedure. Each of these rules has a different outermost function svmbol as opposed to the
dertical relation name of the corresponding PARLOG procedure. This 18 necessary because two or
more clauses mav have idertcal patterns (in which case the guard 1s used to determune the cundidate

A
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clauses) and also to be able to simulate the or-parallelism involved. For example the za:» zsvoo
PARLOG program

ncde fazir-merge{?,7,7).
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FMerge 'pl p2Z pIl => *PAR search [Cons IMergel Cons[IMergeld
Zons FMergel Cons IMerged
Zong (FMergel NilT1111 Fipl pZ 3l

For each PARLOG clause there are three rewrite rules: the first one models the successful
commitment to that clause, the second models suspension on uninstanuated input arguments and
the third reports fallure to match. In particular, the left hand sides of these rules comprise the
following three patterns respectively: the first one 1s identical to the one 1n the corresponding clause
{success partern). The second determines whether any input arguments are still unmnstantiated
{suspension partern). This is achieved by subtracting the success pattern from a more general one
comprising for each input argument not only its input pattern but also the pattern vax. If the
suspension pattern matches the graph then some input variables have not been instantated ver.
Finally the third one determines failure to match (failure partern). Note the use of the pattern
operations avatiable in Dactl. For example the third rule of the above program is represented as
tollows:

PATTERN FMII=FMergel3 Cons [Anv Any. Jons[Any Any] Anv]
FMIZ={(rMergeld [ {Var+lons 'Aanv Any'} (Var+ZTons[Any Anv]) Anv] - TMIL

jate] njlborim becalll,
pprim:Unify 23 Cons s Cons v oz:iVarill,
becall:FMerge[x v zi;
(FMergaliicl: {Var+lons [Any Aay]l) p2: (Var+Cons (Any Any. ) 3] -FM31L)
=» *Suspv[Conspl Consip2 Ni1013
(TMargeldlAny Any Any-FM31-TM3IZ) => =FAII;

where susov 1s a funcdon that determines which arguments are still uninstuntiated. It does this by
examining the list of input arguments, If it comes across a non-variabie term it simpiy discards it;
:he ones that remain in the end form the list of suspension variables as described in [Greg87]. In
the next section we will see how a clause can directly suspend on unistantiated variables. Note the
representation of new variables in the right hand side as new nodes with the pattern vz=. Nowe wiso
that when there exists only one inpur pattern the foilowing obvious opruimisations are possible as
llustrated using the fourth rule of “2ir merga:

x
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If the input pattern is more than one level deep, there may te a need for add:tonal rules. For
example, the following clause

~lauss{ Plx, v T2ati)y <- .

has {among others) the following rewrite rules:

Tlazse[p:var, =» *Ccnsig NIl
Slause [Sons(p:Var rest)] => *Cens[p Nilly
~lause[{any-Var-Cons[Vazr 2anv!-Cons (P Any Any] Aayl)] => *FATL;

However, in practice deep patterns are rarely used in parallel logic languages (as opposed to what is
happening in their functional counterparts).

The right hand sides of the three rewrite rules are defined as follows: the first one comprises
the guard and body of the respective PARLOG clause, the second computes the list of suspensicn
variables as explained above and the third simply returns the value Far=. In particular, the right
hand side of the first rule is of the form

8 =»  *Commit [guarnd nedvl,
suard: iist of guard iasctruacticns |
syccezp (if the guard is empty)
body cedvy calls (asexplained below) |
Conjliist of primizives zedy calis] (if there are body pummtives)

If commis's first argument s socczzz (that is there are no guard culls), it simply returns the body
of the clause. Otherwise Commis tries to solve zua-4; if it succeeds 1t returns kody. Otherwise at
least one call in guard has either falled in which case it returns Fazz or suspended 1n which case 1t
rerurms a list of suspension variables. In the latter case no other call in the conjunction must have
failed. sedy_calls can be either a single call in which case it is represented explicitly as shown

‘-\.rJ-J-"

above for the za:ir merze program ot a parailel conjunction of calls in which case it is rtpr{,sc'lted

as Sedy ‘bl b2 ... mnT,onez for each body call. We therefore have a set of rewrite rules of the
rorm
Sodyinl ZZ2 0., br_]‘ => $And process(tdsl 3R L. 3o

one tor each value of n. Since n ¢an be arbitrary large, we assume the existence of a small number
Ut parm ular rules (sav 3-7); for n greater than 3 or 7 we build a tupled representation using a ree of

sdv nodes. Dactl programs have a module structure and an efficlent implementation could provide
a spc\.lal module to handle terms of arbiwary arity. This module could act as an interface ©
special-purpose hardware to assist commonly used rules.

Euch and oroceszs tule 18 of the form
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Note that cach and_orscess rule has a single blocking mark but an arbitrarv number of notification
rnzu-ks Thus every time an ,‘.:1d process recei»es a sicrml it acuv atcs itseif (o c\amine i[ i:"i ic,

1t report% SUCCess to 1ts parent and terrmn:uas. If a a7 message arrives f*om one ot the ;mu}ren 1{
reports fatlure and terminates. This early cetection of failure is the equivalent of lazy evaiuaton in
functional languages.

The same technique has been used in the implementation of the control metacall. A call of the
formezcailip o - Po. 8, ¢) 18 Tepresented as follows:

-
T
!"L.

. D s ] =» #EVAL["8pl ~2p2
Y Any s:Var 353TOF] =» *SUCCEED
ED 5UCCEED . 3TUCZEED s3:var (anv-—
Anv—FAIl) gl: (Any-FAIL} pn:
{EVAL _Anv Anv Any s:Var [(Any-3TOP}]-Evl-
where
ZvI=EVRL[SUCCERED 3UZCEED SUCTEED Anv (Anv-S5STOR)
== (Anv-TATZ) [(Any-FRIL) (Any-¥AIL) Anv (Eny~3TCPY] - Evl):

¢al 1s behaving in a similiur way to 2ND_rrocess; however it is also SU%pende on the control
\zmable o If thm 1s instantiated to sTop it terminates immediatelv. Note the use of non-root
overwrite for instantiating the variable s to the appropriate value.

These rewrite rules are applied as follows: as explained above for each PARLOG clause there
1s a top rule of the form

fred pl pZ ... pnr] => *8E] search[list of clatses 2 pl pl ... pnii;

rzdi ol pZ ... Dn] => *PAR se Ips L. prll:

rzh[list_of clauvses Pz

m

search and 2x2_search simulate sequential and parallel search respectively. A
. process eventually reaches a form 51m11dr 10

niMfinzc clavsa res

ot

o clauses!

If fired slzuse TEIUINS FAIL, SEQ search tries the next one; if it returns the body of the clause
SEQ_searsh commits to that and disregards all the other clavses. Finally, if a list of suspension
variabies is remmc‘:d 32C_seaxzch suspends on them until one of them is instantiated in which case
it retries fired clause. There is a special function (Suspend) that monitors the uninstantiated
variables. On the other hand a FAR_searzh Process reaches a Yorm simular to

b

auses suspg vars 1ist!

*FAR seavcoh ["Ilred clause rast_of c
It is operating 1n a similar way to sEQ searcn; however, when a list of suspension variables is
returned it appends 11 to susp_vars_>ist and tries the next clause. Only when all the ¢lauses have

een Tled and no body has been returned, it suspends on the global list of uninstantiated variables.
We recall that the list of uninstantiated variables comes from two sources: the first is the susov call
in t1e second rule of each PARLOG clause: the second is the Sormis ‘guars nodv call in the Arst
rule.



Towards a Common Implementation for Parallel Lowme Languages

Appendix [ iists the Dactl code tor the 'set’ constructor primitive whose PARLOG ceode can be
found in [CIGr85] The 'set’ primitive (which is in effect an or-interpreter) computes eagerly all
the solutions to 2 query. A call of the form

RN I Tl o
Coulan L1350,

rtarm?,contuncoicn?)

Ui

st

will incrementully bind seluzicn Z:is+- to a list of all the instances of -2rm that corrcspond 1o
different solutions to r*frl*;.nfn,ij . In particular, an or-process will be spawned for every clause
that matches the first goal of confurction; any solutions for thar goal are made lmfnn:(.;ldtcl_
available to the rest of the goals in the same conjunction. Thus the 'set” primitive supports
or-parallelism and an induced form of and-parallelism. Rules as well as facts are defined as in
standard Prolog and they are retrieved by means of a special primitive (called cZauses). Although
this primitive is defined in Dact in our implementation, it could be part of a lower-level
implementation, perhaps using special hardware. Such an implementation could be very usetul in
retrieving a large number of facts or rules and it could easily be interfaced to the rest of the Dactl
code due to the modular structure of Dactl programs. A complete implementation of PARLOG

including the lazy set {("'subset’) constructor can be found in [Papa87h].

GHC —> Dactl

Suprisingly the flat subset of GHC proved to be very close to Dactl. There are no
and-sequential operators or any extralogical features, the language's operational semantics allow
everything to be executed in parallel and the required synchronization 1s defined by the rules of
suspeasion. This 1s very similar to what is happening in Dactl where evervthing can be fired in
parallel and svnchronization is achieved by means of appropriate markings which can directly
model the notion of suspension. The only difference berween the two languages 18 the existence of
simple guards (in GHC) and an associated rule of commimment ([Ueda86]):

-— When some clause C called by a goal G succeeds in solving its guard, the clause C mies to
be selected for subsequent execution of G. To be selected, C must {irst confirm thar no other
clauses in the program have been selected for G. If confirmed, Cis selected indivisibiy, and
the execution of G is said 1o be commited to the clause C.

The rule of commitment can be easily modelled in Dactl with an ¢r_srscess that 1s defined a3
follows:
» orocess|(

crocass [ o vi => 3body;

crocess [Any ood ulzi 1] =» 3ncav;

_prooess (pl gli-Crl-Crl) =» $Cr_gprocessitpl Tpllg
where

Any! -0r process Any Resulo{anyl )

There is one or_grecsss for every GHC procedure which fires in parallel ail the clauses for that

procedure. Tt 1t receives back a bodv it commits o that; otherwise 1f all the clauses rail it reperts
fatiure and terminates. Note that we have adopted here a binarv representation: however the
rechnique of using a special module to handle terms of arbttrary size can be used here also.

G
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Pattarn. ...} we have three rules:

Pred Patternl PatternZ ... ] => *Commizlguazd hodv’;

iPredipl:(Vaz+Fatternl) m2: (Var+Fattern?) LTELY =» cai#Pred!tnil tcl ;
iPredApv Any Anyl-P1l-FP2) =»> *FAID;

where 21 and 22 are defined in the usual way. commit is also defined in essentially the same way
as in PARLOG. However all guard calls are fired in parallel; no suspension list is built and 2 emmi<
will eventually respond with either FacL or the body of the respective clause. Note again the use of
a single blocking mark and a number of notification marks. This representation allows the earliest
possibie detection of failure even if not all input arguments have arrived.

We conclude this section by describing the implementation of the stkerw:se primitive which
can e used to define an ‘escape’ clause. In particular, the clause that execures an o+ aerwise in its
guard will only be tried if all the textually preceding similar (i.e. with the same predicate name and
anty) clauses have been tried and failed. Its definition in Dactl is the following:

1 => Gbcdy;
heny

bocy:Body

e | o=

Pt

o

thy (L

An other_process is called by the top rewrite rule that handles the or-parallelism. The first
argument is the clause that calls the otnerw:se primitive and the second is either a single clause
that textually precedes the one with the stherwise or a group of clauses monitored by
Cr precesses. Sther process remains suspended until all the or srozesses have reported
back. If they have all failed, cther process fires the clause that calls the otmerwise primitive .

Appendix II lists a list permutation program that computes all the permutations of the elements
of a given list. This program makes use of a novel technique which is described fully in [Ueda86]
and involves compiling or-parallelism to and-parallelism and using continuations to hold multiple
solutions. In particular, a Prolog program is ransformed to an equivalent GHC one where the
top-down search of the original program has been transformed to a bottom-up one. Provided that
the terms involved are ground. the continuations required to hold the muliiple solutions do not have
to copy the parnal solutions that have alreadv been computed which can therefore be shared.
Atthough this method dispenses with the need to create new variants of terms which involves
copying, it requires that the terms 1o be handled are ground. A complete Implementation of GHC
including some more non-trivial programs is discussed in {Papa87h].

4. DISCUSSION

In this section we comment on the techniques used in implementing PARLOG and flat GHC
and examine alternative solutions. We then start bv noting that the AND wee model of PARLOG
can be directly supported by a rewrite rule based language like Dactl. However the existence of 4
single process which was introduced in the AND tree model to simulate the or-parallelism,
compromised 0 some extent the potential of Dactl for parallel execution and was responsible for the
creation of rather lengthy and complicated Dactl code. The reason for the existence of such a
process is that the earlier AND/OR tree model proved 1o create a substantial number of processes,
many of which were mivial (for example there would be a single process for each z2-— . ..
instrucdon). This led to an unacceptable overhead when PARLOG programs were compared with
similar HOPE programs, both run on ALICE ([Greg871). In Dact) however, there is no need to
create processes for the pattern matching instructions and the guards will onlv contain calls to
arithmetc or other predefined system primitives. We therefore propose the following change 1o the
AND wee model: instead of having a single process for a whole procedure, we create one process
for every clause (as a whole) of the procedure. That is, a conjunction of calls in a guard 15 sl
weated by the same process: however, there is now one process for each clause and all input

10




——JL—-—"—-—J

Towards a Common Implementation for Parallel Logic Lunguages

matciings and guord evaluations between different clauses proceed in parallel. This technique has
some considerable advantages: First, there is no need to build up a list of suspension variables
which proved to be the major source of innefficiency in the model. Second, the processes created
are not trivial and their numoer 15 kept down to manageable levels, Third, some true or-paralielism
is supported. We have done some experiments using this technique and the overhead incurred was
less than the one using the AND tree model.

A point that needs further explanation is the way we handle failure. Both the AND/OR and the
AND tree model assume the existence of 4 kil signal that will catch-up and terminate the processes
of an and-conjunction if any of them has failed, or an or-conjuncaon if one of them has succeeded.
However in Dactl there is no such notion of killing processes since such an operation does not have
any meaning in a graph reduction model (indeed, 1t does not have any declarative meaning at all).
When such a sitmation arises we simply overwrite the particular rewrite rule with sTUCCEED or 7azs
without considering the rest of its children processes. This situation arises because parallel logic
tanguages (unlike their functional counterparts) have the notion of specularive work: processes will
be spawned to do work that in the end will prove to be useless. This can happen either because
some other process has managed to succeed earlier (as in the case of commited-choice
or-parallelism) or because an assoclated process in the same and-conjunction has failed. The latter
reason has also to do with the wav the notion of failure is detined. In a functional language if the
evaluation of a constraint fails, the result is undefined. In a logic program however, not only failure
is valid but is somerimes a wav 1o control the execution of the program. In anv case as Ueda points
out ([Teda86]) a truly paruallel language mav have to allow possible useless computation.
However the lack of an explicit kill signal in Dactl 13 usually no problem. Since a process usually
needs certain informaton (input matchings) to proceed, all processes that would otherwise have
been killed will eventually stop, suspended on their input arguments and computation will die out.

In the case of GHC, Dact!l can be used as the implementation language of such features as the
unification primitive which can not be defined in the language itselt. In addition, a proper
implementation of GEHC to Dactl would be beneficial for the language itself since so far only
sequential implementations of the language have been reported ([Ueda86]) and the potennal of the
language for etficient parallel implementations is vet to be exumined. Although we used a rather
liberal technique in implementing GHC (firing everything in parallel), a more conservanve one (like
the modified AND tree model for PARLOG described above) may prove more appropriate,

We end this section by showing that the use of patterns in Dactl solves some of the problems
encountered in implementing head unification {[Ueda&86]). For example in the following program:
R |
ol e - el

mie) - true | oTrue.

the attempred unitication should tail and it will in Dactl, whereas in a sequential implementation the
call would suspend on the first argument. A more serious problem arises when the following
program is encountered:

81}

- miA,false,True
uzo: oid, R, ) -

(R

il

-

where a left-to-right unification would suspend wheresas a right-to-left one would fail (as 1t-should).
We solve this problem by using a cvclic set of equality testing primitives as thev are defined In
PARLOG. So, the above clause becomes:

s
]
Y

SHML,ED,HEY - {I==XD, KI==H2, Hi==NT
S RELATED WORK AND DIRECTIONS FOR FUTURE RESEARCH
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The work reported in [Hamm86] examines the potendal of Dact! as a compiler target language
for functional languages. A lazy subset of ML (SML) has been successfully translated 1o Dact and
un associated compiler has been built. The paper also examines various compiling technigues and
zssoclated problems.

From the point of view of implementing PARLOG we mention here the work reported in
[La(:r87] where an implementation of the language on the ALICE CTL is examined. The paper
also reports on some optmisations that can be applied to the AND tree model. [Towever ALICE
CTL is closer to the machine level than Dactl and the programmer is still forced o consider
low-level detatls. We are not aware of anv similar work on GHC,

The only other language that comes close to the semantics and aims of Dactl is Lean
{{BEGKS87]) which is also based on graph rewriting. However, the form of graphs that can be
defined in Leun 1s more general (cvclic and even disconnected graphs are allowed). As in the case
of Dactl there i1s no fixed reduction sategy: however, in Lean reduction is specified solelv through
the patterns of the rewrite rules and there is no use of markings to nominate certain nodes as
potential redexes.

The use of Dactl as an intermediate compiler target language provides the ability to reason about
the performance of various logic and functional languages. In particular, mapping programs written
in different languages onto Dactl allows us to examine and compare the resulung code. Such a
comparison can be done for example between programs written in PARLOG or GHC and ML, We
can also expeniment on various implementation mode!s for the languages themselves.

Finally, we observe that in Dactl there is no distinction between data constructors, predicates
and functions. This reveals the possibility of using Dactl as the basis for amalgamating logic and
functional languages. This may be done tn 2 ways: First, Dacd can be used to implement languages
like FUNLOG ([SuYo086]) based on semantic unification. In semantic unification the most
veneral unifier is unique and the arguments of the funcrions to be reduced must be ground terms.
Thus there 1s no need for either backtracking or creation of local environments. We believe that
Dacil can efficiently support the implementation of languages like FUNLOG. Second, the verv fact
that both logic and functional languages can be mapped onto Dactl may provide a means of either
nterfacing these languages to each other or implementing in Dactl "expensive’ operations such as
narrowing {[Redd86]) which may be called when necessarv by the languages concerned.

6. CONCLLUSIONS

In this report we have examined the potential of Dactl as an intermediate compiler targe:
ianguage for parallel logic languages. In particular we provided a framework for compiling
PARLOG and flat GHC programs in which all the features supported by these languages (siream
parallelism, back umificanon, lazyness, continuations, or-parallelism a /a PARLOG. bounded
buffer communication etc.) can be easily and efficiently implemented in Dactl. We also showed that
all the conuol or data driven annotations used in these languages are ¢ither directly supported or
etficiently implementable in Dactl. In general, we believe that Dactl can be used as the compiler
target language for a wide class of parallel logic languages that conforms to the following two
principies: '

— There 1s no need for creating local environments during the search for candidate clauses.
— The input/output directionality of programs is explicit at compile time, that Is the programs
should be moded.
We impose the first resmiction so that we can dispense with the need 1o build copies of local
variables and subsequent merging of local and global environments which has heen proved to be
problematical ([Ueda82]). The second restriction is imposed so that we can produce the required
Duact code at compiie time without having to resort to run-time checks {as for example 1s the case of

12

-




)

L Towards 1 Common Implementation for Parailel Logic Languages

fLll GHC). However we stress the fact that inpur arguments need not be sirong (where oniv ground
rarmas are allowed). The use of weak arguments (where only the outermost svmbol 15 detined) can
he easily supported in our model. Although even at this stage we are abie to offer a imited degres
of unification we believe that if we allow some form of copying we will be able 1o accomocate a
wider class of languages such as Concurrent Prolog ([Shap&3]) or P-Prolog ([ YaAi86]; and
execution models such as narrowing ([Redd86]). '
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