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ABSTRACT 

We argue for the need to use control-based, event-driven and 
state-defined, coordination models and associated languages in 
modelling at least some of those activities that constitute the 
functionality of a modem, open and distributed information 
system. We illustrate our points by using such a coordination 
model and language and showing by means of suitable 
examples how it can be used for the above mentioned purpose. 
We also compare out approach with the (rather few) approaches 
that as yet exist in this rather new area of information 
systems, and we discuss our model's advantages over those 
other approaches. 

1 INTRODUCTION 

Modelling of activities within an information system or 
between different information systems has become a complex 
task. Performing these activities (often known as groupware, 
workflow, electronic commerce and enterprize reengineering) 
is often done in conjunction with computer-based cooperative 
environments such as electronic mail, voice and video 
teleconferencing, electronic classrooms, etc. In addition, the 
emergence of the World Wide Web as the main medium, not 
only for passive presentation of information but also for 
active cooperation between different agents collaborating in a 
single task, further enhances some properties of those 
activities such as distribution and openess. Typical examples 
of such complex-in-nature activities range from finding 
suitable time-slots and locations for group meetings, to 
performing administrative procedures (eg., organising 
conferences), to carrying out reviews of draft documents, to 
developing distributed web-based electronic commerce 
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applications (eg., reserving flight seats and hotel rooms by 
means of dedicated WWW servers). Modelling these activities 
has become a task which often is not possible to perform by 
single persons, but by groups of people, often even distributed 
over different organisations, countries, etc. 

Recently, we have seen a proliferation of so-called 
coordination models and associated programming languages 
([2,8]). Coordination programming provides a new 
perspective on constructing computer programs. Instead of 
developing a computer program from scratch, the coordination 
model allows the gluing together of existing components. 
Whereas in ordinary programming languages a programmer 
describes individual computing components, in a coordination 
language the programmer describes interrelationships between 
collaborating but otherwise independent components. These 
components may even be written in different programming 
languages or run on heterogeneous architectures. Thus, the 
computational parts comprising a computer program are 
treated by the coordination component as black boxes whose 
internal constituents and behaviout is of no concern to the 
coordination framework, which is interested only in the 
components' external interaction with others. 

Coordination, as a science of its own whose role goes beyond 
computer programming, has also been proposed ([13]). In [12] 
for instance, it is argued that coordination has a number of 
advantages over traditional process models, such as explicit 
representation of organisational goals, constraints and 
dependencies (as opposed to "compiled" process descriptions), 
opportunistic selection of required mechanisms given current 
coordination requirements (as opposed to having fully-defined 
processes ahead of time), and sensitivity to exception 
handling as well as ability to adapt dynamically (as opposed to 
having processes with rigid, well-defined behaviout). 

Nevertheless, using the notion of coordination models and 
languages in modelling the hybrid complex activities of 
information systems.., the so called coordination language- 
based approach to groupwar¢ consfrucsion ([9]), is a rather new 
area of research. [Although, as it has been argued elsewhere, 
coordination in general has already been used (even implicitly 
sometimes) to model aspects that define partially information 
systems such as human bebaviout or object-oriented systems. 
But these approaches generally concentrate on addressing 
specific issues and the produced environments (such as OVAL, 
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PAGES, Lotus Notes or Conversation Builder) do not address 
the whole spectrum of  modelling information systems.] Using 
such a coordination model and language has some clear 
advantages: 

• Work can be decomposed into smaller steps. 

• Steps can be assigned to and performed by various people 
and tools. 

• Execution of  steps can be coordinated (eg., in time). 

• Coordination patterns that have proved successful for some 
specific scenario can be reused in other similar situations. 

• Inherent support for reuse, encapsulation and openess, 
distribution, heterogeneous execution (at both the s/w and 
h/w levels), and dynamic evolution by means of  supporting 
unrestricted joining and leaving of components (human or 
otherwise). 

• The coordination model  offers a concrete modelling 
framework which is coupled with a real language in which 
we can effectively compose executable specifications of 
our coordination pauerns. 

However, in those few recent works where some coordination 
model and language is used to model activities in information 
systems, we have identified a number o f  inherent and 
potentially serious deficiencies, at least as far as some 
activities of  information systems are concerned. We believe 
that the alternative approach presented in this paper addresses 
these deficiencies in a satisfactory way. The rest of  the paper is 
organised as follows. Section 2 presents the state-of-the-art in 
using coordination models and languages for modelling 
act ivi t ies  in information systems and highlights the 
deficiencies we just  mentioned. Section 3 describes an 
alternative coordination model and associated language and 
section 4 illustrates the capabilities o f  this model for 
modelling information systems and also how the deficiencies 
of  the other models are overcome, The paper ends with some 
conclusions and further work. 

2 C O O R D I N A T I O N  MODELS AND LANGUAGES 
IN T H E  M O D E L L I N G  OF INFORMATION 
S Y S T E M S  

Over the past few years a number of  coordination models and 
languages have been developed such as Linear Objects (LO), 
TAd ,  Gamma and the Chemical Abstract Machine (see, for 
instance, the collection [2]). However, the first such model, 
which still remains the most popular one, is Liada ([l]). In 
Linda, the underlying view of  the system to be coordinated 
(which is usually distributed and open) is that o f  an 
asynchronous ensemble formed by agents where the latter 
perform their activities independently from each other and 
coordination between them is achieved via some medium in an 
asynchronous manner. Linda introduces the so-called notion of  
uncoupled communication whereby the agents in question 
either insert to or retrieve from the shared medium the data to 
be exchanged between them. This shared dataspace is referred 
to as the Tuple Space and information exchange between 
agents via the Tuple Space is performed by posting and 
retrieving tuples. Tuples are addressed associatively by 
suitable patterns used to match one or more tuples. In general, 
the mples produced do not carry any information regarding the 
identity o f  their producers or intended consumers, so 
communication is anonymous. 

Linda is indeed a simple, intuitive and appealing coordination 
model enjoying properties such as uncoupling o f  agents, 

concurrency and non-determinism and easiness of  learning and 
use. In fact, it is not a concrete language per se, but a small set 
of  four primitives ( i n ,  o u t ,  r e a d ,  and eva l )  which implement 
the above mentioned functionality and can be added to any 
programming language. 

It should therefore come as no surprise that the first 
coordination models and languages which were developed for 
modelling information systems were based on the Linda 
formalism by suitably modifying and/or extending its basic 
mechanism. One such model is Sonia ([6]) which features the 
notion of A g o r a -  a shared space where agents participating 
in some activity post to or retrieve from tuples featuring types 
and possibly timeout constraints on their access. Another 
related model is Laura ([17]) where the shared space (referred to 
as service-space) is used by agents to post to or retrieve from 
forms, each form containing a description of  a service-offer, a 
service-request with arguments or a service-result with results• 
Finally, in Ariadne ([ 10]) the shared workspace is used to hold 
tree-shaped data and access to them is performed by means of  
record templates. 

Although Linda is indeed a successful coordination model, 
when it is evaluated from the point o f  view of  acting as a 
framework for modelling human and other activities in 
information systems, it has some potential ly serious 
deficiencies (at least for some cases of  modelling information 
systems) which carry over to all the other related models that 
are based on it (like the ones briefly mentioned in the previous 
paragraph). These deficiencies are: 

• It is data-driven. The state o f  some agent is defined in terms 
of  what kind of  data it posts to or retrieves from the Tuple 
Space. This is not very natural when we consider the case o f  
coordinating human and other activities; here, we are 
interested mote in how the flow of  information between the 
involved agents is set-up and how an agent reacts to 
receiving some information, rather than what kind of  data 
it sends or receives. 

• The shared dataspace through which all  agents 
communicate may be intuitive when ordinary parallel 
programming is concerned (offering easy to understand and 
use metaphors such as the one of  shared memory), but we 
believe that it is hardly intuitive and realistic when 
modelling organisational activities. People in working 
environments do not take the work to be done by others to 
common rooms where from other people pass by and pick 
the work up! It is true that sometimes there is selective 
broadcasting (eg., in providing a group of  people doing the 
same job with some work and letting them sort out the 
workload among themselves)  but the unrestr icted 
broadcasting that the Tuple Space and its variants suggest 
and enforce is hardly appropriate and leads to unneccesary 
efficiency overheads. 

• Furthermore, and more importam perhaps, the use o f  such a 
widely public medium as the Tuple Space and its variants, 
suffers inherently from a majorsecurity problem which 
comprises at least three dimensions related to the fate o f  
the data posted there: (i) they can be seen and examined by 
anyone; (ii) they can be removed by the wrong agent 
(intentionally or unintentionally); (iii) even worse, they 
can be forged without  anyone not icing it. The 
repercussions of  these deficiencies when modell ing o f  
information systems is concerned arc rather obvious and 
need not be discussed any further. 

• The Tuple Space and its variants are inherently flat 
structures; hence, it is difficult to create meta coordinators. 
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Some of the above problems have already been o f  concern to 
researchers in the area of  shared dataspace based coordination 
models and solutions have been sought ([9,15]). Nevertheless, 
to implement these solutions, requires quite some extra effort 
and effectively leads to the design of  new coordination models 
on top of  the "vanilla" type ones; these new models are often 
counter-intuitive and relatively complex when compared with 
the inherent philosophy of  the underlying basic model. 

In the rest of  this paper we attempt to contribute to the 
discussion as to how the notion of  coordination languages can 
be applied to the modelling o f  information systems activities 
by presenting an alternative, to the ones mentioned in this 
section, approach. This approach is based on the use of  
coordination languages whose main characteristics are the 
following: (i) communication between agents is done by 
means of  point-to-point s t ream connections; (ii) the agents 
comprising a coordination pattern are defined by means of  
being in one of  a number of  predefined states, where a state is a 
set o f  observable stream connections; (iii) evolution of  a 
community of  coordinators is event-driven (or control based) 
in the sense that the agents in question observe the presence of  
events and react accordingly. Section 3 describes such a 
coordination language and its underlying computational model 
whereas in section 4 we use this framework to model activities 
in information systems and in the process we illustrate the 
benefits it enjoys compared with the other models mentioned 
in this section. Although the proposed Ii'amework is developed 
with a particular control-drlven coordination language in 
mind, we believe the underlying principles can apply to other 
similar models. 

We should probably at this stage stress the fact that we do not 
c la im to have developed a fully-fledged coordination 
framework for information systems that adheres to established 
principles and practices of  CSCW, groupware, and related 
technologies. Such a framework should take into account the 
findings reported in the vast literature on the above mentioned 
areas. Instead, we point out that the majority of  approaches 
encountered so far in using coordination languages as vehicles 
for developing such coordination frameworks are data-driven 
and we show the benefits of  using instead a control-driven 
approach. 

3 THE C O O R D I N A T I O N  LANGUAGE MANIFOLD 

MANIFOLD ([4,5]) is a coordination language which, as 
opposed to the Linda family o f  coordination models described 
in the previous section, is control- (rather than data-) driven, 
and is a realisatlon of  a new type of  coordination models, 
namely the Ideal Worker Ideal Manager (IWIM) one ([3]). 
MANIFOLD is by no means the only control-driven 
coordination language; another typical member of this family 
of  coordination languages is ConCoord ( [ l l ] ) .  For a more 
extensive description and comparison of  these two main 
families of  coordination models we refer the reader to [ 16], 

In MANIFOLD there exist two different types of  processes: 
m a n a g e r s  (or c o o r d i n a t o r s )  and w o r k e r s .  A manager is 
responsible  for setting up and taking care o f  the 
communication needs of  the group of  worker processes it 
controls (non-exclusively). A worker on the other hand is 
completely unaware of  who (if anyone) needs the results it 
computes or from where it itself receives the data to process. 
MANIFOLD possess the following characteristics: 

• P r o c e s s e s .  A process is a black box with well defined 
por t s  of connection through which it exchanges units of  

information with the rest of  the world. A process can be 
either a manager (coordinator) process or a worker. A 
manager process is responsible for setting up and 
managing the computation performed by a group of  
workers. Note that worker processes can themselves be 
managers of  subgroups o f  other processes and that more 
than one manager can coordinate a worker's activities as a 
member o f  different subgroups. The bottom line in this 
hierarchy is a t o m i c  processes which may in fact be 
written in any programming language. 

• Ports. These are named openings in the boundary walls of  
a process through which units o f  information are 
exchanged using standard I/O type primitives analogous 
to read and write. Without loss of  generality, we assume 
that each port is used for the exchange of  information in 
only one direction: either into ( inpu t  port) or out of  
(output port) a process. We use the notation p .  i to refer 
to the port i of  a process instance p, 

• Streams. These are the means by which interconnecti0ns 
between the ports o f  processes are realised. A stream 
connects a (port o f  a) producer (process) to a (port o f  a) 
consumer (process). We write p ,  o - > q .  i to denote a 
stream connecting the port o o f  a producer process p to 
the port i of a consumer process q. 

• Events .  Independent o f  channels, there is also an event 
mechanism for information exchange.  Events are 
broadcast by their sources in the environment, yielding 
event  occurrences .  In principle, any process in the 
environment can pick up a broadcast event; in practice 
though, usually only a subset o f  the potemial receivers is 
interested in an event occurrence. We say that these 
processes are tuned in to the sources of  the events they 
receive. We write e .  p to refer to the event e raised by a 
source p. 

Activity in a MANIFOLD configuration is event driven. A 
coordinator process waits to observe an occurrence o f  some 
specific event (usually raised by a worker process it 
coordinates) which triggers it to enter a certain s ta te  and 
perform some actions. These actions typically consist o f  
setting up or breaking off  connections of  ports and channels. 
It then remains in that state until it observes the occurrence of  
some other event which causes the preempt ion  of  the current 
state in favour of  a new one corresponding to that event. Once 
an event has been raised, its source generally continues with 
its activities, while the event occurrence propagates through 
the environment independently and is observed (if at all) by 
the other processes according to each observer's own sense of  
priorities. 

The following is a MANIFOLD program computing the 
Fibonacci series, 

manifold PrintUnits() i m p o r t .  
manifold variable(port in) import. 
manifold sum(event) 

port in x. 
port in y. 
import. 

event overflow. 

auto process vO is variable(O). 
auto process vl is variable(l). 
auto process print is Pri~tUnits. 
auto process siena is s~n(overflow). 

manifold Main 0 
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{ 
b e g i n :  (vO->sigma.x, vl->siqma.y, 

vl->vO, sigma->vl, sig~a->print). 
overflow, sigma :halt. 

} 

Tile above code defines sigma as an instance of  some 
predefined process sum with two input ports (x,y) and a default 
output one. The main part o f  the program sets up the network 
where the initial values (0,X) are fed into the network by means 
of  two "variables" ( v 0 , v l ) .  The continuous generation of  the 
series is realised by feeding the output of  s i g m a  back In itself 
via v0  and v l .  Note that in MANIFOLD there are no variables 
(or constants for that matter) as such. A MANIFOLD variable is 
a rather simple process that forwards whatever input it receives 
via its input port to all streams connected to its output port. A 
variable "assignment" is realised by feeding the contents of  an 
output port into its input. Note also that computation will end 
when the event o v e r f l o w  is raised by s i g m a .  M a i n  will then 
get preempted from its b e g i n  state and make a transition to 
the o v e r f  l o w  state and subsequently terminate by executing 
halt, Preemption of  Main from its begin State causes the 
breaking of  the stream connections; the processes involved in 
the network will then detect the breaking of  their incoming 
streams and will  also terminate. Finally, note that every 
process has a default input and a default output port. Thus, 
whenever a construct o f  the form p r o d  -> c o n s  is 
encounetered (such as s i g m a  -> p r i n t  above), it should be 
interpreted as prod. out - > cons. in where out and in are 
the default output and input ports of  p r o d  and c o n s  
respectively. 

4 A M O D E L L I N G  F R A M E W O R K  BASED ON 
M A N I F O L D  

In this section we describe a framework for modelling 
activities in organisations based on MANIFOLD (and its 
underlying coordination model IWIM). The first part of  the 
section describes the mataphors used in our framework while 
the second part describes in detail the modelling of  a specific 
scenario (and in the process we take the opportunity to 
introduce some more features of  MANIFOLD). It should be 
noted that it is our intention that our framework be used by 
many different  people,  not necessarily proficient  in 
coordination (or any other form of) programming. Hence, our 
framework is essentially a three level one: (i) the top part is an 
easy to use visual interface which defines graphically the 
interrelationships and behaviour o f  the involved agents; (ii) 
the middle part is a verbal (semi-formal) description o f  the 
states defining each agent and how it reacts to receiving some 
event; (iii) the actual implementation o f  the scenario to be 
modelled in MANIFOLD. 

For reasons o f  brevity we do not describe level (i); this is 
essentially the environment presented in [7] adapted (by 
means o f  extensions and simplifications) to fit our purposes. 
What the environment described there does is to translate the 
visual description to the MANIFOLD code comprising level 
(iii). Level (ii), in addition to providing a semi-formal verbal 
description o f  the coordination activities, can also be used by 
people not comfortable with programming at either of  levels 
(i) or (iii) to specify some agents'  behaviour (possibly by 
filling predefined forms) and then these specifications may he 
translated by other people to either level (i) or directly to level 
(iii). It is an on-going research issue to formalise this level 
properly so that its mapping to either of  the other two levels 
be done in a, as much as it is possible, straightforward manner. 
Eg., the person defining an activity at this level should be 

instructed to include a complete description o f  all possible 
states some entity can be in, data-flow relationships and 
raising and reacting to events (here, the person can be assisted 
by assuming some predefined event behaviours such as 
detecting the presence of  input data, timeouts, etc.). 

4.1 The Metanhors 

In our model, all entities participating in an activity (humans, 
devices, CSCW tools, shared resources such as active or 
passive documents, etc.) are agents .  We distinguish two 
categories o f  agents: w o r k e r  agents which perform 
computational work (whatever that may be according to the 
specific details of  some particular scenario) and m a n a g e r  
agents which are responsible for coordinating the activities o f  
worker agents. Note that manager agents may themselves be 
seen as worker agents from other, higher up in the hierarchy, 
manager agents. However, the genuine worker agents (i.e., 
those performing some actual computational task) such as 
computer programs, CSCW tools, hardware devices, etc. form 
the bottom level o f  the layer and cannot be subdivided any 
further. We are not concerned with the internal details of  these 
agents, only with their interaction with their environment. 

Every agent, whether it is a manager or a worker agent, 
communicates with its environment by means of  at least one 
input por t  and one output port.  I f  the agent in question is a 
human being then a useful metaphor for these ports is in-trays 
and out-trays, if  the agent is a device or software program then 
ports refer to traditional input/outpnt streams (for the case of  
programs) or input/output connection slots (for the case of  
devices). In general, an agent may have more than one input 
and/or output port. 

Furthermore, every agent observes a number of  events  and 
reacts to them accordingly. Depending on the situation, useful 
metaphors for events are telephone calls, commands and 
instructions broadcast over speakers, etc. However, it should 
be made clear that the purpose of  an event is to make one or 
more agents aware o f  some situation that must be handled; not 
to transfer actual data. This is the purpose o f  streams 
introduced promptly. 

Agents communicate actual data between themselves by means 
of  connecting respective pairs of  their input and output ports 
via streams. Again, depending on the particular scenario that 
is being modelled, such a stream could he, say, a human courier 
who transfers work to be done from the out-tray (output port) 
o f  some agent to the in-tray (input port) of  some other agent. 
It is possible that more than one in- and one out-trays are 
involved in a data exchange, eg. three agents may send data to 
the in-tray of  a fourth agent or that data from the out-tray o f  
some agent are sent (in duplicate) to the in-tray of  two agents. 

Every agent is defined at every moment in time by means o f  
being in some state. It is known beforehand which states an 
agent can be in during the lifespan of  its activities. Again, 
useful metaphors are easy to find but depend on the actual 
scenario (eg., the states that a porter could he in are observing 
whether somebody wants to enter/leave a building, opening 
the door to let the other person in/out, close the door and go 
back to the state of  observing). In order for some agent to 
change its state, it must observe the raising o f  a particular 
event. Reacting to an event (and therefore changing the current 
state) typically means establishing new stream connections 
between in/out ports and abandoning old connections. 

The above general description of  our model,  whose  
functionality will become more clear in the presentation o f  a 
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specific example that follows, has some clear advantages over 
the traditional Linda-like approaches we have seen so far: 

• Every worker agent is only concerned with getting 
workload from its input port(s), perlbrming the required 
work for which it is responsible, and putting the outcome 
to its out port(s). Its only other communication with its 
environment is by means of  observing (if at all) any 
events. This is an ideal worker: it can be moved to any 
other environment and as long as it gets suitable input will 
produce the required output without any need to know who 
has sent it the work to be done or, indeed, who (if anyone at 
all!) will make use of its output. 

• Every manager agent is only concerned with making sure 
that the output produced by some worker agents are sent to 
some other worker agents that require it. The manager 
identifies workers by means o f  their responsibilities and 
workflow interdependencies, not the actual work (data) they 
produce. Such a manager agent is also an ideal one: it can 
be moved to another environment where worker agents 
have responsibilities with similar interdependencies, and 
will perform equally well. 

• All entities comprising an activity, whether they be 
humans or otherwise, are treated homogeneous ly .  This 
renders the model very flexible; for instance, new agents 
can come and go dynamically, tools can be upgraded to 
updated versions of  them or completely substituted with 
new ones, "act ive"  documents and other types of  
interactive and dialogue mode applications are supported 
easily, etc. 

• The model is inherently secured at all levels where someone 
would wish to introduce such security measures. The 
workers need know nothing about the environment that 
they are working in. Even the managers, are responsible 
for organising the workflow of information, but cannot see 
the actual data that is being transferred. Furthermore, by 
virtue of  the IWIM model, streams are secured connections: 
data cannot be lost or forged, except in catastrophic 
circumstances. However, if desired, selective broadcasting 
of  data is possible by means of  sending it to the input ports 
of  more than one agent. 

4.2 A Specific Scenario 

The scenario that we will model consists (mainly) of  four 
agents, as it happens all of  them being humans, collaborating 
in the development of  some documem. The first agent is the 
author who is responsible for writing up the document as well 
as performing significant changes to it. The second agent is 
the editor who checks the document's validity, performs any 
corrections and, if  necessary, returns the document back to the 
author for further substantial changes. The third agent is the 
manager  (still a worker process though, as far as our model is 
concerned) which either approves the document or sends it 
back to the editor. The fourth agent is a true coordinator agent 
responsible for managing the workflow between the other 
three agents (it could represent a department's supervisor). We 
also assume and sometimes refer to the presence of  other 
agents (especial ly  atomic agents performing purely 
computational work) whose detailed description is not given 
here. For each agent and for reasons of  brevity we will describe 
levels (it) and (iii) of  our framework as presented in section 
4.1. Level (it) will be described in terms of  the states an agent 
can be in and what event it must observe to make a transition 
to another state, as well as what events it itself may raise. If  
the agent has more than one input or output port, this will also 

be mentioned explicitly. Level (iii) is the actual MANIFOLD 
code produced. 

Author [level:(~b! 

State O: Receive document in in-tray: 
Initially, the agent is sitting waiting for some input (an 
initial document in this case) to be received in its in-tray 
(input port). 

State 1: Produce or modify document: 
Upon receiving a document, the agent performs the 
required work. This is done by forwarding the document to 
an atomic process w r i t e r  which actually does the work 
(say, a word processor) and wait for the changes to be 
made. 

State l a: Put document in out-tray: 
When the work to be done on the document has 
completed, writer sends the document back to the agent 
and the latter puts it in the out-a'ay. 

State 2: Recur from the begining: 
The process w r i t e r  terminates and the author goes back 
m the initial state. 

State 3: Request to be substituted: 
To illustrate the dynamic joining and leaving of  agents we 
enhance the basic functionality o f  this agent so that if  it 
wants to leave, it will raise the event t : ime_ to__qo .  The 
coordinator process then, will substitute this agent with 
another one. 

manifold gut/xgr (ev~it i_had_enough) 
[ 
event prod_amend_doc, dec_ready, 

send_doc, time_to_go, flushed. 

// State SO 
begin: (guard (input, full, prod_~ doc), 

terminated (void)). 

// State Sl 
procl_amend_doc: { 

process writer is Word_Program(doc_r_A~o~y). 
begin: (activate (writer), 

input->writer, 
terminated (void)). 

// State Sla 
decready: (writer ->output, 

post (senddec)). 
). 

// State S2 
sencl_doc: (post (be~in)). 

// State S3 
time._to__go: [begin: (raise(i.hacl_enough), 
guard (output, a_disconnected, flushed), 

terminated (void)). 
flushed:halt. 
} 

} 

We will describe in some detail the c~d¢ produced for this first 
agent since it inuoduces new features of  MANIFOLD. Initially 
A u t h o r  sits back observing whether its in-tray has any work 
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to be done. This is achieved by means of  the construct 
guard ( inpu t, f u i I, prod_amend__doc) which ses a guard 
on the input port and if some dam arrives and is ready to be read 
(by vir tue fo the second flag f u 1 3. ) the event  
p r o d _ a m e n d _ d o c  will be posted to the vicinity of  Au t h o r  
(no other  agent  wi l l  observe  it). The construct  
t e r m i n a t e d  ( v o i d )  suspends execution of  an agent until it 
observes some event that causes it to go to a new state. Upon 
detecting the presence of  prod_amend_doc, Author creates 
an atomic process w r i t e r  (an instance of  a word processor in 
this case), it redirects the document which now sits in its in- 
tray to the default input port of  w r i t e r  and suspends waiting 
for the signal d o e _ r e a d y  which will be raised by w r i  t e r  
once the latter has finished doing the required job and 
terminated its execution. Upon detecting d o e _ . r e a d y ,  A u t h o r  
forwards the now updated document to its out-tray and recurs 
back to its initial state waiting for another document to appear 
in its in-tray. This life-cycle continues until A u t h o r  has 
decided that it had had enough work for today (it is not shown 
here how the agent reaches this decision but only that as a 
consequence it posts the event t i m e _ . t o g o  which causes its 
transition to a new state). It then r a i s e s  the event 
i _ h a d _ e n o u g h  (which is observable to the environment of  
A u t h o r )  and waits until someone (the coordinator in this case) 
has disconnected it from the rest of  the apparatus and any work 
in its out-tray has been delivered (this is achieved by setting 
on its output  port another  guard with the flag 
a _ d i s c o n n e c t e d ) .  When A u t h o r  has indeed been isolated 
from the other agems, it is free to halt. 

Editor [level (ii)l 

State O: Receive document in in-trays: 
Initially, the agent is sitting waiting to receive a 
document from either the author (in which case the 
document will be received in the in-tray f r o m _ a u t h o r )  or 
from the manager  (by means o f  the in-tray 
f r o m _ m a n a g e r ) .  It will then post to its vicinity the 
events check_doc or send~_doc_back respectively. 

State 1: Check document: 
If  the document was received from the author, the editor 
forwards it to, say, a spell checker program which will 
make any corrections necessary. 

State la: Send document to the manager: 
I f  the document is ok, it is sent to the manager by putting 
it in the out-tray t o _ m a n a g e r .  The spell checker program 
terminates execution and the editor recurs to the initial 
state waiting to receive the next document. 

State l b: Send document back to the author: 
If it is decided that the document needs major revisions, it 
is sent back to the author by means o f  putting it in the 
out-tray t o _ a u t h o r .  The spell checker program 
terminates execution and the editor recurs to its initial 
state waiting to receive the next document. 

State 2: Forward document back to the author: 
I f  the document was received from the manager, then the 
implicit understanding is that it requires major revisions 
and it is simply forwarded back to the author (in practice, 
the editor agent could itself attempt to make afly required 
amendments and send it back to the manager - -  this 
additional scenario is not covered here for reasons o f  
brevity). The editor recurs to the initial state waiting to 
receive the next document. 

Editor [level ( i i i ) )  

manifold Editor (port in frcm_author, from man, 
port out to_author, to_man) 

{ 
evezlt check &pc, ckx: ok, doc_not_ok, 
send_doc_back, send_doc_mn. 

// State SO 
begin: (guard (from author, full, check_doc), 

guard ([foreman, full, send_doc_back), 
terminated (void)). 

// State S1 
check_doc: {process checker is 

Speller (doc ok, doc_not_ok). 
begin: (activate (checker), 

frcm_author->checker, 
terminated (void)). 

// State Sla 
doc ok: (checker - >to_man, 

guard (checker.outDut, empty, begin), 
terminated (void)). 

// State Slb 
doc not__ok: ( checker - > to_aut/~r, 

guard (checker. output, empty, be~in), 
terminated (void)). 

} 

// state $2 
send_doc_back: (from_man->to_author, 

post (begin)). 
} 

Manafler Ilevel 6i)l 

State O: Receive document in in-tray: 
Initially, the agent is waiting for a document sent by the 
editor for approval. If  the editor has not responded within 
5 minutes, then an alarm is raised. 

Stale 1: Verify and forward document: 
Upon receiving a document, the manager verifies whether 
the document is indeed ok (the actual verif ication 
procedure is not shown here). I f  the document needs 
further improvement it is sent back to the editor by 
putting it in the out-tray t o e d i t o r .  Otherwise, the 
document is sent to the head of  the department (whose 
actual description is not shown here) by putting it in the 
out-tray t o_dept__head. 

State 2: Timeout functionality: 
I f  the alarm is raised, then the manager raises an 
appropriate signal, which when detected by the 
coordinator process causes the latter to create and link 
into the existing infrastructure a new editor process. 

Further functionality: 
If the manager detects that according to its own criteria 
not enough work is produced (say, receiving sufficient 
number of  documents to approve), it raises the signal 
more_work.-The coordinator process then adds more 
authors (and/or editors). 

manifold Manager (event more_work, 
port out to_d~t_beo_0, to_editor) 

{ 
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event verify_doc, overdue, new editor. 
priority overdue < verify_doc. 

process timeout is alarm(60,000*5,overdue). 

// State S0 
begin: (activate < timeout ), 

guard (input, full, verify_doc), 
terminated (void)). 

// State Sl 
verify_doc: (if ( ~ t  is d~) 

then input - >to d~pt__head 
else input- >to_editor, 
guard (input, empty,begin) ). 

// State $2 
overdue: raise (new editor). 
_ raise (more_~Drk). 

} 

Note the t imeout  functionali ty included in the manager  
process. Timeouts are very important in the modelling of  open 
systems and organisat ional  activit ies since there is no 
guarantee that processes either do exist for the whole period of  
a system's operations or do not malfunction at some period in 
time. Thus, in order to avoid deadlocks and be able to detect 
faults and abnormal termination of processes, timeouts on at 
least some vital  operations must be planned and activated 
when the need arises. In fact, timeout functionality is so 
important that we believe all the processes involved in some 
computation should have by default some timeout strategy. 
Purely for reasons of  brevity, we have chose in this paper to 
demonstrate how our model handles timeouts by concenUating 
on the case o f  editor. Note that the predefined manifold 
alarm(port time, event signal) will post signal to 
the vicinity of  a l a r m  once t i m e  milliseconds have passed. 
Furthermore, note that by means of  the p r i o r  i t y  statement, 
we have given different priorities to the events o v e r d u e  and 
v e r i f y  d o c .  If  it happens that at precisely the end of  the 5 
minutes interval the editor manages to respond, then the 
manager  will go into state 1 rather than 2; otherwise, 
according to the semantics of  the language, the commitment to 
state 1 or 2 would be done nondeterministically. 

Coordinator [level (ii~_l 

State 0: Set up initial configuration." 
The coordinator creates three processes representing an 
author, an editor and a manager and sets up the intended 
stream connections between the in- and out-trays (ports) 
of  these processes. 

State 1: Substitute author: 
If  the coordinator detects the presence of  the signal 
s u b _ m e  from the author, it creates a new author process 
and redirects the stream connections accordingly. The rest 
o f  the processes involved in the configuration would 
never know the difference. 

State 2: Add extra author: 
If  the coordinator detects the presence of  the signal 
r a i s e _ w o r k  from the manager, it creates a new author 
process and links it to the editor. The latter will never 
detect the presence of  more than one author (except 
implicit ly by detecting the raising of  the number  of  
documents it receives to check). Note that in this state we 
introduce limited broadcasting; a document to be sent 
back from the editor to the author, is actually duplicated 

and sent to both authors. We assume that one of  them will 
then work on ~he document and the other will ignore it 
(the code ;equired for this synchronisation is not shown 
here, purely for reasons of  brevity). 

State 3." Timeout functionality: 
If  the coordinator detects the presence of  the signal 
n e w _ e d i  t o r  from the manager, it creates a new editor 
process and links it to the existing infrastructure. 

Coordinator llevel (iii~l 

// We also show the overall MANIFOLD code 
required to set up the apparatus. 
// The "coordinator" process is the special 

manifold 'Ya_in'. 

manifold 
manifold 

manifold 
manifold 
manifold 
manifold 
manifold 

Author (event) import. 
Editor (port in, port in, 

port out, port out). 
Manager (event, port out, port out). 
Writer (event) atomic. 
Speller (event. event) atcmic. 
HeadDept atcmic. 
Document input. 

manifold Main 
{ 
event sub_me, raise_~rk. 
auto process author is Author(sub_me). 
auto process editor 

<dec_from__author, doc__f rcm_gs~ 
{ doc_to_author, doc_to_man> 

is Editor. 
auto process manager 
<input { doc_to_dept_head, doc_back_to_edltor> 

is Manager(raise_work). 
auto process head__dept is HeadDept. 
auto process init_doc is Document. 

// State S0 
begin: (init_doc - >author, 

author - >edi tot. doc__f rein_author, 
editor, doc_to_author - >author, 
editor, doc_to_man - >manager, 
manager, doc_t o_dep t_head - >head_d~Dt, 
manager, doc_back to_editor 

- >edi for. doc_f rein_man, 
terminated (void)). 

// State Sl 
sub_me. *scme_aut/~gr: { 

auto process new_.aut/xDr is Author(sub_me). 
hold (new_author). 
begin: (scme_author- >new.author, 
new_~uthor - >editor. doc_f rest.author, 
edltor.doc_to_author->new_~uthor, 
edl tor. doc_to_Kan - >manager, 
manager, doc_to_dept b ~A94 - >head_dept, 
manager, doc back_to_editor 

- >edi tor. doc_f ~ , 
terminated (void)). 
}. 

// State S2 
more__~rk, manager: { 

auto process another_doc is ~ t .  
auto process another_author is 

AuthOr ( sub_me). 
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hold (another_author). 
be~in: (another_doc- >another_author, 

autl~r- >editor. doc_f rGnt_author, 
another_author 

- >editor. doc__f rcm_author, 
editor.doc_to_author -> 

(-> author, -> another_auLhor), 
editor, dec_to_man- >.snager, 
manager, doc__to_dept__head - >head_dept, 
manager, doc_back to edi tor 

->editor. doc_f rcrn_man, 
terminated (void)). 
}. 

// State S3 
new_editor.manager: { 

auto process another_editor is editor. 
hold (another_editor). 

begin: (author - > 
anot/3er editor, doc_f rein_author, 

manager, doc_back_to__editor - > 
another_edltor.doc_frauan, 

another_editor.doc_to_author->author, 
another_editor.dec_to_man- >manager, 
terminated (vDid)). }. 

} 

Note the difference in the names of  ports and events that are 
passed as actual parameters to various manifolds compared 
with those names used to represent the formal parameters. We 
end this section by visualising the framework in Visifold ([7]), 
MANIFOLD's visual interface. Figure I shows the setup at 
state 0 and figure 2 the setup at state 2. 
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5 CONCLUSIONS AND FURTHER WORK 

We have argued for the need to use control-based, event-driven 
and state-defined coordination programming to model human 
and other activities in information systems. We have 
presented such a model, explained its benefits compared with 
other approaches that have been used so far, and illustrated its 
capabilities by means of a specific, even if rather simple, 
scenario. 

In the short space of a conference paper it would be impossible 
to describe in detail all the characteristics of our model or 
compare them in detail with other related approaches. For 
instance, we have said nothing about examining types of 
values transmitted via streams (sometimes it may be desirable 
to know of the data's structure, if not content), etc. This and 
other issues can be adequately addressed by our model. 

The reader may be concerned that we make no mention on the 
vast literature that exists lbr CSCW, groupware, and associated 
fields. We should again stress the fact that we do not claim to 
have presented a lully fledged coordination framework Ibr 
information systems. We have only pointed out the benefits 
Ibr using a control-driven coordination paradigm as opposed 
to a data-driven one. We are currently thoroughly evaluating 
the effectiveness of this basic framework to model various 
scenarios such as version management, electronic voting, 
teleconferencing, open distributed systems, etc. In addition, 
we will let users in private and public institutions use the 
model for their own activities, thus providing invaluable 
feedback in further fine-tuning it (especially with respect to 
levels (i) and (ii)). Eventually, we aim to developing a fully- 
fledged control-driven framework for coordinating people and 
supporting cooperative work by combining the characteristics 
of a coordination language such as MANIFOLD with the 
principles and ptactices pertaining in CSCW and related fields. 
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