
MODELLING ACTIVITIES IN
COORDINATION

INFORMATI0"N SYSTEMS
LANGUAGE MANIFOLD

USING THE

George A. Papadopoulos Farhad Arbab

Department of Computer Science
University of Cyprus

75 Kallipoleos Str., P.O.B. 537
CY-1678, Nicosia, Cyprus

george@turing.cs.ucy.ac.cy

Department of Software Engineering
CWI

Kruislaan 413, 1098 SJ Amsterdam
The Netherlands

farhad@cwi.nl

Keywurds: Coordination Languages and Models; Modelling
Information Systems; Design of Distributed and Open
Informat ion Systems; Collaborat ive Computing
Environments.

ABSTRACT

We argue for the need to use control-based, event-driven and
state-defined, coordination models and associated languages in
modelling at least some of those activities that constitute the
functionality of a modem, open and distributed information
system. We illustrate our points by using such a coordination
model and language and showing by means of suitable
examples how it can be used for the above mentioned purpose.
We also compare out approach with the (rather few) approaches
that as yet exist in this rather new area of information
systems, and we discuss our model's advantages over those
other approaches.

1 INTRODUCTION

Modelling of activities within an information system or
between different information systems has become a complex
task. Performing these activities (often known as groupware,
workflow, electronic commerce and enterprize reengineering)
is often done in conjunction with computer-based cooperative
environments such as electronic mail, voice and video
teleconferencing, electronic classrooms, etc. In addition, the
emergence of the World Wide Web as the main medium, not
only for passive presentation of information but also for
active cooperation between different agents collaborating in a
single task, further enhances some properties of those
activities such as distribution and openess. Typical examples
of such complex-in-nature activities range from finding
suitable time-slots and locations for group meetings, to
performing administrative procedures (eg., organising
conferences), to carrying out reviews of draft documents, to
developing distributed web-based electronic commerce

ermission to make digital/hard copy of all or part of this work for personal or
assroom use is ~ranted without fee provided that copies are not made or
is~ribnted for profit or commercial advantage, the copyright notice, the title of the
~blication and its date appear, and notice is given that copying is by permission of
CM. Inc. To copy otherwise, to republish, to post on servers or to redistribute to
~ts. reqt, ires prior specific permission and/or a tee.

'C 1998 ACM 0-89791-969-6/98/0002 3.50

applications (eg., reserving flight seats and hotel rooms by
means of dedicated WWW servers). Modelling these activities
has become a task which often is not possible to perform by
single persons, but by groups of people, often even distributed
over different organisations, countries, etc.

Recently, we have seen a proliferation of so-called
coordination models and associated programming languages
([2,8]). Coordination programming provides a new
perspective on constructing computer programs. Instead of
developing a computer program from scratch, the coordination
model allows the gluing together of existing components.
Whereas in ordinary programming languages a programmer
describes individual computing components, in a coordination
language the programmer describes interrelationships between
collaborating but otherwise independent components. These
components may even be written in different programming
languages or run on heterogeneous architectures. Thus, the
computational parts comprising a computer program are
treated by the coordination component as black boxes whose
internal constituents and behaviout is of no concern to the
coordination framework, which is interested only in the
components' external interaction with others.

Coordination, as a science of its own whose role goes beyond
computer programming, has also been proposed ([13]). In [12]
for instance, it is argued that coordination has a number of
advantages over traditional process models, such as explicit
representation of organisational goals, constraints and
dependencies (as opposed to "compiled" process descriptions),
opportunistic selection of required mechanisms given current
coordination requirements (as opposed to having fully-defined
processes ahead of time), and sensitivity to exception
handling as well as ability to adapt dynamically (as opposed to
having processes with rigid, well-defined behaviout).

Nevertheless, using the notion of coordination models and
languages in modelling the hybrid complex activities of
information systems.., the so called coordination language-
based approach to groupwar¢ consfrucsion ([9]), is a rather new
area of research. [Although, as it has been argued elsewhere,
coordination in general has already been used (even implicitly
sometimes) to model aspects that define partially information
systems such as human bebaviout or object-oriented systems.
But these approaches generally concentrate on addressing
specific issues and the produced environments (such as OVAL,

185

PAGES, Lotus Notes or Conversation Builder) do not address
the whole spectrum of modelling information systems.] Using
such a coordination model and language has some clear
advantages:

• Work can be decomposed into smaller steps.

• Steps can be assigned to and performed by various people
and tools.

• Execution of steps can be coordinated (eg., in time).

• Coordination patterns that have proved successful for some
specific scenario can be reused in other similar situations.

• Inherent support for reuse, encapsulation and openess,
distribution, heterogeneous execution (at both the s/w and
h/w levels), and dynamic evolution by means of supporting
unrestricted joining and leaving of components (human or
otherwise).

• The coordination model offers a concrete modelling
framework which is coupled with a real language in which
we can effectively compose executable specifications of
our coordination pauerns.

However, in those few recent works where some coordination
model and language is used to model activities in information
systems, we have identified a number o f inherent and
potentially serious deficiencies, at least as far as some
activities of information systems are concerned. We believe
that the alternative approach presented in this paper addresses
these deficiencies in a satisfactory way. The rest of the paper is
organised as follows. Section 2 presents the state-of-the-art in
using coordination models and languages for modelling
act ivi t ies in information systems and highlights the
deficiencies we just mentioned. Section 3 describes an
alternative coordination model and associated language and
section 4 illustrates the capabilities o f this model for
modelling information systems and also how the deficiencies
of the other models are overcome, The paper ends with some
conclusions and further work.

2 C O O R D I N A T I O N MODELS AND LANGUAGES
IN T H E M O D E L L I N G OF INFORMATION
S Y S T E M S

Over the past few years a number of coordination models and
languages have been developed such as Linear Objects (LO),
TAd , Gamma and the Chemical Abstract Machine (see, for
instance, the collection [2]). However, the first such model,
which still remains the most popular one, is Liada ([l]). In
Linda, the underlying view of the system to be coordinated
(which is usually distributed and open) is that o f an
asynchronous ensemble formed by agents where the latter
perform their activities independently from each other and
coordination between them is achieved via some medium in an
asynchronous manner. Linda introduces the so-called notion of
uncoupled communication whereby the agents in question
either insert to or retrieve from the shared medium the data to
be exchanged between them. This shared dataspace is referred
to as the Tuple Space and information exchange between
agents via the Tuple Space is performed by posting and
retrieving tuples. Tuples are addressed associatively by
suitable patterns used to match one or more tuples. In general,
the mples produced do not carry any information regarding the
identity o f their producers or intended consumers, so
communication is anonymous.

Linda is indeed a simple, intuitive and appealing coordination
model enjoying properties such as uncoupling o f agents,

concurrency and non-determinism and easiness of learning and
use. In fact, it is not a concrete language per se, but a small set
of four primitives (i n , o u t , r e a d , and eva l) which implement
the above mentioned functionality and can be added to any
programming language.

It should therefore come as no surprise that the first
coordination models and languages which were developed for
modelling information systems were based on the Linda
formalism by suitably modifying and/or extending its basic
mechanism. One such model is Sonia ([6]) which features the
notion of A g o r a - a shared space where agents participating
in some activity post to or retrieve from tuples featuring types
and possibly timeout constraints on their access. Another
related model is Laura ([17]) where the shared space (referred to
as service-space) is used by agents to post to or retrieve from
forms, each form containing a description of a service-offer, a
service-request with arguments or a service-result with results•
Finally, in Ariadne ([10]) the shared workspace is used to hold
tree-shaped data and access to them is performed by means of
record templates.

Although Linda is indeed a successful coordination model,
when it is evaluated from the point o f view of acting as a
framework for modelling human and other activities in
information systems, it has some potential ly serious
deficiencies (at least for some cases of modelling information
systems) which carry over to all the other related models that
are based on it (like the ones briefly mentioned in the previous
paragraph). These deficiencies are:

• It is data-driven. The state o f some agent is defined in terms
of what kind of data it posts to or retrieves from the Tuple
Space. This is not very natural when we consider the case o f
coordinating human and other activities; here, we are
interested mote in how the flow of information between the
involved agents is set-up and how an agent reacts to
receiving some information, rather than what kind of data
it sends or receives.

• The shared dataspace through which all agents
communicate may be intuitive when ordinary parallel
programming is concerned (offering easy to understand and
use metaphors such as the one of shared memory), but we
believe that it is hardly intuitive and realistic when
modelling organisational activities. People in working
environments do not take the work to be done by others to
common rooms where from other people pass by and pick
the work up! It is true that sometimes there is selective
broadcasting (eg., in providing a group of people doing the
same job with some work and letting them sort out the
workload among themselves) but the unrestr icted
broadcasting that the Tuple Space and its variants suggest
and enforce is hardly appropriate and leads to unneccesary
efficiency overheads.

• Furthermore, and more importam perhaps, the use o f such a
widely public medium as the Tuple Space and its variants,
suffers inherently from a majorsecurity problem which
comprises at least three dimensions related to the fate o f
the data posted there: (i) they can be seen and examined by
anyone; (ii) they can be removed by the wrong agent
(intentionally or unintentionally); (iii) even worse, they
can be forged without anyone not icing it. The
repercussions of these deficiencies when modell ing o f
information systems is concerned arc rather obvious and
need not be discussed any further.

• The Tuple Space and its variants are inherently flat
structures; hence, it is difficult to create meta coordinators.

186

Some of the above problems have already been o f concern to
researchers in the area of shared dataspace based coordination
models and solutions have been sought ([9,15]). Nevertheless,
to implement these solutions, requires quite some extra effort
and effectively leads to the design of new coordination models
on top of the "vanilla" type ones; these new models are often
counter-intuitive and relatively complex when compared with
the inherent philosophy of the underlying basic model.

In the rest of this paper we attempt to contribute to the
discussion as to how the notion of coordination languages can
be applied to the modelling o f information systems activities
by presenting an alternative, to the ones mentioned in this
section, approach. This approach is based on the use of
coordination languages whose main characteristics are the
following: (i) communication between agents is done by
means of point-to-point s t ream connections; (ii) the agents
comprising a coordination pattern are defined by means of
being in one of a number of predefined states, where a state is a
set o f observable stream connections; (iii) evolution of a
community of coordinators is event-driven (or control based)
in the sense that the agents in question observe the presence of
events and react accordingly. Section 3 describes such a
coordination language and its underlying computational model
whereas in section 4 we use this framework to model activities
in information systems and in the process we illustrate the
benefits it enjoys compared with the other models mentioned
in this section. Although the proposed Ii'amework is developed
with a particular control-drlven coordination language in
mind, we believe the underlying principles can apply to other
similar models.

We should probably at this stage stress the fact that we do not
c la im to have developed a fully-fledged coordination
framework for information systems that adheres to established
principles and practices of CSCW, groupware, and related
technologies. Such a framework should take into account the
findings reported in the vast literature on the above mentioned
areas. Instead, we point out that the majority of approaches
encountered so far in using coordination languages as vehicles
for developing such coordination frameworks are data-driven
and we show the benefits of using instead a control-driven
approach.

3 THE C O O R D I N A T I O N LANGUAGE MANIFOLD

MANIFOLD ([4,5]) is a coordination language which, as
opposed to the Linda family o f coordination models described
in the previous section, is control- (rather than data-) driven,
and is a realisatlon of a new type of coordination models,
namely the Ideal Worker Ideal Manager (IWIM) one ([3]).
MANIFOLD is by no means the only control-driven
coordination language; another typical member of this family
of coordination languages is ConCoord ([l l]) . For a more
extensive description and comparison of these two main
families of coordination models we refer the reader to [16],

In MANIFOLD there exist two different types of processes:
m a n a g e r s (or c o o r d i n a t o r s) and w o r k e r s . A manager is
responsible for setting up and taking care o f the
communication needs of the group of worker processes it
controls (non-exclusively). A worker on the other hand is
completely unaware of who (if anyone) needs the results it
computes or from where it itself receives the data to process.
MANIFOLD possess the following characteristics:

• P r o c e s s e s . A process is a black box with well defined
por t s of connection through which it exchanges units of

information with the rest of the world. A process can be
either a manager (coordinator) process or a worker. A
manager process is responsible for setting up and
managing the computation performed by a group of
workers. Note that worker processes can themselves be
managers of subgroups o f other processes and that more
than one manager can coordinate a worker's activities as a
member o f different subgroups. The bottom line in this
hierarchy is a t o m i c processes which may in fact be
written in any programming language.

• Ports. These are named openings in the boundary walls of
a process through which units o f information are
exchanged using standard I/O type primitives analogous
to read and write. Without loss of generality, we assume
that each port is used for the exchange of information in
only one direction: either into (inpu t port) or out of
(output port) a process. We use the notation p . i to refer
to the port i of a process instance p,

• Streams. These are the means by which interconnecti0ns
between the ports o f processes are realised. A stream
connects a (port o f a) producer (process) to a (port o f a)
consumer (process). We write p , o - > q . i to denote a
stream connecting the port o o f a producer process p to
the port i of a consumer process q.

• Events . Independent o f channels, there is also an event
mechanism for information exchange. Events are
broadcast by their sources in the environment, yielding
event occurrences . In principle, any process in the
environment can pick up a broadcast event; in practice
though, usually only a subset o f the potemial receivers is
interested in an event occurrence. We say that these
processes are tuned in to the sources of the events they
receive. We write e . p to refer to the event e raised by a
source p.

Activity in a MANIFOLD configuration is event driven. A
coordinator process waits to observe an occurrence o f some
specific event (usually raised by a worker process it
coordinates) which triggers it to enter a certain s ta te and
perform some actions. These actions typically consist o f
setting up or breaking off connections of ports and channels.
It then remains in that state until it observes the occurrence of
some other event which causes the preempt ion of the current
state in favour of a new one corresponding to that event. Once
an event has been raised, its source generally continues with
its activities, while the event occurrence propagates through
the environment independently and is observed (if at all) by
the other processes according to each observer's own sense of
priorities.

The following is a MANIFOLD program computing the
Fibonacci series,

manifold PrintUnits() i m p o r t .
manifold variable(port in) import.
manifold sum(event)

port in x.
port in y.
import.

event overflow.

auto process vO is variable(O).
auto process vl is variable(l).
auto process print is Pri~tUnits.
auto process siena is s~n(overflow).

manifold Main 0

187

{
b e g i n : (vO->sigma.x, vl->siqma.y,

vl->vO, sigma->vl, sig~a->print).
overflow, sigma :halt.

}

Tile above code defines sigma as an instance of some
predefined process sum with two input ports (x,y) and a default
output one. The main part o f the program sets up the network
where the initial values (0,X) are fed into the network by means
of two "variables" (v 0 , v l) . The continuous generation of the
series is realised by feeding the output of s i g m a back In itself
via v0 and v l . Note that in MANIFOLD there are no variables
(or constants for that matter) as such. A MANIFOLD variable is
a rather simple process that forwards whatever input it receives
via its input port to all streams connected to its output port. A
variable "assignment" is realised by feeding the contents of an
output port into its input. Note also that computation will end
when the event o v e r f l o w is raised by s i g m a . M a i n will then
get preempted from its b e g i n state and make a transition to
the o v e r f l o w state and subsequently terminate by executing
halt, Preemption of Main from its begin State causes the
breaking of the stream connections; the processes involved in
the network will then detect the breaking of their incoming
streams and will also terminate. Finally, note that every
process has a default input and a default output port. Thus,
whenever a construct o f the form p r o d -> c o n s is
encounetered (such as s i g m a -> p r i n t above), it should be
interpreted as prod. out - > cons. in where out and in are
the default output and input ports of p r o d and c o n s
respectively.

4 A M O D E L L I N G F R A M E W O R K BASED ON
M A N I F O L D

In this section we describe a framework for modelling
activities in organisations based on MANIFOLD (and its
underlying coordination model IWIM). The first part of the
section describes the mataphors used in our framework while
the second part describes in detail the modelling of a specific
scenario (and in the process we take the opportunity to
introduce some more features of MANIFOLD). It should be
noted that it is our intention that our framework be used by
many different people, not necessarily proficient in
coordination (or any other form of) programming. Hence, our
framework is essentially a three level one: (i) the top part is an
easy to use visual interface which defines graphically the
interrelationships and behaviour o f the involved agents; (ii)
the middle part is a verbal (semi-formal) description o f the
states defining each agent and how it reacts to receiving some
event; (iii) the actual implementation o f the scenario to be
modelled in MANIFOLD.

For reasons o f brevity we do not describe level (i); this is
essentially the environment presented in [7] adapted (by
means o f extensions and simplifications) to fit our purposes.
What the environment described there does is to translate the
visual description to the MANIFOLD code comprising level
(iii). Level (ii), in addition to providing a semi-formal verbal
description o f the coordination activities, can also be used by
people not comfortable with programming at either of levels
(i) or (iii) to specify some agents' behaviour (possibly by
filling predefined forms) and then these specifications may he
translated by other people to either level (i) or directly to level
(iii). It is an on-going research issue to formalise this level
properly so that its mapping to either of the other two levels
be done in a, as much as it is possible, straightforward manner.
Eg., the person defining an activity at this level should be

instructed to include a complete description o f all possible
states some entity can be in, data-flow relationships and
raising and reacting to events (here, the person can be assisted
by assuming some predefined event behaviours such as
detecting the presence of input data, timeouts, etc.).

4.1 The Metanhors

In our model, all entities participating in an activity (humans,
devices, CSCW tools, shared resources such as active or
passive documents, etc.) are agents . We distinguish two
categories o f agents: w o r k e r agents which perform
computational work (whatever that may be according to the
specific details of some particular scenario) and m a n a g e r
agents which are responsible for coordinating the activities o f
worker agents. Note that manager agents may themselves be
seen as worker agents from other, higher up in the hierarchy,
manager agents. However, the genuine worker agents (i.e.,
those performing some actual computational task) such as
computer programs, CSCW tools, hardware devices, etc. form
the bottom level o f the layer and cannot be subdivided any
further. We are not concerned with the internal details of these
agents, only with their interaction with their environment.

Every agent, whether it is a manager or a worker agent,
communicates with its environment by means of at least one
input por t and one output port. I f the agent in question is a
human being then a useful metaphor for these ports is in-trays
and out-trays, if the agent is a device or software program then
ports refer to traditional input/outpnt streams (for the case of
programs) or input/output connection slots (for the case of
devices). In general, an agent may have more than one input
and/or output port.

Furthermore, every agent observes a number of events and
reacts to them accordingly. Depending on the situation, useful
metaphors for events are telephone calls, commands and
instructions broadcast over speakers, etc. However, it should
be made clear that the purpose of an event is to make one or
more agents aware o f some situation that must be handled; not
to transfer actual data. This is the purpose o f streams
introduced promptly.

Agents communicate actual data between themselves by means
of connecting respective pairs of their input and output ports
via streams. Again, depending on the particular scenario that
is being modelled, such a stream could he, say, a human courier
who transfers work to be done from the out-tray (output port)
o f some agent to the in-tray (input port) of some other agent.
It is possible that more than one in- and one out-trays are
involved in a data exchange, eg. three agents may send data to
the in-tray of a fourth agent or that data from the out-tray o f
some agent are sent (in duplicate) to the in-tray of two agents.

Every agent is defined at every moment in time by means o f
being in some state. It is known beforehand which states an
agent can be in during the lifespan of its activities. Again,
useful metaphors are easy to find but depend on the actual
scenario (eg., the states that a porter could he in are observing
whether somebody wants to enter/leave a building, opening
the door to let the other person in/out, close the door and go
back to the state of observing). In order for some agent to
change its state, it must observe the raising o f a particular
event. Reacting to an event (and therefore changing the current
state) typically means establishing new stream connections
between in/out ports and abandoning old connections.

The above general description of our model, whose
functionality will become more clear in the presentation o f a

188

specific example that follows, has some clear advantages over
the traditional Linda-like approaches we have seen so far:

• Every worker agent is only concerned with getting
workload from its input port(s), perlbrming the required
work for which it is responsible, and putting the outcome
to its out port(s). Its only other communication with its
environment is by means of observing (if at all) any
events. This is an ideal worker: it can be moved to any
other environment and as long as it gets suitable input will
produce the required output without any need to know who
has sent it the work to be done or, indeed, who (if anyone at
all!) will make use of its output.

• Every manager agent is only concerned with making sure
that the output produced by some worker agents are sent to
some other worker agents that require it. The manager
identifies workers by means o f their responsibilities and
workflow interdependencies, not the actual work (data) they
produce. Such a manager agent is also an ideal one: it can
be moved to another environment where worker agents
have responsibilities with similar interdependencies, and
will perform equally well.

• All entities comprising an activity, whether they be
humans or otherwise, are treated homogeneous ly . This
renders the model very flexible; for instance, new agents
can come and go dynamically, tools can be upgraded to
updated versions of them or completely substituted with
new ones, "act ive" documents and other types of
interactive and dialogue mode applications are supported
easily, etc.

• The model is inherently secured at all levels where someone
would wish to introduce such security measures. The
workers need know nothing about the environment that
they are working in. Even the managers, are responsible
for organising the workflow of information, but cannot see
the actual data that is being transferred. Furthermore, by
virtue of the IWIM model, streams are secured connections:
data cannot be lost or forged, except in catastrophic
circumstances. However, if desired, selective broadcasting
of data is possible by means of sending it to the input ports
of more than one agent.

4.2 A Specific Scenario

The scenario that we will model consists (mainly) of four
agents, as it happens all of them being humans, collaborating
in the development of some documem. The first agent is the
author who is responsible for writing up the document as well
as performing significant changes to it. The second agent is
the editor who checks the document's validity, performs any
corrections and, if necessary, returns the document back to the
author for further substantial changes. The third agent is the
manager (still a worker process though, as far as our model is
concerned) which either approves the document or sends it
back to the editor. The fourth agent is a true coordinator agent
responsible for managing the workflow between the other
three agents (it could represent a department's supervisor). We
also assume and sometimes refer to the presence of other
agents (especial ly atomic agents performing purely
computational work) whose detailed description is not given
here. For each agent and for reasons of brevity we will describe
levels (it) and (iii) of our framework as presented in section
4.1. Level (it) will be described in terms of the states an agent
can be in and what event it must observe to make a transition
to another state, as well as what events it itself may raise. If
the agent has more than one input or output port, this will also

be mentioned explicitly. Level (iii) is the actual MANIFOLD
code produced.

Author [level:(~b!

State O: Receive document in in-tray:
Initially, the agent is sitting waiting for some input (an
initial document in this case) to be received in its in-tray
(input port).

State 1: Produce or modify document:
Upon receiving a document, the agent performs the
required work. This is done by forwarding the document to
an atomic process w r i t e r which actually does the work
(say, a word processor) and wait for the changes to be
made.

State l a: Put document in out-tray:
When the work to be done on the document has
completed, writer sends the document back to the agent
and the latter puts it in the out-a'ay.

State 2: Recur from the begining:
The process w r i t e r terminates and the author goes back
m the initial state.

State 3: Request to be substituted:
To illustrate the dynamic joining and leaving of agents we
enhance the basic functionality o f this agent so that if it
wants to leave, it will raise the event t : ime_ to__qo . The
coordinator process then, will substitute this agent with
another one.

manifold gut/xgr (ev~it i_had_enough)
[
event prod_amend_doc, dec_ready,

send_doc, time_to_go, flushed.

// State SO
begin: (guard (input, full, prod_~ doc),

terminated (void)).

// State Sl
procl_amend_doc: {

process writer is Word_Program(doc_r_A~o~y).
begin: (activate (writer),

input->writer,
terminated (void)).

// State Sla
decready: (writer ->output,

post (senddec)).
).

// State S2
sencl_doc: (post (be~in)).

// State S3
time._to__go: [begin: (raise(i.hacl_enough),
guard (output, a_disconnected, flushed),

terminated (void)).
flushed:halt.
}

}

We will describe in some detail the c~d¢ produced for this first
agent since it inuoduces new features of MANIFOLD. Initially
A u t h o r sits back observing whether its in-tray has any work

189

to be done. This is achieved by means of the construct
guard (inpu t, f u i I, prod_amend__doc) which ses a guard
on the input port and if some dam arrives and is ready to be read
(by vir tue fo the second flag f u 1 3.) the event
p r o d _ a m e n d _ d o c will be posted to the vicinity of Au t h o r
(no other agent wi l l observe it). The construct
t e r m i n a t e d (v o i d) suspends execution of an agent until it
observes some event that causes it to go to a new state. Upon
detecting the presence of prod_amend_doc, Author creates
an atomic process w r i t e r (an instance of a word processor in
this case), it redirects the document which now sits in its in-
tray to the default input port of w r i t e r and suspends waiting
for the signal d o e _ r e a d y which will be raised by w r i t e r
once the latter has finished doing the required job and
terminated its execution. Upon detecting d o e _ . r e a d y , A u t h o r
forwards the now updated document to its out-tray and recurs
back to its initial state waiting for another document to appear
in its in-tray. This life-cycle continues until A u t h o r has
decided that it had had enough work for today (it is not shown
here how the agent reaches this decision but only that as a
consequence it posts the event t i m e _ . t o g o which causes its
transition to a new state). It then r a i s e s the event
i _ h a d _ e n o u g h (which is observable to the environment of
A u t h o r) and waits until someone (the coordinator in this case)
has disconnected it from the rest of the apparatus and any work
in its out-tray has been delivered (this is achieved by setting
on its output port another guard with the flag
a _ d i s c o n n e c t e d) . When A u t h o r has indeed been isolated
from the other agems, it is free to halt.

Editor [level (ii)l

State O: Receive document in in-trays:
Initially, the agent is sitting waiting to receive a
document from either the author (in which case the
document will be received in the in-tray f r o m _ a u t h o r) or
from the manager (by means o f the in-tray
f r o m _ m a n a g e r) . It will then post to its vicinity the
events check_doc or send~_doc_back respectively.

State 1: Check document:
If the document was received from the author, the editor
forwards it to, say, a spell checker program which will
make any corrections necessary.

State la: Send document to the manager:
I f the document is ok, it is sent to the manager by putting
it in the out-tray t o _ m a n a g e r . The spell checker program
terminates execution and the editor recurs to the initial
state waiting to receive the next document.

State l b: Send document back to the author:
If it is decided that the document needs major revisions, it
is sent back to the author by means o f putting it in the
out-tray t o _ a u t h o r . The spell checker program
terminates execution and the editor recurs to its initial
state waiting to receive the next document.

State 2: Forward document back to the author:
I f the document was received from the manager, then the
implicit understanding is that it requires major revisions
and it is simply forwarded back to the author (in practice,
the editor agent could itself attempt to make afly required
amendments and send it back to the manager - - this
additional scenario is not covered here for reasons o f
brevity). The editor recurs to the initial state waiting to
receive the next document.

Editor [level (i i i))

manifold Editor (port in frcm_author, from man,
port out to_author, to_man)

{
evezlt check &pc, ckx: ok, doc_not_ok,
send_doc_back, send_doc_mn.

// State SO
begin: (guard (from author, full, check_doc),

guard ([foreman, full, send_doc_back),
terminated (void)).

// State S1
check_doc: {process checker is

Speller (doc ok, doc_not_ok).
begin: (activate (checker),

frcm_author->checker,
terminated (void)).

// State Sla
doc ok: (checker - >to_man,

guard (checker.outDut, empty, begin),
terminated (void)).

// State Slb
doc not__ok: (checker - > to_aut/~r,

guard (checker. output, empty, be~in),
terminated (void)).

}

// state $2
send_doc_back: (from_man->to_author,

post (begin)).
}

Manafler Ilevel 6i)l

State O: Receive document in in-tray:
Initially, the agent is waiting for a document sent by the
editor for approval. If the editor has not responded within
5 minutes, then an alarm is raised.

Stale 1: Verify and forward document:
Upon receiving a document, the manager verifies whether
the document is indeed ok (the actual verif ication
procedure is not shown here). I f the document needs
further improvement it is sent back to the editor by
putting it in the out-tray t o e d i t o r . Otherwise, the
document is sent to the head of the department (whose
actual description is not shown here) by putting it in the
out-tray t o_dept__head.

State 2: Timeout functionality:
I f the alarm is raised, then the manager raises an
appropriate signal, which when detected by the
coordinator process causes the latter to create and link
into the existing infrastructure a new editor process.

Further functionality:
If the manager detects that according to its own criteria
not enough work is produced (say, receiving sufficient
number of documents to approve), it raises the signal
more_work.-The coordinator process then adds more
authors (and/or editors).

manifold Manager (event more_work,
port out to_d~t_beo_0, to_editor)

{

190

event verify_doc, overdue, new editor.
priority overdue < verify_doc.

process timeout is alarm(60,000*5,overdue).

// State S0
begin: (activate < timeout),

guard (input, full, verify_doc),
terminated (void)).

// State Sl
verify_doc: (if (~ t is d~)

then input - >to d~pt__head
else input- >to_editor,
guard (input, empty,begin)).

// State $2
overdue: raise (new editor).
_ raise (more_~Drk).

}

Note the t imeout functionali ty included in the manager
process. Timeouts are very important in the modelling of open
systems and organisat ional activit ies since there is no
guarantee that processes either do exist for the whole period of
a system's operations or do not malfunction at some period in
time. Thus, in order to avoid deadlocks and be able to detect
faults and abnormal termination of processes, timeouts on at
least some vital operations must be planned and activated
when the need arises. In fact, timeout functionality is so
important that we believe all the processes involved in some
computation should have by default some timeout strategy.
Purely for reasons of brevity, we have chose in this paper to
demonstrate how our model handles timeouts by concenUating
on the case o f editor. Note that the predefined manifold
alarm(port time, event signal) will post signal to
the vicinity of a l a r m once t i m e milliseconds have passed.
Furthermore, note that by means of the p r i o r i t y statement,
we have given different priorities to the events o v e r d u e and
v e r i f y d o c . If it happens that at precisely the end of the 5
minutes interval the editor manages to respond, then the
manager will go into state 1 rather than 2; otherwise,
according to the semantics of the language, the commitment to
state 1 or 2 would be done nondeterministically.

Coordinator [level (ii~_l

State 0: Set up initial configuration."
The coordinator creates three processes representing an
author, an editor and a manager and sets up the intended
stream connections between the in- and out-trays (ports)
of these processes.

State 1: Substitute author:
If the coordinator detects the presence of the signal
s u b _ m e from the author, it creates a new author process
and redirects the stream connections accordingly. The rest
o f the processes involved in the configuration would
never know the difference.

State 2: Add extra author:
If the coordinator detects the presence of the signal
r a i s e _ w o r k from the manager, it creates a new author
process and links it to the editor. The latter will never
detect the presence of more than one author (except
implicit ly by detecting the raising of the number of
documents it receives to check). Note that in this state we
introduce limited broadcasting; a document to be sent
back from the editor to the author, is actually duplicated

and sent to both authors. We assume that one of them will
then work on ~he document and the other will ignore it
(the code ;equired for this synchronisation is not shown
here, purely for reasons of brevity).

State 3." Timeout functionality:
If the coordinator detects the presence of the signal
n e w _ e d i t o r from the manager, it creates a new editor
process and links it to the existing infrastructure.

Coordinator llevel (iii~l

// We also show the overall MANIFOLD code
required to set up the apparatus.
// The "coordinator" process is the special

manifold 'Ya_in'.

manifold
manifold

manifold
manifold
manifold
manifold
manifold

Author (event) import.
Editor (port in, port in,

port out, port out).
Manager (event, port out, port out).
Writer (event) atomic.
Speller (event. event) atcmic.
HeadDept atcmic.
Document input.

manifold Main
{
event sub_me, raise_~rk.
auto process author is Author(sub_me).
auto process editor

<dec_from__author, doc__f rcm_gs~
{ doc_to_author, doc_to_man>

is Editor.
auto process manager
<input { doc_to_dept_head, doc_back_to_edltor>

is Manager(raise_work).
auto process head__dept is HeadDept.
auto process init_doc is Document.

// State S0
begin: (init_doc - >author,

author - >edi tot. doc__f rein_author,
editor, doc_to_author - >author,
editor, doc_to_man - >manager,
manager, doc_t o_dep t_head - >head_d~Dt,
manager, doc_back to_editor

- >edi for. doc_f rein_man,
terminated (void)).

// State Sl
sub_me. *scme_aut/~gr: {

auto process new_.aut/xDr is Author(sub_me).
hold (new_author).
begin: (scme_author- >new.author,
new_~uthor - >editor. doc_f rest.author,
edltor.doc_to_author->new_~uthor,
edl tor. doc_to_Kan - >manager,
manager, doc_to_dept b ~A94 - >head_dept,
manager, doc back_to_editor

- >edi tor. doc_f ~ ,
terminated (void)).
}.

// State S2
more__~rk, manager: {

auto process another_doc is ~ t .
auto process another_author is

AuthOr (sub_me).

191

r
InitDoc I

I) M (' ~ HeadDept
I (,

Fig. 1

~--"~*(;) M ~ ' ~ HeadDept

Fig. 2
hold (another_author).
be~in: (another_doc- >another_author,

autl~r- >editor. doc_f rGnt_author,
another_author

- >editor. doc__f rcm_author,
editor.doc_to_author ->

(-> author, -> another_auLhor),
editor, dec_to_man- >.snager,
manager, doc__to_dept__head - >head_dept,
manager, doc_back to edi tor

->editor. doc_f rcrn_man,
terminated (void)).
}.

// State S3
new_editor.manager: {

auto process another_editor is editor.
hold (another_editor).

begin: (author - >
anot/3er editor, doc_f rein_author,

manager, doc_back_to__editor - >
another_edltor.doc_frauan,

another_editor.doc_to_author->author,
another_editor.dec_to_man- >manager,
terminated (vDid)). }.

}

Note the difference in the names of ports and events that are
passed as actual parameters to various manifolds compared
with those names used to represent the formal parameters. We
end this section by visualising the framework in Visifold ([7]),
MANIFOLD's visual interface. Figure I shows the setup at
state 0 and figure 2 the setup at state 2.

192

5 CONCLUSIONS AND FURTHER WORK

We have argued for the need to use control-based, event-driven
and state-defined coordination programming to model human
and other activities in information systems. We have
presented such a model, explained its benefits compared with
other approaches that have been used so far, and illustrated its
capabilities by means of a specific, even if rather simple,
scenario.

In the short space of a conference paper it would be impossible
to describe in detail all the characteristics of our model or
compare them in detail with other related approaches. For
instance, we have said nothing about examining types of
values transmitted via streams (sometimes it may be desirable
to know of the data's structure, if not content), etc. This and
other issues can be adequately addressed by our model.

The reader may be concerned that we make no mention on the
vast literature that exists lbr CSCW, groupware, and associated
fields. We should again stress the fact that we do not claim to
have presented a lully fledged coordination framework Ibr
information systems. We have only pointed out the benefits
Ibr using a control-driven coordination paradigm as opposed
to a data-driven one. We are currently thoroughly evaluating
the effectiveness of this basic framework to model various
scenarios such as version management, electronic voting,
teleconferencing, open distributed systems, etc. In addition,
we will let users in private and public institutions use the
model for their own activities, thus providing invaluable
feedback in further fine-tuning it (especially with respect to
levels (i) and (ii)). Eventually, we aim to developing a fully-
fledged control-driven framework for coordinating people and
supporting cooperative work by combining the characteristics
of a coordination language such as MANIFOLD with the
principles and ptactices pertaining in CSCW and related fields.

ACKNOWLEDGMENTS

This work has been partially supported by the INCO-DC KIT
(Keep-in-Touch) program 962144 "Developing Software
Engineering Environments for Distributed Information
Systems" financed by the Commission of the European Union.

REFERENCES

[1] S. Ahuja, N. Carriero and D. Gelernter, 'Linda and
Friends', IEEE Computer 19(8), Aug. 1986, pp. 26-34.

[21 J-M. Andreoli, C. Hankin and D. Le M6tayer,
Coordination Programming: Mechanisms, Models and
Semantics, World Scientific, 1996.

[31 F. Arbab, 'The IWIM Model for Coordination of
Concurent Activities', First International Conference on
Coordination Models, Languages and Applications
(Coordination'96), Cesena, Italy, 15-17 April, 1996,
LNCS 1061, Springer Verlag, pp. 34-56.

[4! F. Arbab, C. L. Biota, F. J. Burger and C. T. H. Everaars,
'Reusable Coordinator Modules for Massively
Concurrent Applications', Europar'96, Lyon, France,
27-29 Aug. 1996, LNCS !123, Springer Verlag, pp.
664-677.

151 F. Atbab, 1. Herman and P. Spilling, 'An Overview of
Manifold and its Implementation', Concurrency: Practice
and Experience 5(1), Feb. 1993, pp. 23-70.

193

[6] M. Banville, 'Sonia: an Adaptation of Linda for
Coordination of Activities in Organizations', First
International Conference on Coordination Models,
Languages and Applications (Coordination "96), Cesena,
Italy, 15-17 April, 1996, LNCS 1061, Springer Verlag,
pp. 57-74.

[7] P. Bouvry and F. Arbab, 'VisifoM: A Visual Environment
for a Coordination Language', First International
Conference on Coordination Models, Languages and
Applications (Coordination '96), Cesena, Italy, ! 5-17
April, 1996, LNCS 1061, Springer Verlag, pp. 403-406.

[8] N. Carriero and D. Gelernter, 'Coordination Languages
and their Significance', Communications of the ACM
35(2), Feb. 1992, pp. 97-107.

[9] N. Carriero, D. Gelernter and S. Hupfer, 'Collaborative
Applications Experience with the Bauhaus Coordination
Language', 30th Hawaii International Conference on
@stems Sciences (HICSS-30), Mauni, Hawaii, 7-10
Jan., 1997, IEEE Press, pp. 310-319.

[10] G. Florijn, T. Besamnsca and D. Greelhorst, 'Ariadne and
HOPLa: Flexible Coordination of Collaborative
Processes', First International Conference on
Coordination Models, Languages and Applications
(Coordination'96), Cesena, Italy, 15-17 April, 1996,
LNCS 1061, Springer Verlag, pp. 197-214.

[!1] A. A. Holzbacher, 'A Software Environment for
Concurrent Coordinated Programming' , Firs t
International Conference on Coordination Models,
Languages and Applications (Coordination '96), Cesena,
Italy, 15-17 April, 1996, LNCS 1061, Springer Verlag,
pp. 249-266.

[12] M. Klein, 'Challenges and Directions for Coordination
Science', Second International Conference on the Design
of Cooperative Systems, Juan-les-Pins, France, 12-14
June, 1996, pp. 705-722.

[13] T. W. Malone and K. Crowston, 'The Interdisciplinary
Study of Coordination', ACM Computing Surveys 26,
1994, pp. 87-119.

[14] M. Marchini and M. Melgatejo, 'Agora: Groupware
Metaphors in OO Concurrent Programming', Object-
Based Models and Languages for Concurrent Systems,
Bologna, Italy, 5-July, 1994, LNCS 924, Springer
Verlag.

[15] N. H. Minsky and J. Leichter, "Law-Governed Linda as a
Coordination Model', Object-Based Models and
Languages for Concurrent Systems, Bologna, Italy, 5
Ju[y, 1994, LNCS 924, Springer Vedag, pp. 125-145.

[16| G.A. Papadopoulos and F. Axbab, 'Coordination Models
and Languages', Advances in Computers 46, Academic
Press, 1998 (to appear),

[17] R. Tolksdorf, 'Coordinating Services in Open
Distributed Systems With LAURA', First International
Conference on Coordination Models, Languages and
Applications (Coordination'96), Cesena, Italy, 15-17
April, 1996, LNCS 1061, Springer Verlag, pp. 386-402.

