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Abstract

Software Architectures have evolved considerably over the last decade and, partly also due to
the significant progress made in component-based development, have become a major subfield of
Software Engineering. The associated field of Architecture Description Languages (ADLs) has also
evolved considerably, providing numerous approaches to the formal specification and representation
of architectural designs. In this field, one of its most interesting (and rather recent) aspects has
been the exploration of different ways to map architectural specifications down to executable
representations. In this paper, we present a methodology for mapping the generic features of any
typical ADL to executable code. The mapping process involves the use of ACME, a generic language
for describing software architectures, and the coordination paradigm. More to the point, we show how
the core concepts of ACME can be mapped to equivalent executable code written in the coordination
language Manifold. The result is the generation of skeletal code which captures and implements
the most important system implementation properties of the translated architectural design, thus
significantly assisting the programmer in filling in the rest of the needed code.
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1. Introduction

Software architectures [8] have evolved considerably over the last decade and, partly
also due to the significant progress made in component-based development, have become
a major subfield of Software Engineering. Software architectures are nowadays playing an
important role in software development, not least because of the increasing complexity of
software systems, covering both functional and nonfunctional aspects.

Tightly coupled with the progress in Software Architectures is the development of
Architecture Description Languages (ADLs). ADLs [15] provide numerous approaches
to the formal specification and representation of architectural designs. An ADL is typically
associated with a conceptual framework but also offers a concrete syntax (textual and/or
visual) for expressing the properties of a software architecture.

It is widely accepted that software architectures (and their associated ADLs) play
a major role in the development of a system, acting as a bridge between the
requirements that the planned architecture must satisfy and the actual implementation
code [8]. Consequently, the existence of (semi-) automated processes that will generate
executable code from an ADL-based specification is of paramount importance to reducing
implementation time. In [17] it is stated that the generation of even skeletal code constructs
could have significant positive impact to the overall development of a system. However,
only a few contemporary ADLs are able to generate executable code, and even in these
cases, the programmer must accept the preferred programming language that the ADL
chooses to generate code in.

In this paper, we present a methodology for mapping architectural representations
written in ACME [9,10], a generic language for describing software architectures, down
to executable code. The mapping process involves the use of the coordination paradigm.
More to the point, we exploit the fact that the core concepts of many ADLs are very
similar to those of a particular class of coordination models and languages, namely the
so-called “control-driven” family [21]. In particular, we show how the core concepts of
a typical ADL, as expressed by ACME, can be mapped to equivalent executable code
written in the coordination language Manifold. The result is the generation of skeletal code,
which captures and implements the most important properties of the translated architectural
design, thus significantly assisting the programmer in filling in the rest of the needed
code. By virtue of the Manifold model, the skeletal code is effectively independent of
any particular programming language; this is another advantage of the presented approach.
Furthermore, the involvement of the coordination paradigm as an implementation route for
architectural specifications produces executable representations where the computational
components are clearly separated from the coordination ones, thus facilitating component
reuse. Finally, the proposed framework also offers the coordination programmers the
opportunity to use the ADL paradigm for modeling and designing the high-level aspects of
a system before embarking on its actual implementation using a coordination language.

The rest of the paper is organized as follows. In the next two sections we present the
coordination language Manifold and the ADL ACME; in the process we show that the
family of coordination languages that Manifold is a member of shares many common
features with ADLs. This fact is exploited in the fourth section, where we first present
the mapping of the core concepts of ACME onto equivalent executable skeletal code
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in Manifold and then we use these basic mappings to illustrate how a fully-fledged
software architecture can be implemented in a combination of Manifold code and code
produced in some programming language. In the fifth section, we describe the way we
have implemented a code generation tool based on our methodology. The paper ends with
some conclusions where we dwell further into the issues raised in the previous paragraph,
and reference related and further work.

2. Control-driven coordination and Manifold

The concept of coordinating a number of activities, possibly created independently
from each other, such that they can run concurrently in a parallel and/or distributed
fashion has received wide attention, and a number of coordination models and associated
languages [21] have been developed for many application areas such as high-performance
computing or distributed systems. All these models share some common purpose and
aim at providing frameworks to offer suitable abstractions allowing a programmer, who
is not necessarily proficient in parallel programming, to write programs that can run
with reasonable efficiency on parallel and/or distributed architectures. However, they
also support modularity, reuse of existing (sequential) software components, language
interoperability, portability, etc.

In general, coordination models and languages fall into two main categories [21]. The
first one we can call a “data-driven” or shared dataspace approach. Its main characteristic
is the use of a notionally shared medium via which the processes forming a computation
communicate. The most notable realization of this approach is of course Linda [3].
Linda introduces the so-called notion ofdecoupled communicationwhereby processes
communicate with each other by either inserting into or retrieving from the shared medium
the data to be exchanged between them. This shared dataspace is referred to as theTuple
Spaceand the information exchange between processes via the Tuple Space is performed
by posting and retrievingtuples.

A different philosophy to developing coordination models and languages was also
proposed, based on a “control-” or “event-driven” approach [21]. Contrary to what is
happening in the shared dataspace approach to coordination, here processes communicate
in a point-to-point manner by means of well-defined interfaces. Such a system evolves
dynamically by means of raising and receiving control events. The coordinated components
do not necessarily examine the data that is being transmitted through these point-to-point
connections and therefore these components can be viewed as black boxes. The way
software architectures are modeled in control- or event-driven coordination languages,
with components acting as black boxes and point-to-point communication among them
being realized by means of streams connecting input/output ports, resembles the ADL
world where connectors set up communication paths among components. In [21] we argue
that, in fact, many Software Architecture models, Architecture Description Languages
(ADLs), Dynamic (Re-) Configuration Languages, etc. can be seen as instances of a general
framework of control-driven coordination models and associated languages.

Manifold [20,22,19] in particular, is a typical member of this family, and is a realization
of the Ideal Worker Ideal Manager (IWIM) coordination model [5]. In Manifold there exist
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two different types of processes:managers(or coordinators) andworkers. A manager is
responsible for setting up and taking care of the communication needs of the group of
worker processes it controls (non-exclusively). A worker on the other hand is completely
unaware of who (if anyone) needs the results it computes or from where it itself receives
the data to process. Manifold possesses the following characteristics:

• Processes. A process is ablack boxwith well-definedportsof connection through which
it exchangesunits of information with the rest of the world. A process can be either
a manager (coordinator) process or a worker. A manager process is responsible for
setting up and managing the computation performed by a group of workers. Note that
worker processes can themselves be managers of subgroups of other processes and that
more than one manager can coordinate a worker’s activities as a member of different
subgroups. The bottom line in this hierarchy isatomicprocesses, which may in fact
be written in any programming language or even as shell scripts in Unix-like operating
systems.

• Ports. These are named openings in the boundary walls of a process through which units
of information are exchanged using standard I/O type primitives analogous to read and
write. Without loss of generality, we assume that each port is used for the exchange
of information in only one direction: either into (input port) or out of (outputport) a
process. We use the notationp.i to refer to the porti of a process instancep.

• Streams. These are the means by which interconnections between the ports of processes
are realized. A stream connects a (port of a) producer (process) to a (port of a) consumer
(process). We writep.o -> q.i to denote a stream connecting the porto of a producer
processp to the porti of a consumer processq.

• Events. Independent of channels, there is also an event mechanism for information
exchange. Events are broadcast by their sources in the environment, yieldingevent
occurrences. In principle, any process in the environment can pick up a broadcast event;
in practice though, usually only a subset of the potential receivers is interested in an
event occurrence. We say that these processes aretuned into the sources of the events
they receive. We writee.p to refer to the evente raised by a sourcep.

Activity in a Manifold configuration isevent driven. A coordinator process waits to observe
an occurrence of some specific event (usually raised by a worker process it coordinates)
that triggers it to enter a certainstateand perform some actions. These actions typically
consist of setting up or breaking off connections of ports and channels. It then remains
in that state until it observes the occurrence of some other event, which causes the
preemptionof the current state in favor of a new one corresponding to that event. Once
an event has been raised, its source generally continues with its activities, while the event
occurrence propagates through the environment independently and is observed (if at all)
by the other processes according to each observer’s own sense of priorities.Fig. 1 shows
diagrammatically the infrastructure of a Manifold process.

The processp has two input ports (in1, in2) and an output one (out). Two input streams
(s1, s2) are connected toin1 and another one (s3) to in2 delivering input data top.
Furthermore,p itself produces data, which via theout port are replicated to all outgoing
streams (s4, s5). Finally, p observes the occurrence of the eventse1 and e2 while it
can itself raise the eventse3 ande4. Note thatp need not know anything else about the
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Fig. 1. The infrastructure of a Manifold process.

manifold PrintUnits() import.
manifold variable(port in) import.
manifold sum(event)

port in x.
port in y.
import.

event overflow.

auto process v0 is variable(0).
auto process v1 is variable(1).
auto process print is PrintUnits.
auto process sigma is sum(overflow).

manifold Main()
{

begin:(v0->sigma.x, v1->sigma.y,v1->v0,sigma->v1,sigma->print).
overflow.sigma:halt.
}

Fig. 2. Manifold version computing the Fibonacci series.

environment within which it functions (i.e. who is sending it data, to whom it itself sends
data, etc.).

For illustrative purposes, but also for the reader to be able to follow and appreciate the
work presented later on,Fig. 2 shows the Manifold version of a program computing the
Fibonacci series.

The code inFig. 2 definessigma as an instance of some predefined processsum with
two input ports (x,y) and a default output one. The main part of the program sets up the
network where the initial values (0,1) are fed into the network by means of two “variables”
(v0,v1). The continuous generation of the series is realized by feeding the output ofsigma
back to itself viav0 andv1. Note that in Manifold there are no variables (or constants for
that matter) as such. A Manifold variable is a rather simple process that forwards whatever
input it receives via its input port to all streams connected to its output port. A variable
“assignment” is realized by feeding the contents of an output port into the input of a
variable process. Note also that computation will end when the eventoverflow is raised
by sigma. Main will then get preempted from itsbegin state and make a transition to the
overflow state and subsequently terminate by executinghalt. Preemption ofMain from
its begin state causes the breaking of the stream connections; the processes involved in the
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Fig. 3. The setup for a Fibonacci program in Manifold.

network will then detect the breaking of their incoming streams and will also terminate.
Fig. 3shows the process configuration that will be set up by executing the code presented
in Fig. 2.

In this example note that both the computational processsigma (an instance ofSum)
and the coordination processMain, treat each other as black boxes:Main is only concerned
with the input/output dependencies ofsigma, andsigma operates completely unaware of
Main’s doings. Note also that the actual data being produced and transmitted between the
components of this apparatus (namely the Fibonacci numbers) do not play any role in the
setup. Therefore, bothMain andsigma are black boxes:Main is an Ideal Manager that
can coordinate any computational processsigma (assuming the coordination pattern is
reusable and applicable in other cases), andsigma is an Ideal Worker that will compute
according to its specification without any knowledge of its surrounding environment.

The computational component of the Fibonacci program, namelySum, can in fact
be written in any “Manifold-compliant” programming language (i.e. a language whose
compiler has been enhanced with additional constructs making it possible to express at the
level of this language the core Manifold concepts, i.e. ports, streams, events, etc.).Fig. 4
shows the implementation ofSum in Manifold-compliant C. Some explanatory comments
are included, not only to help the reader understand the basic functionality of the code but
also to clarify further the transformations introduced in the fourth section. In general, note
that all entities starting with theAP_ prefix are C extensions dealing with some core concept
of the IWIM model and the language Manifold. Such software components, that are written
in an ordinary programming language and represent the computational (as opposed to the
coordination) parts of an application, are calledatomics.

What the Manifold-compliant C code inFig. 4essentially does is to first definesigma’s
three ports (two input ones and one output one), then retrieve from the input ports two
integers, add them up and place the result in the output port. The whole process is
repeated until the computed sum eventually exceeds the valueMAXINT, in which case
sigma raises the eventtoo_big and terminates. The raising oftoo_big will be detected
by the monitoringMain Manifold which then terminates execution (see code forMain
earlier on).

An application typically consists of a number of atomics performing computations and
being coordinated by one or more coordinators (manifolds). Atomics are distinguished
asatomic internalsor atomic externalsaccording to the way that they are implemented.
Atomic internals are written in Manifold-compliant (and otherwise ordinary) programming
languages. Atomic externals are written as scripts of operating systems supported by
Manifold. The ability to write atomics as operating system scripts offers great flexibility to
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#include "AP_interface.h"
#include "fibo.ato.h"
#include "adid.h"

#define MAXINT 1000

void Sum(AP_Event too_big)
{

int x = AP_PortIndex("x"); /* declare an index for */
int y = AP_PortIndex("y"); /* every i/o port */
int out = AP_PortIndex("output");
int i1, i2, i3; / declare local variables for addition */

/* declare units for passing values to the i/o ports */
AP_Unit u1, u2, u3;

while (1) {
AP_PortRemoveUnit(x, &u1, NULL); /* get data units from input */
AP_PortRemoveUnit(y, &u2, NULL); /* ports 'x' and 'y' */
AP_FetchInteger(u1, &i1); /* and allocate them to */
AP_DeallocateUnit(u1); /* integer variables i1 & i2 */
AP_FetchInteger(u2, &i2);
AP_DeallocateUnit(u2);

}

i3 = i1 + i2; /* calculate the sum */

if (i3 > MAXINT) { /* if max. Fib. Number reached */
AP_Raise(too_big); /* raise event overflow */
return;

}

u3 = AP_FrameInteger(i3);
AP_PortPlaceUnit(out, u3, NULL); /* put result in the */
AP_DeallocateUnit(u3); /* output port */

}

Fig. 4. Implementation of Sum in Manifold-compliant C.

the development of component-based systems using Manifold, since any operating system
process can be included in the system as a black-box component.

3. Software Architectures and Architecture Description Languages

Software Architectures can be informally defined as software system blueprints, or,
more formally, models that represent the design of the system at a high level of abstraction.
Software Architectures manage to expose the system’s gross organization as a collection of
interacting components. Building a software architecture for a system promotes its under-
standing, thus aiding the design process. Software Architectures make the early detection
of design errors possible, thus leading to improvements in software quality and correctness.

The main building blocks of software architectures are components, ports and
connectors. Components are used to represent large parts of code with specific and distinct
functionalities (not necessarily objects conforming to the component paradigm). Ports



34 G.A. Papadopoulos et al. / Science of Computer Programming 60 (2006) 27–67

offer a way of communication between components and they are the only well-defined
interface of each component with the rest of the system. We can have two kinds of ports,
in-ports, and out-ports, the former getting information from the environment inside the
components, and the latter delivering information from the component to the environment.
Finally, connectors are used as pipelines, joining the components, eventually describing
their collaboration and the flow of data and control.

Architecture Description Languages (ADLs) formalize a software architecture by
offering a simple, yet flexible, representation. An ADL may comprise a formal or semi-
formal descriptive textual language, a graphical language, or both. A state-of-the-art survey
on ADLs is presented in [15].

3.1. The case of ACME

ACME [9,10] is a generic language for describing software architectures. As is the case
with any typical ADL, ACME provides constructs for describing systems as graphs of
components interacting via connectors. Furthermore, the language provides representation
mechanisms for decomposing systems into subsystems and ways to describe families of
components. In particular, the language’s core concepts are as follows:

• Components: They represent the primary computational elements and data stores of a
system. Typical examples of components include clients, servers, filters, blackboards
and databases.

• Ports: They define the interface of a component. Each port identifies a point of
interaction between the component and its environment.

• Connectors: They represent interactions among components. They mediate the
communication and coordination activities among components. They can represent
simple forms of interaction, such as pipes, procedure calls and event broadcast, or
complex interactions such as clients–server protocols or SQL links between a database
and an application.

• Roles: A set of roles specifies the interface of a connector. Each role of a connector
defines a participant of the interaction represented by the connector. Binary connectors
have two roles, such as the caller and the callee roles, the reading and writing roles,
or the sender and the receiver roles. A different kind of connector is the broadcast
connector, which might have a single event-announcer role and an arbitrary number
of event-receiver roles.

• Systems: They represent configurations of components and connectors. A system
includes a set of components and a set of attachments. Attachments define the
relationship between a connector and a component.

• Representations: A component or connector can be described by one or more detailed,
lower-level descriptions. These descriptions are called representations. Representations
give ACME the opportunity to support hierarchical description of architectures.

• Rep-map: A rep-map defines the correspondence between an internal system
representation and the external interface of the component or connector that is being
represented.

Apart from these core concepts, ACME provides an open semantic framework in which
architectural structures can be annotated in the form of properties. ACME itself does not
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provide the meaning of these properties. Properties become useful only when a tool makes
use of them for analysis, translation and manipulation [10].

4. A methodology for mapping ACME to Manifold

ACME, being a generic architecture description language rather than a typical ADL
with specific semantics, does not provide a single fixed way to describe the behavior of a
system or its functional properties; nor does it generate executable code for any part of the
modeled system. Instead, elements of the language representing parts of the architecture
may be annotated with descriptive information dealing with, say, implementation aspects;
it is then the responsibility of other tools, or even the programmer, to translate this
information to some sort of executable representation.

It is precisely here that the paper offers a contribution, namely the development of a
methodology for mapping the core concepts of ACME onto executable Manifold code.
Other researchers have concentrated on the major role of ACME as an interchange
language to map features of one ADL onto another with the purpose of integrating tools
written for different ADLs; we, instead, aim at using the language’s generic features
and open semantic framework to derive an implementation route that will map ACME’s
core concepts (themselves part of the structure of any typical ADL) down to Manifold
executable code.

Our methodology is associated with a tool for parsing the ACME code describing the
software architecture of a system and automatically generating Manifold code based on
the transformation rules proposed by our methodology. Although the Manifold code that
is automatically generated covers most of the coordination aspects of a system, some
coordination code parts implementing dynamic aspects are not generated due to ACME’s
limitation in adequately describing such behavior. This type of code has to be added
manually by the programmer, along with the code that implements the actual computation
parts of the system, the latter being outside the scope of this paper. The parts of code not
automatically generated are clearly shown in the code examples included in our hospital
case study (seeSection 4.3).

The rest of this section, comprising the main contribution of the paper, consists of three
parts. We first show how the basic building blocks of ACME can be mapped to Manifold
structures. Then we show our approach towards extending ACME with some coordination-
programming semantics in order to perform a more efficient representation. Finally, we
present a fully-fledged example, which illustrates our mapping methodology.

4.1. Mapping the core concepts of ACME to Manifold

A rather basic knowledge of ACME’s and Manifold’s core features is enough to
determine the clear mapping between most of the respectively equivalent concepts of the
two models. For example, ACME’s components can be directly represented in Manifold as
processes. They both declare independent computational units having to execute specific
and clear-stated tasks, using well-defined interfaces for interacting with the outside world.
Ports have the exact same meaning in the two models: they both declare the way ACME
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components and the corresponding Manifold processes interact with their environment,
with the aim to exchange information through well-defined interfaces.

More specifically, we now study the following ACME constructs and demonstrate their
binding with equivalent Manifold constructs:

• Components:Components in ACME can be represented in Manifold as processes. The
notion of Manifold’s processes is exactly the same as that of ACME’s components:
they enclose a well-defined functionality and they communicate with the environment
through the communication infrastructure (and not by a direct invocation).

• Systems:Systems in ACME are just syntactic wrappers of a number of component
definitions and attachments. There is always a top-levelSystem construct that defines
the starting and ending point of our ACME description of a system and oneSystem
construct defining the starting and ending points for each representation included in our
ACME description. In Manifold, theSystem construct is mapped to a special Manifold
process calledMain that must always exist in a Manifold application and defines the
starting and ending points of the application execution. Furthermore, as we will see
later, the lower-level system constructs, wrapping the representations, are also defined
in Manifold by the Manifold’s hierarchical structure.

• Ports: Ports in ACME can be represented in Manifold using the similar notion of
the latter. ACME uses ports to represent the means of communication between a
component and its environment. The only possible interaction between a component and
its environment takes the form of reading from and writing data into the component’s
ports. This makes the component unaware of other components in its environment
and the actual communication performed between them through connectors (this
abstraction, while heavily restrictive, is mainly responsible for the representative
power of ACME and its compatibility to a great subset of implementation languages).
Manifold facilitates ports for the interprocess communication in the exact same way.
Each process reads data units from its input ports, performs some processing and places
the resulted data to its output ports. The process is not aware (and does not need to know)
of which process has placed the data in its input ports or who will use the data that it
placed to its output ports. The only difference between ports in ACME and Manifold is
that ACME does not explicitly define ports asinput or output. In order to resolve this
difference, we use ACME’s Open Semantic Framework to define a special property,
namelyPortType, which will hold the value of the port type (more details on our use
of ACME’s Open Semantic Framework are given later in this section).

• Connectors and roles:ACME’s connectors and roles are equivalent in functionality
to a set of Manifold streams. More precisely, an ACME connector or a set of
ACME connectors, with their associated roles, represents the communication among
a number of components in a system. In Manifold, the communication among a number
of processes is performed indirectly, through a coordinator process. Specifically, a
coordinator process, after the request from a worker process (by means of raising of
an event or the satisfaction of a condition), dynamically creates the needed streams to
transfer data among the processes that it coordinates. The simplest form of an ACME
connector, having only two roles and acting as a pipeline from the first role to the second,
can be represented in Manifold by a stream. More complex ACME connectors having
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more than two roles can also be represented by means of a number of Manifold streams,
depending on the number of roles attached to each side of the connector. For example,
an ACME connector having two roles (a andb) attached to its right-hand side and two
roles (c andd) attached to its left-hand side is equivalent to four binary connectors with
rolesac, ad, bc andbd respectively. In short, this representation of a complex ACME
connector with simple binary connectors enables us to represent any ACME connector
with an arbitrary number of roles using simple Manifold binary streams.

• ACME’s representationsandrep-maps, which enable the software architect to define
one or more lower-level descriptions of a component or connector, and thus establish
the hierarchical descriptions of systems, can also be represented in Manifold. More to
the point, while these two concepts cannot be mapped directly to concrete Manifold
structures, the concept of having hierarchical structures of systems is clearly supported
in Manifold. Recalling fromSection 2, worker processes can themselves be managers
of subgroups of other processes. Interpreting this in ACME, we get a component having
a number of representations. ACME components attached to at least one representation
can be mapped to manager processes, while ACME components that are not attached to
any representation can be mapped to worker processes. However, it must be made clear
that the concept of manager and worker processes in Manifold applies to a semantic
(logic) level rather than a programming one. This means that we cannot directly map
any manager process to aManifold process at the programming level and any worker
process to anAtomic process. Furthermore, anAtomic can be represented as anAtomic
Internal or as anAtomic External, depending on the way that it is implemented.
For these reasons, we defined a special property, namelyComponentType, that must be
attached to every component of an ACME description in order to explicitly define if the
component represents aManifold, an Atomic Internal or an Atomic External
process.

All the mappings described above can be clearly distinguished inFigs. 5 and 6 that
represent the ACME architecture of a simple system and its corresponding model in
Manifold: the first schema gives a high-level definition of a system’s architecture and
the second one gives a lower-level description of a component using the representation
concept.

4.2. Towards a more powerful representation model

The power behind ACME, apart from its simplicity, is the Open Semantic Framework.
Specifically, the system designer, having certain implementation language families in mind
(in our case coordination languages), can consider extending the ACME ADL with new
annotations and new semantics, which can later be converted to code. For example, if
the system’s designer knows that the implementation language will belong to the object-
oriented family, he can add special annotations to represent theconstructorandfinalizer
functionality in every component.

In order to achieve a more meaningful and effective mapping of ACME code to
Manifold code (in the sense that the produced Manifold code both exploits Manifold’s
features but also implements as many aspects of the original software architecture artifact
as is possible), we have used the Open Semantic Framework of ACME to introduce some
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Fig. 5. High-level definition of a system’s architecture.

Fig. 6. Detailed description of component mapping.
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new architectural elements in the form of ACME properties. These elements are related to
the notions of events, state transitions and types of ports (input or output ones); these
formalisms are not supported directly by ACME. However, using the Open Semantic
Framework as shown below, we are now able to support them at the ACME level; the
advantage of this undertaking is that the coordination part of some software architecture
can now be separated from its computational part, thus assisting the developers in modeling
and implementing different aspects of some application separately from the rest.

These “Manifold-compliant” properties we suggest to be defined at the ACME level,
are summarized below (a detailed description of these properties and examples of their use
is given inAppendix A):

• EventList : List = Declares the events that a component can raise to its
environment.

• PortType : Enum {IN, OUT } = Declares the type of a port, i.e. if the port is
an input or an output one.

• DataType : String= Declares the data type an input port can receive or an output
port can send.

• DataSize : Integer= In case theDataType property of a port is of type string,
DataSize declares the maximum size of the string that the port can receive or send at
a time.

• ComponentType: Enum {ATOMIC_INT, ATOMIC_EXT, MANIFOLD} =
Declares the type of Manifold process that a component represents, i.e. if the component
represents anAtomic Internal, Atomic External or aManifold process.

• Active_on: TupleList <event, ordering> = Declares the state in which
a stream is activated (i.e. data is passing through it), and the order inside the state that
the stream must be placed. In particular, stream connections with the same ordering are
executed in parallel and those having different ordering are executed sequentially in the
indicated order.

In particular, theActive_on property serves the need to complete the representation of the
coordination logic at the ADL level. Streams in Manifold are the means of communication
between two components; they act aspipelinestransferring information between the ports
of two components. Each stream in Manifold is explicitly activated/deactivated. However,
since ACME per se does not explicitly activate/deactivate streams, theActive_on
property is used to specify which of the ACME connectors (which will be implemented as
Manifold streams) are active at some specific time/state. The idea here is to detect all the
expected states in a given component configuration. Such a state definition could include
the following scenario: in state A, port1 of component X sends some data to port2 of
component Y. For an ACME representation of just one state, refer toFig. 10(the complete
ACME architecture, with all states) andFig. 11(the same architecture for state=6).

As an illustration of using the above properties, we run over the transformation process
performed by applying our mapping methodology on a simple system described in ACME.
The ACME code for the toy example (Fig. 7) is automatically created by AcmeStudio [1],
a tool offering a user-friendly graphical interface that enables users to easily create ACME-
based descriptions of systems in a drag-and-drop way. The Manifold-compliant properties
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System Example {
Component X = {

Properties {
ComponentType:

Enum {ATOMIC_INT, ATOMIC_EXT, MANIFOLD}=MANIFOLD;
EventList : List = <"ev_1">; }

Port Xin { Properties { PortType:Enum{IN,OUT} = IN; }}
Port Xout{ Properties { PortType:Enum{IN,OUT} = OUT; }}

}

Component Y = {
Properties {

ComponentType:
Enum {ATOMIC_INT, ATOMIC_EXT, MANIFOLD}=MANIFOLD;

EventList : List = <"ev_2">; }
Port Yin { Properties { PortType:Enum{IN,OUT} = IN; }}
Port Yout{ Properties { PortType:Enum{IN,OUT} = OUT; }}

}

Connector connXY = {
Role caller, callee;
Properties { Active_on:TupleList=<"ev_1,1">;}

};
Connector connYX = {

Role caller, callee;
Properties { Active_on:TupleList=<"ev_2,1"> }

};
Attachments {

X.Xout to connXY.caller;
Y.Yin to connXY.callee;
Y.Yout to connYX.caller;
X.Xin to connYX.callee;

};
};

Fig. 7. ACME code for the toy example.

that we have defined using the ACME’s Open Semantic Framework are manually added
by the user. In the following examples, these properties appear inbold.

The ACME description defines a system including two components with namesX (line
2) andY (line 11). The Manifold-compliant propertyComponentType defines the type
of Manifold process that each of the two components represent. For each component we
define two ports (lines 7–8 and 16–17) that are distinguished as input or output ports by
the Manifold-compliantPortType property. In lines 6 and 15, we use theEventList
property to define the events that can be raised by each component. In lines 20–27, two
binary connectors are defined for our system and in lines 28–33 attachments define the
component ports attached to each role of the connectors. In order to define when these
connectors will be activated, we use theActive_on property (lines 22 and 26) to define
the event that will activate each of the two connectors. Mapping this code to Manifold we
get two Manifold processes, each one having an input and an output port. We also get two
streams connecting the input ports of each process to the output port of the other process.
The first stream is dynamically created when eventev_1 is raised by componentX, while
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//Main.m
manifold X(event ev_1)

port in Xin.
port out Xout.

import.

manifold Y(event ev_2)
port in Yin.
port out Yout.

import.

manifold Main() {
event ev_1, ev_2.
x is X.
y is Y.

begin: activate(x,y).
ev_1: x.Xout->y.Yin.
ev_2: y.Yout->x.Xin.
}

Fig. 8. The generated Manifold file for the example.

//X.m
export manifold X(event ev_1)

port in Xin.
port out Xout.

{
event ev_1.

begin:
}

Fig. 9. The code generated in the component definition file for componentX.

the second stream is dynamically created when the eventev_2 is raised from component
Y. Since the two Manifold processes are at the first level of the Manifold application, they
are activated and coordinated by the specialMain Manifold process.

From the ACME code shown inFig. 7 (which we recall that it was generated from a
visual environment), we can actually generate not only the headers for each of the two
processes in the Manifold code, but also the process definitions in the Manifold main
file, the main method, the event declarations and the associated state transitions and
communication streams.Fig. 8 shows theMain Manifold file that is generated using our
methodology.

The skeleton of the component definition files is also produced, as illustrated inFig. 9,
for componentX.

Although the mapping proposed by our methodology addresses all the features of
ACME, the generated Manifold code is not complete, missing the mechanisms to activate
processes, raise events within manifolds and perform dynamic reconfiguration of stream
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connections. This deficiency is due to the fact that ACME does not support the modeling
of dynamically evolving systems and it would be a complicated exercise to attempt the
specification of dynamic behavior at the ACME level by the way of introducing additional
properties. We therefore leave the programmer to add manually these missing bits of code
(the issue of dynamism is further discussed in the conclusions). Interestingly enough,
the same situation arises with other cases where some ADL is mapped down to some
executable representation that is based on a different model than that of the ADL in
question [23].

An elaborated presentation of the mapping of an ACME description to skeletal Manifold
code, as this is proposed by our methodology, is given inAppendix B.

4.3. The hospital example

The above-described methodology for generating executable Manifold code from an
ACME representation will now be used to implement a fully-fledged software architecture.
The system in question aims at addressing the needs of a typical hospital accounting
service, using a component-based approach. The system supports account keeping for each
patient. Each patient has his private account, and each user has an authorization level.
The accounts can be charged or paid only by users with high authorization, while users
with normal authorization are only able to print statements for the patients’ accounts. For
the payment of an account, a number of alternative payment methods such as credit card
payment, cash payment and banking account transfers are provided.

The system described here can be viewed as part of a more complex system, connected
to other components and services (this is why some ports in the ACME diagram appear
not to be connected to other ports). The latter more complex system is effectively an
amalgamation of a couple of other systems, designed for tele-medicine applications within
the context of research projects. These systems have been developed over a period of a
year by 2–3 programmers. They have been built using different technologies to those of
this paper (one is Java-based and the other one is using .NET) and thus a direct comparison
with the coordination approach is not a straightforward exercise. However, it is interesting
to note that the approach developed in this paper allowed for the high-level modeling of the
software architecture much faster and in a more natural way. Furthermore, the production
of executable code was also a faster process, as much of the code was automatically
generated from the tool described inSection 5.

For implementation, we use Manifold as the coordination language and the components
(worker processes) are written in C. ACME is used for the system’s architectural
design. For the transition from the ACME code to the Manifold code, the methodology
described inSections 4.1and4.2is used. Deriving the high-level architecture is a stepwise
approach:

a. First, the components and their ports are identified. The only interaction of a component
with its environment (i.e. another component) is through the ports. A port in the
IWIM model as well as in most ADLs (including ACME) can be realized as a buffer,
temporarily storing information, until it is read by another component (to be accurate,
the connectors in ACME — the entities that connect two ports — can be used for
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Fig. 10. The system architecture of the hospital example. The architecture is designed in AcmeStudio (Eclipse
plug-in). For clarification reasons, we enhanced the diagram with state transition information (theActive_on
property described inSection 4.2, which is saved in ACME code but not normally visible in the diagram).
Numbers refer to the different states (described separately later). The colors of the original diagram as extracted
from the AcmeStudio tool are altered for visibility purposes.

buffering the port values; they could even have some computational power). When
a component needs to output a specific value-result to another component, it just
pushes this value into the appropriate output port (not caring who will read it, when
or why).

b. Second, the connectors are detected, that is, the actual interactions between two
components through their ports. More specifically, we detect which components interact
using which ports. We also detect which of these connectors are executed concurrently
(in one state) and annotate them with the sameActive_on number (as explained
in Section 4.2). The idea is to detect all the expected states in a given component
configuration. Such a state definition could include the following: e.g. in state6,
componentBill.Out_port_6 sends to componentCreditCard.In_port_1 some
data. For an ACME representation of one state only please seeFig. 10(the complete
ACME architecture) andFig. 11(the same architecture for state=6).

c. Third, the ADL design is enhanced with the properties defined earlier inSection 4.2
(e.g. enhance the ports with theirDataType property). This allows the generation of the
better part of the coordination code, and leaves very few tasks for the programmer to
complete manually.

d. Finally, the ACME code is parsed and the equivalent Manifold code is generated.

The ACME diagram (architectural design) of the example using AcmeStudio is shown in
Fig. 10. The application consists of the following five components:
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(i) Login: Verifies username and password and keeps the authorization level of the user.
(ii) Bill: Implements the basic accounting functions: insert/delete customer, pay/charge

bill, print statement.
(iii) CreditCard: Communicates with appropriate bank systems to charge the account of a

customer that pays using a credit card. This component is used by the Bill component
in case the payment method selected by a customer is “credit card payment”.

(iv) Database: Receives requests for data handling from the other components and
executes them.

(v) Menu: Implements the interaction between the user and the system.

Each of the above components was implemented as a manager process coordinating an
atomic process, which in turn implements the functionality of the component. The five
manager processes are coordinated by theMain Manifold. It is interesting to note here
that although the system could be implemented using five atomic processes coordinated by
theMain Manifold, we have chosen to wrap every atomic process in a manager process in
order to keep computational units (atomic processes) unchanged in case of a system change
or evolution. In other words, we have separated the computational from the coordination
concerns and in that respect we have generated code that can potentially have a higher
degree of reusability than it would have had otherwise, had we generated only an equivalent
fragment of executable code.

In the current state of the system, each of the manager processes simply passes data from
its input ports to the input ports of the atomic processes that it coordinates and reversely
from the output ports of the atomic processes to its own output ports. However, more
sophisticated coordination scenarios can be supported.

The connectors represent Manifold streams. Each connector can be active in one or
more states (presented in the diagram as numbers in brackets). Our example includes the
following states:

(1) Menu_Requests_Login: The MENU component sends the username and password to
the LOGIN component, so that the user’s authorization is checked.

(2) Login_Requests_Verification: The LOGIN component asks from the DATABASE
component to perform a query for the user’s authorization.

(3) Login_Gets_Verification: The LOGIN component gets the authorization level from the
DATABASE component, and returns the answer to the MENU component.

(4) Menu_Requests_Bill_Info: The MENU component requests information for a given
customer from the BILL component, which in turn asks for some information from the
DATABASE component and returns the answer to the MENU component.

(5) Menu_Requests_Bill_Create: The MENU component requests the creation of a bill
from the BILL component for a new customer. The BILL component prepares and
sends the related data to the DATABASE component. The DATABASE component
sends back a confirmation to the BILL component, which returns the confirmation to
the MENU component.

(6) Menu_Requests_Bill_Insert/Update: The MENU component requests the insertion or
updating of a bill from the BILL component. The BILL component prepares and sends
the related data to the DATABASE component. The DATABASE component sends
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Fig. 11. The enhanced ACME providing a representation for a state-full model (current model is for
state=6). The colors of the original diagram as extracted from the AcmeStudio tool are altered for visibility
purposes.

back a confirmation to the BILL component, which returns the confirmation to the
MENU component. Also, if credit card payment is included, BILL sends the relevant
data to the CREDITCARD component, which makes the transaction and sends the
result back.

(7) Menu_Requests_Bill_Delete: The MENU component requests the deletion of a bill
from the BILL component. The BILL component sends the relevant data to the
DATABASE component, and waits for deletion confirmation. It then notifies the
MENU component that the deletion is successful.

The state-full diagram in ACME is made possible due to theActive_on extension,
which was added using ACME’s Open Semantic Framework (Section 4.2). Namely, this
enhancement enables us to generate an important part of the coordination in the Manifold
code (roughly, all the states and stream definitions). For example, the actual system
architecture for state 6 (included in the original ACME design by means of theActive_on
property) is depicted inFig. 11. As this knowledge exists in our ACME model, the
methodology is able to generate a more complete Manifold code, i.e. the state and all
the streams.

The ACME Code

A fragment of the ACME code produced for the example is presented inFig. 12(for
brevity we present only the code for the LOGIN component; the code for the rest of the
components is similar in nature).
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System Hospital = {
Component Type Login_Manager = {

Properties {
EventList : List = <"login_requests_verif">;
ComponentType: Enum{ATOMIC_INT,ATOMIC_EXT,MANIFOLD}=MANIFOLD}

Port i_username = {
Properties {

PortType: Enum{IN,OUT} = IN; } }

Port i_password = {
Properties {

PortType: Enum{IN,OUT} = IN; } }

Port i_security_level = {
Properties {
PortType: Enum{IN,OUT} = IN; } }

Port o_username = {
Properties {
PortType: Enum{IN,OUT} = OUT; } }

Port o_password = {
Properties {

PortType: Enum{IN,OUT} = OUT; } }

Port o_security_level = {
Properties {

PortType: Enum{IN,OUT} = OUT; } }

Port o_flag = {
Properties {

PortType: Enum{IN,OUT} = OUT; } }

Representation = {
System Login {

Component Type Login_Worker = {
Properties {
EventList : List = <"login_worker_requests_verif">;
ComponentType: Enum{ATOMIC_INT,ATOMIC_EXT,MANIFOLD} =

ATOMIC_INT }

Port i_username = {
Properties {

PortType: Enum{IN,OUT} = IN;
DataType: String = "string";
DataSize: Integer = 40; } }

Port i_password = {
Properties {

PortType: Enum{IN,OUT} = IN;
DataType: String = "string";
DataSize: Integer = 40; } }

Port i_security_level = {
Properties {

PortType: Enum{IN,OUT} = IN;
DataType: String = "integer"; } }

Fig. 12. Fragment of ACME code for the example inFig. 10.
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Port o_username = {
Properties {

PortType: Enum{IN,OUT} = OUT;
DataType: String = "string";
DataSize: Integer = 40; } }

Port o_password = {
Properties {

PortType: Enum{IN,OUT} = OUT;
DataType: String = "string";
DataSize: Integer = 40; } }

Port o_security_level = {
Properties {

PortType: Enum{IN,OUT} = OUT;
DataType: String = "integer"; } }

Port o_flag = {
Properties {
PortType: Enum{IN,OUT} = OUT;
DataType: String = "integer"; } }

}

Bindings {
i_username to Login_Worker.i_username
i_password to Login_Worker.i_password
i_security_level to Login_Worker.i_security_level

Login_Worker.o_username to o_username
Login_Worker.o_password to o_password
Login_Worker. o_security_level to o_security_level
Login_Worker. o_flag to o_flag

}
}

}

Connector Database_Login_Security = {
Role caller;
Role callee;
Active_on:TupleList=<"login_gets_verif,1">; }
Connector Login_Menu_Security = {
Role caller;
Role callee;
Active_on:TupleList=<"login_gets_verif,1">; }

Connector Menu_Login_Username = {
Role caller;
Role callee;
Active_on:TupleList=<"menu_requests_login,1">; }

Connector Menu_Login_Password = {
Role caller;
Role callee;

Fig. 12. (continued).
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Active_on:TupleList=<"menu_requests_login,1">; }
Connector Login_Database_Flag = {

Role caller;
Role callee;
Active_on:TupleList=<"login_requests_verif,1">; }

Connector Login_Database_Username = {
Role caller;
Role callee;
Active_on:TupleList=<"login_requests_verif,1">; }

Connector Login_Database_Password = {
Role caller;
Role callee;
Active_on:TupleList=<"login_requests_verif,1">; }

/* The rest of the connectors for the login component and the
rest of the components are defined here */

Attachments {
Database.o_security_level to Database_Login_Security.caller;
Login.i_security_level to Database_Login_Security.callee;
Login.o_security_level to Login_Menu_Security.caller;
Menu.i_security_level to Login_Menu_Security.callee;
Menu.o_username to Menu_Login_Username.caller;
Login.i_username to Menu_Login_Username.callee;
Menu.o_password to Menu_Login_Password.caller;
Login.i_password to Menu_Login_Password.callee;
Login.o_flag to Login_Database_Flag.caller;
Database.i_flag to Login_Database_Flag.callee;
Login.o_username to Login_Database_Username.caller;
Database.i_username to Login_Database_Username.callee;
Login.o_password to Login_Database_Password.caller;
Database.i_ password to Login_Database_Password.callee;

/* The rest of the attachments for the login component and
the rest of the components are defined here */

}

}

Fig. 12. (continued).

The Manifold code

The ACME code produced was parsed with the suggested methodology, as described in
Section 4.1. Following the suggested mappings, we were able to generate most of the code
for the Manifold files (.m), the complete headers files (.ato.h), and a significant part of
the component definition files (.ato.c).

Regarding theMain Manifold file, we were able to produce the complete component
interfaces and the better part of theMain function. The code produced for theMain function
includes the events definitions, the manager process definitions, the states definitions
and the streams definitions placed in the right states and in the right order inside a
state.

Part of theMain Manifold code that was produced from applying the methodology of
Section 4.1is presented inFig. 13 (again, for brevity we show the LOGIN component
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# include "MBL.h"
# include "rdid.h"

/* login component interface */
manifold login_manager(event login_requests_verif)

port in i_username, i_password, i_security_level.
port out o_username, o_password, o_security_level, o_flag.
import.

/* bill, database, menu components interfaces defined here */

manifold Main()
{

event menu_requests_login, login_requests_verify, login_gets_verif.
/* the rest of the events are defined here */

process login_manager is login_manager(login_requests_verif).
/* the rest of the processes are defined here */

begin : ( activate(pmenu, plogin, pbill, pdbase),
preemptall, terminated(void) ).

menu_requests_login : (
menu_manager.o_username->login_manager.i_username,
menu_manager.o_password->login_manager.i_password,
terminated(void) ).

login_requests_verif: (
login_manager.o_flag->dbase_manager.i_flag,
login_manager.o_username->dbase_manager.i_username,
login_manager.o_password->dbase_manager.i_password,
terminated(void) ).

login_gets_verif:(
dbase_manager.o_security_level ->

login_manager.i_security_level,
login_manager.o_security_level ->

menu_manager.i_security_level,
terminated(void) ).

/* the rest of the states are defined here */
}

Fig. 13. Manifold code for theMain file. The code which was manually added by the user appears in bold.

only). The code in bold had to be added manually by the programmer. The rest of the code
was automatically produced.

We were able to generate almost the complete code of the Manifold files implementing
the manager processes. The code produced includes the atomic process definition, the states
definitions and the streams connecting the ports of the manager process to the ports of the
atomic process.

The code produced for the Manifold file implementing the Login Manager is given in
Fig. 14. The code in bold had to be added manually by the programmer; the rest of the
code was produced using our methodology.
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//pragma include "login.ato.h"

# include "MBL.h"
# include "rdid.h"

/* login component interface */
export manifold login_manager(event login_requests_verif)

port in i_username, i_password, i_security_level.
port out o_username, o_password, o_security_level, o_flag.

{
event login_worker_requests_verif.
process login_worker is login_worker(login_worker_requests_verify)

begin : activate(login_worker);
( i_username->login_worker. i_username,

i_password->login_worker. i_password,
i_security_level->login_worker.i_security_level,
login_worker.o_username-> o_username,
login_worker.o_password-> o_password,
login_worker.o_security_level ->o_ security_level);
terminated(void).

login_worker_requests_verif: raise(login_requests_login).

}

Fig. 14. Manifold file for the LOGIN manager.

Our methodology was even more successful for the component definitions files
(.ato.c). We were able to produce all the code that was related to Manifold; this allowed
us to concentrate on the development of the functionality, rather than the synchronization
with the Manifold environment. The methodology generated the functions for reading and
writing variables from and to ports, and we were able to use them whenever they were
needed. The events were defined at the top of each component, and we were able to raise
them whenever needed, by copying the relevant lines with theAP_Raise commands. Part
of the code for the login worker (atomic) process, produced by applying our methodology,
is shown inFig. 15.

Finally, we were able to create the complete header files. The header file produced for
the login worker process follows:

# include "AP_interface.h"
extern void login(AP_Event login_requests_verif);

Summarizing, we see that the methodology not only visualized the Manifold
system early in the development cycle, but also created almost all of the Manifold
coordination code. More specifically, apart from the simple but time-consuming structural
information such as component definitions and file headers, the methodology released
the programmer from the very error-prone task of defining the streams in the proper
states (this information was entered in a much easier visual environment, and was
also schematically visible to the user). The methodology also created the skeleton
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#include "AP_interface.h"
#include "login.ato.h"
#include <stdlib.h>

/* reads an integer from a port; returns the integer */
int readInteger(int port)
{

int XVal;
AP_Unit unitX = AP_AllocateUnit();
AP_PortRemoveUnit(port,&unitX,NULL);
AP_FetchInteger(unitX, &XVal);
AP_DeallocateUnit(unitX);
return XVal;

}

/* reads a string from a port; returns pointer to the string */
char* readString(int port, int string_size)
{

char* XVal = (char*) malloc(sizeof(char) * string_size);
AP_Unit unitX = AP_AllocateUnit();
AP_PortRemoveUnit(port,&unitX,NULL);
AP_FetchString(unitX, &XVal);
AP_DeallocateUnit(unitX);
return XVal;

}

/* writes an integer to a port */
void writeInteger(int port, int intVal)
{

AP_Unit unitX = AP_AllocateUnit();

unitX = AP_FrameInteger(intVal);
AP_PortPlaceUnit(port,unitX,NULL);
AP_DeallocateUnit(unitX);

}

/* called to write a string to a port */
void writeString(int port, char* myString)
{

AP_Unit unitX = AP_AllocateUnit();
unitX = AP_FrameString(myString);
AP_PortPlaceUnit(port,unitX,NULL);
AP_DeallocateUnit(unitX);

}

Fig. 15. Code for the LOGIN worker (ato.c file).

of all the required files, leaving no room for errors from the user. Furthermore, the
difficult API of Manifold for the computational language — C in our case — e.g.
reading from a component’s port or placing data in a port, was replaced with easy-to-
understand function invocations. While it would be very naïve to talk for percentage of
the code generated, since the success of the methodology depends on the complexity
of the scenario, in ordinary cases like the example presented here, almost the complete
coordination code is produced, allowing the user to focus on the computational part of the
program.
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void login(AP_Event login_requests_verif)
{

/* definitions of variables for reading and writing to
the ports - created from the DataType and DataSize
properties for each port */

char username[40];
char password[40];
int security_level = 0;

/* port definitions */
int i_username= AP_PortIndex("i_username");
int i_password= AP_PortIndex("i_password");
int i_security_level= AP_PortIndex("i_security_level");
int o_username= AP_PortIndex("o_username");
int o_password= AP_PortIndex("o_password");
int o_security_level= AP_PortIndex("o_security_level");
int o_flag= AP_PortIndex("o_flag");

/* whenever you need to read from a port you
call the functions readInteger(int port),
readString(int port, int string_size)

*/

/* whenever you need to write to a port you
call the functions writeInteger(int port,int intVal),
writeString(int port, int string_size, char* myString)

*/
}

Fig. 15. (continued).

5. Code generation

While the actual development of a tool was not in the immediate target of this work, for
the sake of proof-of-concept we have developed a parsing tool which generates Manifold
code for an ACME specification using the methodology described in this paper. This
tool makes use of AcmeStudio and technologies such as the Architecture Description
Markup Language (ADML, [2]) and xAcme [24]. The tool was developed in Java,
using Sun’s JAXP v1.2 XML-parser, and generating Manifold code. Development took
approximately 7 human workdays. The parser’s implementation was nearly 1500 lines
of code.

ADML and xAcme are XML-based representation languages for architectures, which
were built based on ACME. AcmeStudio supports the exportation of an ACME design to
ADML or xAcme representation. Having an ACME design described in an XML format
makes it possible to use an XML parser to extract the features needed from the ACME
description and generate the implementation code. For the implementation of our tool, we
use AcmeStudio (Eclipse plug-in) to export ACME architectures to ADML code and Sun’s
JAXP v1.2 XML-parser to parse the ADML code and extract the needed information for
code generation.

To demonstrate the steps needed to generate Manifold code using our tool, consider
the system appearing inFig. 16. The connectors transmitting data from componentX to
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Fig. 16. A simple architecture configuration.

componentY and from componentZ to componentX are activated in reaction to the raising
of eventev_1 from componentX. The connectors transmitting data from componentY
to componentZ are activated in reaction to the raising of eventev_2 from componentY.
Once the design of the system in AcmeStudio is complete the needed properties are added
to components and connectors; we use theExport Designoption to export our system
description to ADML code.

The most relevant parts of the ADML code generated for this setup are shown
in Fig. 17.

The ADML code is then fed into our parser that extracts the needed features and
creates an object-model of the ACME design. Then, the object-model is passed to the
code generation part of our tool in order to produce the Manifold code. The code produced
from our tool for theMain Manifold file implementing this system is shown inFig. 18.

A somewhat careful examination ofFig. 18 reveals that all the code related to the
coordination aspects of implementing the main manager process is successfully generated,
thus making the programmer’s work much easier.

6. Related work

Architecture Description Languages are playing a major role in the development
of component-based systems, offering an effective way in dealing with all the major
issues of designing a complex software system, thus allowing the designers to assess
at an early stage what is the best way to ensure that all the key requirements of a
software architecture are satisfied. A natural evolution of the ADL field is the bridging
of the gap between the design level, as this is expressed by some ADL, and the
implementation level, as this is realized by some computational model. This need
has been identified by many researchers; in particular, Monroe [17] claims that even
the generation of skeletal code at the implementation level would significantly reduce
implementation time. Garlan’s positions [8] are along the same line of thinking. Towards
that end, a number of ADLs support the generation of executable code from their
specifications [15]. In particular, Aesop, C2, and Darwin generate skeletal code in C/C++
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<System>
<SystemDescription>

<SystemStructure>
<Component identifier='3287' name='X'>

<ComponentDescription>
<ComponentBody>

<Property name='ComponentType'> ...
<PropertyLiteralValue value='MANIFOLD'/>

</Property>
<Property name='EventList'> ...

<PropertyLiteralValue value='ev_1'/>
</Property>
<Port name='X2out'>

<PortDescription> ...
<Property name='PortType'> ...

<PropertyLiteralValue value='OUT'/>
</Property>

</PortDescription>
</Port>

/* The remaining ports are defined here in the same way */
</ComponentBody>

</ComponentDescription>
</Component>

/* The remaining components are defined here in the same way */
<Connector name='XY1'>

<ConnectorDescription>
<ConnectorBody> ...

<Property name='Active_on'> ...

<PropertyLiteralValue value='ev_1,1'/>
</Property>
<Role identifier='3703' name='caller'> ... </role>
<Role identifier='3703' name='callee'> ... </role>

</ConnectorBody>
</ConnectorDescription>

</Connector>
/* The remaining connectors are defined here in the same way */

<Attachments>
<Attachment portID='3447' roleID='3723'>

</Attachment>
/* The remaining attachments are defined here in the same way */

</Attachments>
</SystemStructure>

</SystemDescription>
</System>

Fig. 17. Sample of the ADML code representing the model inFig. 16.

and Rapide executes the design code internally. Furthermore, MetaH [25] is supported
at the implementation level by Ada, and ArchJava [4] effectively superimposes software
architecture structures on top of Java. Finally, ZCL is mapped to LuaSpace, a CORBA-
based distributed environment [23]. Only C2 and ZCL (the latter by virtue of the underlying
CORBA environment) seem to be able to generate code for more than one programming
language.



G.A. Papadopoulos et al. / Science of Computer Programming 60 (2006) 27–67 55

manifold X ( event ev_1 )
port out X2out. port out X1out. port in X1in. port in X2in.

import.

manifold Y ( event ev_2 )
port in Y1in. port in Y2in. port out Y1out. port out Y2out.

import.

manifold Z ( event ev_3 )
port in Z1in. port in Z2in. port out Z1out. port out Z2out.

import.

manifold Main() {

event ev_1, ev_2, ev_3.

x is X(ev_1).
y is Y(ev_2).
z is Z(ev_3).

begin:
ev_1:(x.X1out->y.Y1in,x.X2out->y.Y2in);

(z.Z1out->x.X1in,z.Z2out->x.X2in).
ev_2:(y.Y1out->z.Z1in,y.Y2out->z.Z2in).
ev_3:

}

Fig. 18. Code produced from our tool for theMain Manifold file.

In this paper, we have exploited the relationship between ADLs and control-driven
coordination models, as this was understood in [21]. In particular, we build our work upon
the fact that the fundamental concepts of ADLs (components, connectors, ports, black-box
approach to component development, etc.) have very similar interpretation and realization
in the world of control-driven coordination. We have therefore developed a blueprint for
mapping in a methodical way the design code of any state-of-the-art ADL down to an
executable representation that implements the modeled software architecture.

In a way, this paper complements the work reported in [12] where a methodology is
proposed to build the software architecture of a system based on coordination information
elicited from software requirements. More specifically, that paper describes an approach
to analyze the use cases created during the software requirements phase in order to
identify and model the elements of the system to be coordinated and the respective
coordinators required to coordinate these elements. The elicited information, which is
formally modeled using stereotyped UML diagrams, is then used to define the rules
(policies) to be implemented by coordinators and finally to drive the description of the
system’s software architecture. A combination of the work reported in [12] with our
methodology could lead to a complete framework for development of systems based on
the coordination paradigm. The framework would identify the coordination requirements
from the early software requirements phase and then generate the code implementing all
the coordination aspects of a system using the system’s architectural description as a bridge
between the two phases.
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7. Discussion

In this work we presented a novel approach, using high-level architectural models,
for initially modeling a software system and subsequently generating executable code
based on the coordination paradigm. Our technique is using on the one hand ACME,
a generic language for describing software architectures, and on the other hand the
coordination model IWIM and its associated language Manifold. In the process, we have
shown that a significant part of the implementation code that must be eventually produced
can be generated automatically from our specification framework. The fact that our
approach integrates software architectures and coordination models enabled us to derive
the advantages that both of them provide in reducing the costs of the software development
process. The modeling of the system architecture using an ADL, which forms the first step
of our approach, enables developers to define the more important properties and constraints
of the system under development, but also to detect errors early at the design time, thus
saving development time. The generated code, which is consistent with the previously
modeled architecture, clearly separates the communication from coordination parts of the
system, making the system maintenance much easier.

The reason for using ACME (rather than some particular concrete ADL) was precisely
in order to show the generality of our approach: since ACME embodies the core
features that any state-of-the-art ADL would support, by mapping ACME to Manifold
we effectively provide the core of an implementation route for any other ADL.

Although our methodology for mapping an ADL down to executable code using
the coordination paradigm has concentrated on the use of Manifold as the coordination
language, we believe that the essence of our translation scheme can be used for any
coordination language that adheres to the fundamental principles of the IWIM coordination
model [5]. Consequently, a number of such control-driven coordination languages such as
ConCoord [11] can use the mapping formalisms ofSection 4(and in particular the general
principles ofSections 4.1and4.2) to derive different implementation paths from ADLs
down to coordination-based executable code.

Furthermore, although we used C as the implementation language of the computational
components, any other Manifold-compliant computational language could have been used;
thus, our approach is language independent. The programs generated by our framework
can run in a parallel/distributed fashion on a number of systems, by virtue of the Manifold
environment which runs on top of PVM and has been successfully ported to a number of
platforms including Sun, Silicon Graphics, Linux, and IBM AIX, SP1 and SP2. Finally, the
opportunity to write the computational components of Manifold as operating system scripts
(atomic externals) extends the applicability of our methodology to software architectures
that involve entire existing systems as black-box components. In short, the presented
methodology is reusable at all levels of software development: the ADL, coordination
language, and computational language ones.

The fact that some coordination code parts have to be manually added by the
programmer forms a drawback to the maintenance of the code generated by our approach,
since the code transformation is now performed only one way (from ACME to Manifold).
While this problem, up to now, was not limiting us to demonstrate the importance of this
work, we are now in the process of enhancing our methodology with some more powerful
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CASE tools that will further support our current work on coordination systems. More
particularly, we are currently examining some code-block recognition methods used in
existing code generation tools which can address the maintenance problem.

The integration of software architectures and ADLs for specification, with coordination
models and languages for implementation, has a number of advantages and opens up
several possibilities. From the ADLs point of view, coordination offers an alternative
approach to code generation which enjoys some fundamental (in the coordination
field) advantages such as programming language independence (components may be
written in different languages even within the same application), and higher degree of
component reusability (because of the clear separation of the coordination code from the
computational one). These advantages are particularly noticeable for the case of control-
driven coordination. From the coordination point of view, ADLs offer of course a way
of modeling and analyzing a system well before its implementation begins. Furthermore,
languages such as Manifold are very powerful but often difficult to be used effectively
because of the plethora of features they support. Allowing a programmer to model his
system first at the level of an ADL reveals significant information that can then be used at
the level of coordination and, subsequently, implementation to derive an effective execution
plan for his system that will essentially separate the coordination concerns from the
computational ones, thus enjoying all the benefits of coordination.

The code generation process presented here can significantly reduce the cost for
developing software with coordination languages. One of our initial motivations was that
some of the current coordination languages failed to establish themselves not because
of their weaknesses (since they offer a superset of any other procedural and object-
oriented language) but mainly because of their high level of difficulty. As such, their
use is currently restricted in scientific and research environments, where they can be
facilitated and significantly reduce the cost of building large coordination-based systems
to a minimum. However, this work enhances the coordination languages with a GUI front-
end, which can very easily be learned and facilitated to generate most of the coordination-
related code (which is actually the difficult part in the coordination language). This not only
reduces the overall cost for developing the system since less code is needed to be written
from the programmer, but more importantly it separates the coordination-communication
from the computational logic from design time.

Of course, like any other approach, ours has also some potential risks and limitations
that must be taken into consideration and dealt with. First of all, the software engineer must
acquaint himself with the coordination approach, and more to the point, the control-driven
one. As this latter approach is in many ways similar to the component-connector metaphor
of software architectures (see [21] for a related discussion) we believe that this is not such
a tiring exercise. Second, the tools and programming environments we have used in this
work are all research and academic products; as such, there is the issue of continuous
maintenance of them. Finally, although in theory any programming language can be used
in association with Manifold, so far only C and Fortran are supported. However, we are
aware of research that has been done in developing Java-based environments using IWIM,
Manifold’s underlying coordination model [6,16].

Our current work focuses on the issues of dynamic evolution; we note that ACME, being
an interchange language rather than a fully-fledged ADL, has no dynamic capabilities.
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/* when the state is filled (all processes working) */
filled: {

/* create a new process */
process merge<a, b | output> is AtomicIntMerger.
/* and dynamically integrate it in the system */
stream KK * -> (merge.a, merge.b).
stream KK merge -> output.

begin: (
activate(merge),

/* also assign it some work */
input -> Sorter -> merge.a, atomsort -> merge.b,
merge -> output).

end | finished:.
}.

Fig. 19. Code extract from a distributed integer sort implementation with Manifold.

However, modeling the dynamic evolution of a system (also known as dynamic (re-)
configuration), is one of the most important aspects an ADL could support (although,
admittedly, very few of them actually do). On the other side, the control-driven
coordination models and languages such as Manifold have very powerful dynamic features
[22]. Namely, in Manifold we are able not only to define state transitions (as we have
modeled them in our enhanced ACME) but we can also dynamically reconfigure the
whole setup, by adding further component instances. Both state transition and dynamic
reconfiguration are visible in the Manifold extract inFig. 19 (taken from a distributed
integer sorter, [7]). This code is executed when all the current component instances have
been overloaded. It dynamically creates new component instances and distributes them to
the virtual machine, also assigning them a workload.

This functionality cannot be fully supported presently by our enhanced ACME
environment. Instead, we have added a limited support for dynamism in our ACME
descriptions by defining theActive_on property that specifies which event triggers the
construction of each possible connection of a Manifold system architecture. This enabled
us to place the Manifold code that dynamically creates the corresponding streams in the
right Manifold states. We are currently investigating how the aspect of dynamism, as this
is expressed in languages that explicitly support dynamic architectures such as C2 [14,18]
and Rapide [13], can be mapped from the ADL level down to the coordination level. This
mapping will also enable us to generate the complete coordination code of the system and
therefore solve the problem of maintaining the handwritten extensions that currently the
programmer has to manually apply to the generated code in order to add any arbitrary
dynamic reconfiguration behavior of the system.

Appendix A

Here we give a detailed description of the Manifold-compliant properties we have
defined by exploiting the ACME’s Open Semantic Framework. We also present examples
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of the use of these properties in an ACME description but also the respective Manifold
code generated based on these properties.

EventList : List = Declares the events a component can raise.List takes the
form <event_name_1 . . .event_name_N> and results in the declaration ofevent_
name_1, . . . ,event_name_Nwithin the component in which it appears. The exact code
that is generated depends on the nature of the component in question (whether it is a
Manifold or an atomic process — seeSection 4.1).

PortType : Enum {IN, OUT } = Declares the type of a port, i.e. if the port is
an input or an output one. Depending on the nature of the port, the code generator will
produce a set of calls to relevant Manifold routines which will extract data from this port
(if it is an input one) or place data into the port (if it is an output one). For example, for an
input port, calls to the routinesAP_PortRemoveUnit(...,&unit...)will be made
and the data received will be placed in the placeholderunit.

DataType : String = Declares the data type an input port can receive or an
output port can send. Depending on the type of the sent or received data, calls to the
appropriate Manifold routines will be produced by the code generator. For example, if
the port is an input one and the data type is integer, then a call to the routineAP_
FetchInteger(unit,...)will be made which will transform the data that has been
received from the execution of theAP_PortRemoveUnit call to an integer.

DataSize : Integer= In case theDataType property of a port is of type string,
DataSize declares the maximum size of the string that the port can receive or send at a
time.

ComponentType: Enum {ATOMIC_INT, ATOMIC_EXT, MANIFOLD} = De-
clares the type of Manifold process that a component represents, i.e. if the component
represents anAtomic Internal, Atomic External or aManifold process.

The following example demonstrates in an obvious way the use of the above properties
(a trivial component, receiving a string in the input port and delivering the string capitalized
in the output port):

Component ConvertStringToUpper = {
Properties {

EventList : List =<"component_activated","capit_finished">;
ComponentType: Enum {ATOMIC_INT, ATOMIC_EXT,MANIFOLD} = ATOMIC_INT;
Port InputString = {

Properties {
PortType:Enum{IN,OUT } = IN;
DataType : String = "string";
DataSize : Integer = 40;

}
}
Port OutputString = {

Properties {
PortType:Enum {IN, OUT } = OUT;
DataType : String = "String";
DataSize : Integer= 40;} }

}
}
}

}
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The above ACME fragment will generate the following pieces of Manifold/C code:
In the Manifold file:

manifold ConverStringToUpper( event component_activated,
event capit_finished )

port in InputString.
port out OutputString.

atomic { internal. }.

In the header file:

# include "AP_interface.h"
extern void ConverStringToUpper(AP_Event component_activated,

AP_Event capit_finished );

In the atomic file:

#include "AP_interface.h"
#include "ConverStringToUpper.ato.h"
#include <stdlib.h>

void ConverStringToUpper(AP_Event component_activated,
AP_Event capit_finished ){

char InputString[40];
char OutputString[40];

int input = AP_PortIndex("InputString");
int output= AP_PortIndex("OutputString");

}

Active_on: TupleList <event, ordering> = Declares the state in which a stream is
activated (i.e. data is passing through it), and the order inside the state that the stream must
be placed. In particular, stream connections with the same ordering are executed in parallel
and those having different ordering are executed sequentially in the indicated order.

To explain in an intuitive way theActive_on property, we consider the following trivial
example: We have a numeric calculator accepting two numbers and an operator (+-*/) and
returning the result. To maximize efficiency, since disk I/O is slow, a buffer component is
used to feed the calculator component. However, the buffer component has a limitation of
storage space for only two numbers and an operator (thus being able to feed the calculator
component for only one processing cycle). The buffer component is fed from thediskIO
component, whose responsibility is to keep the buffer always filled, by reading the two
numbers and the operator from a file, and posting them into the buffer’s component ports.
The diskIO component is also responsible for receiving the result from the calculator
component and storing it to another file.

The system initializes with the creation of the three components. Then,diskIO delivers
the two numbers and the operator into the buffer component, and finally, the loop starts.
Fig. A.1 shows the setup in AcmeStudio. An extract from the ACME code produced for
this configuration is presented inFig. A.2. Note that the code is enhanced with Manifold-
compliant properties, as explained inSection 4.2.
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Fig. A.1. Numeric calculator example in ACME.

Component buffer = {
Port in_number1, in_number2, in_operator;
Port out_number1, out_number2, out_operator; };

Component calculator = {
Properties {
EventList : List = <"result_ready">; } // raised when result is

// ready and I need more numbers
Port in_number1, in_number2, in_operator, out_result; };

Component diskIO = {
Properties {
EventList : List = <"numbers_ready">; } // raised when numbers are

// ready and I wait for the result
Port in_result, out_number1, out_number2, out_operator; };

Connector buffer_calculator_number1 = {
Role caller, callee;
Active_on:TupleList=<"numbers_ready,1">; };

Connector buffer_calculator_number2 = {
Role caller, callee;
Active_on:TupleList=<"numbers_ready,1">; };

Connector buffer_calculator_operator = {
Role caller, callee;
Active_on:TupleList=<"numbers_ready,1">; };

Connector calculator_diskIO_result = {
Role caller, callee;
Active_on:TupleList=<"result_ready,1">; };

Connector diskIO_buffer_number1 = {
Role caller, callee;
Active_on:TupleList=<"begin,1", "numbers_ready,2">; };

Connector diskIO_buffer_number2 = {
Role caller, callee;
Active_on:TupleList=<"begin,1", "numbers_ready,2">; };

Connector diskIO_buffer_operator = {
Role caller, callee;
Active_on:TupleList=<"begin,1", "numbers_ready,2">; };

Attachments {
// here we define the attachments
};

Fig. A.2. ACME code extract for the toy configuration inFig. A.1.
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Regarding the use of theActive_on property, we now show the relevant extract from
the Manifold code that our methodology produces for this example (the line withitalics is
not produced from the methodology; however, it is included to help in better understanding
the example):

begin:
...
(diskIO.out_number1 ->buffer.in_number1,

diskIO.out_number2 ->buffer.in_number2,
diskIO.out_operator->buffer.in_operator); /* seq op */

raise(numbers_ready).

numbers_ready:
(buffer.out_number1 ->calculator.in_number1,

buffer.out_number2 ->calculator.in_number2,
buffer.out_operator->calculator.in_operator); /* seq op */

(diskIO.out_number1 ->buffer.in_number1,
diskIO.out_number2 ->buffer.in_number2,
diskIO.out_operator->buffer.in_operator).

result_ready:
(calculator.out_result-> diskIO.in_result).
//numbers_ready event is raised from inside the diskIO component

//result_ready event is raised from inside the calculator component

Appendix B

Here we describe in detail the Manifold code our methodology produces from an ACME
description of a system, with respect to the three separate kinds of files a Manifold system
consists of. We have assumed that the programming language to be used along with
Manifold is C; however, as has already been stated, by virtue of the Manifold model any
other “Manifold-compliant” language could be used.
In theatomics files code is generated as follows:

1. Theatomic header, including the events raised on eachatomic component:

ACME code C code with Manifold Libraries

Component X = {
Properties {
ComponentType:
Enum {ATOMIC_INT, ATOMIC_EXT,

MANIFOLD}=ATOMIC_INT;

EventList : List =
<"event_1"..."event_n">;

}}

void X(AP_Event event_1, ...
AP_Event event_n) { }
// creates the function skeleton
// for manifold

2. ThePort definitions for the input and output ports of eachatomic component:

ACME code C code with Manifold Libraries

Port X = { ...} int X = AP_PortIndex("X");
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3. Functions for reading from specific ports (the example is for reading an integer from a
port):

ACME code C code with Manifold Libraries

Port X = {
Properties {
PortType : Enum {IN, OUT } = IN;
DataType : String = "int";} }

int readInteger(int port){
int XVal;
AP_Unit unitX= AP_AllocateUnit();
AP_PortRemoveUnit(port,&unitX,NULL)
;
AP_FetchInteger(unitX, &XVal);
AP_DeallocateUnit(unitX);
return XVal;}

4. Functions for writing to output ports (the example is for writing a string to an output
port):

ACME code C code with Manifold Libraries

Port X = {
Properties {
PortType : Enum {IN, OUT }= OUT;
DataType : String = "string";} }

writeString(int port, char* str){
AP_Unit unitX=AP_AllocateUnit();
unitX = AP_FrameString(str);
AP_PortPlaceUnit(port,unitX,NULL);
AP_DeallocateUnit(unitX); }

In a similar manner, we construct the functions for reading other data types from ports and
the corresponding functions for writing into ports.
5. The raising of events by means of theAP_Raise command:

ACME code C code with Manifold Libraries

Component X = {
Properties {
EventList : List =
<"event_1"..."event_n">;
}}

AP_Raise(event_1);
...
AP_Raise(event_n);

In theheader files code is produced as follows:

1. The function prototype of eachatomic (we produce a separate file for each atomic):

ACME code C code with Manifold Libraries

Component X = {
Properties {
ComponentType:
Enum {ATOMIC_INT, ATOMIC_EXT,

MANIFOLD}=ATOMIC_INT;

EventList : List =
<"event_1"..."event_n">;
}}

# include "AP_interface.h"

extern void X(AP_Event event_1, ...
AP_Event event_n);
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In theManifold files code is produced as follows:

1. TheMain Manifold file skeleton, the events and the processes definitions:

ACME code Manifold code

System X {
Component Y = { Properties {
EventList : List =
<"ev_1", "ev_2">;}}
Component Z = { Properties {
EventList : List = <"ev_3">;}}
}

manifold Main()
{ event ev_1, ev_2, ev_3.
process pY is Y(ev_1, ev_2);
process PZ is Z(ev_3);
}

2. The file skeletons of manager processes including the interfaces of managers, definition
of events raised by workers coordinated by managers, definitions of worker processes,
definition of streams connecting ports of managers to ports of workers, and definition
of states:

ACME code Manifold code

System A = {
Component Type X= {

Properties {
EventList : List =

<"ev_1", "ev_2">;}}
ComponentType:

Enum {ATOMIC_INT, ATOMIC_EXT,
MANIFOLD}=MANIFOLD;

}

Port Xin = {
Properties {
PortType:Enum{IN,OUT} = IN;
}

}
Port Xout = {

Properties {
PortType:Enum{IN,OUT} = OUT;

}
}

Representation = {
System X_rep {

Component Type X_worker = {

export manifold X(event ev_1,
event ev_2)

port in xin.
port out xout.

{

event ev_3, ev_4.
process X_worker is

X_worker (ev_3, ev_4);
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ACME code Manifold code

Properties {
EventList : List =

<"ev_3", "ev_4">;
}
Port Xworker_in = {

Properties {
PortType:Enum{IN,OUT}=IN;

}
}
Port Xworker_out = {

Properties {
PortType:Enum{IN,OUT}=OUT;
}

}

}
}
Bindings= {
Xin to X_worker. Xworker_in;
X_worker.Xworker_out to Xout;
}

}
}

begin:
activate(X_worker);

/* if the 'begin'state involves
the setting up of stream
connections, then the involved
processes are activated */

(Xin->X_worker.Xworker_in,
X_worker.Xworker_out->Xout).

ev_3:

ev_4:

}

3. All interfaces of processes that are coordinated by a manager process (this mapping can
be applied for both theMain file and the managers’ Manifold files):

ACME code Manifold code

Component X = {
Properties {
EventList : List=
<"event_1"..."event_n">;
ComponentType:
Enum {ATOMIC_INT, ATOMIC_EXT,

MANIFOLD}=ATOMIC_INT;
Port Xin = {

Properties {

PortType:Enum{IN,OUT } = IN;
}

Port Xout = {
Properties {
PortType:Enum {IN, OUT } = OUT;
}

}}

manifold X(event event_1, ...
event event_n)

port in Xin.
port out Xout.

atomic { internal. }.
/*
If ComponentType=ATOMIC_EXT
the keyword internal in the
produced code is replaced with
the keyword external

If ComponentType=MANIFOLD
The last line of the produced
code ( atomic {internal.})
Is replaced with the keyword
import
*/

4. The state and streams definitions (this mapping can be applied for both theMain
Manifold file and for the managers’ Manifold files that coordinate a number of worker
processes):
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ACME code Manifold code

Component X = {
Port X1in, X2in, X1out, X2out};

Component Y = {
Port Y1in, Y2in, Y1out, Y2out};

Component Z = {
Port Z1in, Z2in, Z1out, Z2out};

Connector connXY1 = {
Role caller, callee;
Active_on:TupleList=<"ev_1,1">;

};
Connector connXY2 = {

Role caller, callee;
Active_on:TupleList=<"ev_1,1">;

};
Connector connYZ1 = {

Role caller, callee;
Active_on:TupleList=<"ev_2,1">;

};
Connector connYZ2 = {

Role caller, callee;
Active_on:TupleList=<"ev_2,1">;

};
Connector connZX1 = {

Role caller, callee;
Active_on:TupleList=<"ev_1,2">;

};
Connector connZX2 = {

Role caller, callee;
Active_on:TupleList=<"ev_1,2">;

};

Attachments {
X.X1out to connXY1.caller;
X.X2out to connXY2.caller;
Y.Y1in to connXY1.callee;
Y.Y2in to connXY2.callee;
Y.Y1out to connYZ1.caller;
Y.Y2out to connYZ2.caller;
Z.Z1in to connYZ1.callee;
Z.Z2in to connYZ2.callee;
Z.Z1out to connZX1.caller;
Z.Z2out to connZX2.caller;
X.X1in to connZX1.callee;
X.X2in to connXY2.callee;

};

manifold Main()
{

process x1 is X().
process y1 is Y().
process z1 is Z().

ev_1: (x1.X1out-> y1.Y1in,
x1.X2out-> y1.Y2in);

(z1.Z1out-> x1.X1in,
z1.Z2out-> x1.X2in).

ev_2: (y1.Y1out-> z1.Z1in,
y1.Y2out-> z1.Z2in).

}

/*
If components in the left are
included in a representation of a
manager process, the Main
manifold interface (first line of
code produced) is replaced by the
specified manager’s interface */

/* Note the use of the sequential
operator ';'in the stream
connections. The Active_on
property indicates which
component connections are
performed in parallel and
which ones sequentially by
means of the <event,ordering>
notation */

References

[1] AcmeStudio Homepage by Carnegie Mellon University, School of Computer Science.
http://www-2.cs.cmu.edu/~acme/AcmeStudio/AcmeStudio.html.

[2] ADML Home Page, by The Open Group. Available at
http://www.opengroup.org/architecture/adml/adml_home.htm.

[3] S. Ahuja, N. Carriero, D. Gelernter, Linda and friends, IEEE Computer 19 (8) (1986) 26–34.

http://www-2.cs.cmu.edu/~acme/AcmeStudio/AcmeStudio.html
http://www.opengroup.org/architecture/adml/adml_home.htm


G.A. Papadopoulos et al. / Science of Computer Programming 60 (2006) 27–67 67

[4] J. Aldrich, C. Chambers, D. Notkin, ArchJava: Connecting software architecture to implementation,
in: Twenty Fourth International Conference on Software Engineering, ICSE’02, 19–26 May 2002, Orlando,
FL, USA, IEEE Press, 2002, pp. 187–197.

[5] F. Arbab, The IWIM model for coordination of concurrent activities, in: First International Conference
on Coordination Models, Languages and Applications, Coordination’96, 15–17 April 1996, Cesena, Italy,
in: LNCS, vol. 1061, Springer Verlag, 1996, pp. 34–56.

[6] S. Chachkov, D. Buchs, From abstract object-oriented model to a ready-to-use embedded system controller,
in: Twelfth International Workshop on Rapid System Prototyping, 25–27 June 2001, Monterey, CA, IEEE
Press, 2001, pp. 142–148.

[7] K. Everaars, F. Arbab, An introduction to the coordination language Manifold, Technical Report, June 2000.
[8] D. Garlan, Software architecture, in: Encyclopedia of Software Engineering, John Wiley & Sons Inc., 2001.
[9] D. Garlan, R.T. Monroe, D. Wile, ACME: An architectural description of component-based systems,

in: Foundations of Component-Based Systems, Cambridge University Press, 2000, pp. 47–68.
[10] D. Garlan, R.T. Monroe, D. Wile, ACME: Architectural description interchange language, in: IBM Centre

for Advanced Studies Conference, CASCON’97, Toronto, Canada, November 1997, pp. 169–173.
[11] A.A. Holzbacher, A software environment for concurrent coordinated programming, in: First International

Conference on Coordination Models, Languages and Applications, Coordination’96, 15–17 April 1996,
Cesena, Italy, in: LNCS, vol. 1061, Springer Verlag, 1996, pp. 249–266.

[12] P. Inverardi, H. Muccini, Coordination models and software architectures in a unified software development
process, in: Fourth International Conference on Coordination Models, Languages and Applications,
Coordination 2000, 11–13 September 2000, Limassol, Cyprus, in: LNCS, vol. 1906, Springer Verlag, 2000,
pp. 323–328.

[13] D.C. Luckham, J.J. Kenney et al., Specification and analysis of system architecture using Rapide, in:
Software Architecture, IEEE Transactions on Software Engineering 21 (4) (1995) 336–355 (special issue).

[14] N. Medvidovic, D.S. Rosenblum, R.N. Taylor, A language and environment for architecture-based software
development and evolution, in: Twenty First International Conference on Software Engineering, ICSE’99,
16–22 May 1999, Los Angeles, CA, USA, ACM Press, 1999, pp. 44–53.

[15] N. Medvidovic, R.N. Taylor, A classification and comparison framework for software architecture
description languages, IEEE Transactions on Software Engineering 26 (1) (2000) 70–93.

[16] S. Mitra, S. Aggarwal, Infrastructure for the synchronization and coordination of concurrent Java component
programs, in: Thirty Third Hawaii International Conference on System Sciences, HICSS-33, 4–7 January
2000, Maui, Hawaii, vol. 8, IEEE Press, p. 8052 (electronic version).

[17] R.T. Monroe, Rapid development of custom software architecture design environments, Ph.D. Thesis,
Carnegie Mellon University, 1999.

[18] P. Oreizy, N. Medvidovic, R.N. Taylor, Architecture-based runtime software evolution, in: Twentieth
International Conference on Software Engineering, ICSE’98, 19–25 April 1998, Kyoto, Japan, IEEE Press,
1998, pp. 177–186.

[19] G.A. Papadopoulos, Distributed and parallel systems engineering in Manifold, in: Coordination, Parallel
Computing 24 (7) (1998) 1107–1135 (special issue).

[20] G.A. Papadopoulos, F. Arbab, Coordination of systems with real-time properties in Manifold, in: Twentieth
Annual International Computer Software and Applications Conference, COMPSAC’96, 19–23 August
1996, Seoul, Korea, IEEE Press, 1996, pp. 50–55.

[21] G.A. Papadopoulos, F. Arbab, Coordination models and languages, in: Marvin V. Zelkowitz (Ed.), Advances
in Computers, vol. 46, Academic Press, 1998, pp. 329–400.

[22] G.A. Papadopoulos, F. Arbab, Configuration and dynamic reconfiguration of components using the
coordination paradigm, Future Generation Computer Systems 17 (8) (2001) 1023–1038.

[23] V.C.C. de Paula, T.V. Batista, Mapping an ADL to a component-based application development
environment, in: Fundamental Approaches to Software Engineering, FASE 2002, 6–14 April 2002,
Grenoble, France, in: LNCS, vol. 2306, Springer Verlag, 2002, pp. 128–142.

[24] B. Schmerl, xAcme: CMU Acme extensions to xArch,http://www-2.cs.cmu.edu/~acme/pub/xAcme/,
23 March, 2001.

[25] S. Vestal, MetaH User’s Manual, Version 1.27, HoneyWell Inc., Minneapolis, MN, 1998.

http://www-2.cs.cmu.edu/~acme/pub/xAcme/

	An implementation framework for Software Architectures based on the coordination paradigm
	Introduction
	Control-driven coordination and Manifold
	Software Architectures and Architecture Description Languages
	The case of ACME

	A methodology for mapping ACME to Manifold
	Mapping the core concepts of ACME to Manifold
	Towards a more powerful representation model
	The hospital example

	Code generation
	Related work
	Discussion
	References


