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Abstract 

et al. ([18]) gives an accurate reflection of contemporary 
interest in this area. 

The generalised term graph rewriting computational model is 
exploited to implement concurrent languages based on 
Girard’s Linear Logic (LL). In particular a fragment of LL is 
identified which is able to serve as a “process calculus” and 
on which the design of a number of languages can be based. It 
is then shown how this fragment can be mapped onto 
equivalent sets of graph rewriting rules that both preserve the 
functionality of the LL connectives and also exploit the 
properties of linearity for efficient implementation on a 
distributed architecture. Notions such as channels, 
production and consumption of messages, and N-to-N 
communication between agents, are interpreted in the world of 
(term) graph rewriting. This work serves two purposes: i) to 
extend the notion of Term Graph Rewriting as a generalised 
computational model for the case of linear concurrent 
languages, and ii) to act as an initial investigation towards a 
fully linear term graph rewriting model of computation able 
to be implemented efficiently on distributed architectures. 

Keywords: Programming Languages far Distributed 
Execution; Linear Concurrent Programming; Term Graph 
Rewriting. 

Introduction 

Term graph rewriting systems (TGRSs) first emerged in their 
currently recognisable form in Barendregt et of. ([5]). The 
impetus for this work was the desire to establish a precise 
framework within which lower level issues appertaining to the 
implementation of (among others) functional and logic 
languages could be reasoned about mathematically. A number 
of groups, in particular in Nijmegen, East Anglia and London, 
have taken up TGRSs as a useful vehicle at the 
implementation level. The ability of TGRS to accommodate 
the, often divergent, needs of a number of language families 
such as concurrent logic ([ 131) and functional ([lo]) justifies 
its nature as a general purpose computational model, and 
languages based on TGRSs are suitable as compiler target 
(intermediate) languages. In particular, a number of specific 
TGR languages have been developed, all closely related, 
among which we may mention Clean ([ 14]), DACTL ([9]), and 
MONSTR ([2]). The last of these, MONSTR, can be viewed as a 
subset of DACTL, at least in the syntactic sense, and it is the 
“machine language” of the distributed architecture Flagship 
(II 111. MONSTR will be of considerable concern to us in this 
iape;, being the target of our translation of a fragment of 
Girard’s Linear Logic (LL). More recently, the relationship of 
TGR to both other paradigms for graph rewriting and to other 
issues in computer science has been explored, and the uses to 
which TGR has been put have expanded. The collection Sleep 

“Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commerical advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. TO copy 
otherwise, or to republish, requires a fee and/or specific permission.” 

0 1995 ACM O-89791-658-1 95 ooO2 3.50 

Girard’s LL ([S]) arose as a result of making logic more 
sensitive to the way formulae were produced and consumed 
during reasoning, eg. in the sequent calculus. The 
multiplicative fragment in particular, enforces the constraint 
that each formula is produced exactly once, and is consumed 
exactly once, This restriction has obvious computational 
repercussions, and forces distinct pieces of a computation to 
interact in only the simplest and cleanest of ways, giving 
scope for cheap approaches to resource management. This 
realisation has spread rapidly through a number of areas of 
computer science, and has spawned research into the “linear” 
subsets of many already extant models of computation. The 
logic and functional programming models have 
unsurprisingly been prime candidates for such work and in 
this paper we concentrate on a fragment of LL that is used in 
such languages ([6,12,15,16,19]). 

What is perhaps more surprising, is that the implementation 
problems of distributed parallel TGR, crystallized in the 
design of the MONSTR language, threw up many questions 
whose answers turned out to be closely related to the criteria 
forced by linearity, and in a piquant historical coincidence, 
did so at around the same time. See for instance the work by 
Watson and Watson ([ZO]), Watson et al. ([21]), and Banach 
and Watson ([4]). The smoothness of the translation we 
present in this paper is concrete evidence for this claim. 

It should be emphasised here that the purpose of the present 
work is not to describe in detail the implementation of any 
specific coQcurrent linear language in MONSTR, this is one of 
the additional issues addressed in the extended version of 
this paper. Instead, we identify a number of key programming 
techniques based on linearity and we show how they can be 
mapped onto equivalent sets of TGRS rules. In the process we 
(hopefully!) succeed in: i) justifying a number of important 
decisions that were taken in the design of Dactl and MONSTR, 
ii) illustrating how the concepts of linearity can be expressed 
in TGRS by means of the notion of a statehofder, and iii) 
providing evidence that the TGRS model can also be viewed 
as a generalised computational model for linear concurre’nt 
languages. 

The rest of the paper is organised as follows. The next section 
introduces the MONSTR computational model. This is 
followed by a description of a fragment of LL on which a 
number of linear languages are based ([6,12,19]). The main 
part of the paper presents the mapping of this fragment onto 
operationally equivalent sets of MONSTR rewrite rules. For 
lack of space, we present the key concepts by discussing 
illustrative examples. A more formal translation scheme will 
be presented in the full version of the paper. The paper ends 
with some conclusions and suggestions for further work. 

MONSTR 

MONSTR arose as a result of the attempt to reconcile the 
desire for an intermediate language with rewriting-based 
semantics, with the reality of a parallel machine such as 
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Flagship ([ 11,211) where the primitive atomic actions were in 
principle of much smaller granularity than atomic rewrites of 
arbitrary size. The result was the term graph rewriting 
language MONSTR, for which the implementation problem 
did not make excessive demands on the architecture’s 
semantics. 

The operational semantics of MONSTR deal with the 
transformation of term graphs. These are graphs in which the 
nodes are labelled with fured arity symbols; each node having 
a number of out-arcs determined by its symbol, while itself 
being the target of an arbitrary number of in-arcs. The nodes 
and arcs of MONSTR graphs are further decorated with certain 
markings. If a node is marked with ‘*‘, then it is active and 
can serve as the root of a redex. If it is marked with ‘tn’, then 
it is suspended waiting for n notifications (see below), and 
then and only then n of its out-arcs are marked with the 
notification mark ‘I’. (This correspondence between 1” and n 
*‘s is called balancedness, a vital invariant of MONSTR 
graphs.) The only other possibilities are that nodes and arcs 
are unmarked (i.e. idle). 

Computation proceeds by arbitrarily selecting an active node 
t in the execution graph and attempting to find a rule that 
matches at t. The easiest case to describe is when there is no 
such rule, whereupon notification takes place: The active 
marking is removed from t and a “notification” is sent up 
along each *-marked in-arc of t. When this notification 
arrives at its (necessarily) X” -marked source node p, the A 
mark is removed from the arc, and the n in p’s tn marking is 
decremented, preserving balancedness (to is replaced by l , so 
suspended nodes eventually wake when all their 
subcomputations have notified). 

The other case, when a rule matches at t, needs a little more 
background for its description. The symbols that label nodes 
are statically divided into three classes: functions, 
constructors, and stateholders. Functions label roots of LHSs 
of rules but are not allowed to occur at subroot positions; 
they may be redirected (see below). Constructors and 
stateholders can only occur at subroot positions of LHSs of 
rules; and while stateholders may be redirected, constructors 
may not. Here is a MONSTR rule: 

F[ Uns[ a b ] x:Var ] =P. WC1 a ^*b ] , x := *m 

The LHS and RHS are separated by ‘=>‘. On the left is the 
pattern with root labelled by function F, whose arguments are 
a constructor labelled Cons with two unspecified arguments, 
and a stateholder x labelled by Var. The notation makes it 
plain that F-Iabelled nodes have two out-arcs, and that if this 
rule is to match at t, then the subgraph immediately 
descending from t must be of the specified form. 

For future reference we note that when rules are separated by 
‘ ; ’ they are pattern matched in sequence (whereas a group of 
rules separated by ’ 1’ are matched in an arbitrary order). With 
this proviso, the first rule that is found to match is used. 

Suppose the rule indeed matches at active t. The RHS of the 
rule specifies new pieces to be glued into the execution graph, 
namely firstly, a node labelled by G, created suspended and 
with the same arguments as the LHS Cons node, the second of 
which is activated (i.e. has its marking changed to l if 
previously idle), and such that G is waiting for this second 
argument to notify; and secondly, a node labelled by 
SUCCEED, created active. The => further indicates that the LHS 
root F is to be redirected to G, and x : = *SUCCEED indicates 
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that the node matched to x is to be redirected to the new 
SUCCEED node. Redirection itself consists of swinging all in- 
arcs of the LHS node of the redirection (eg. F) so that they 
point to the RHS node of the redirection (eg. G). All 
redirections are performed simultaneously. 

According to the above, no node in a MONSTR execution 
graph is ever destroyed. The rewriting model does not 
prescribe what nodes are ever to be removed from an 
execution graph because the rather arbitrary way in which arcs 
of the graph may cause it to be connected up, means that we 
can not statically determine which nodes are useless. 
Destruction of nodes is therefore done by garbage collection. 
Apart from specially designated system roots, active nodes 
are live, as are nodes accessible from a live node along an idle 
arc, as are also nodes which can access a live node along a 
notification arc. All others are garbage. This definition turns 
out to be sound. 

In order that executions have various desirable properties, 
MONSTR imposes a further collection of restrictions. All 
functions must have a default rule (i.e. one that does no 
pattern matching at all in the LHS), so that every active 
function node can rewrite. (Correspondingly, all active 
constructors and stateholders can only notify.) Pattern 
matching by functions is only allowed to be one level deep, 
and each function has a statically fixed set of positions at 
which non-default rules must pattern match; at most (a 
statically fixed) one of these is permitted to match a 
stateholder. A further restriction is imposed ihat any 
notification arc must point to a node which is either non-idle 
or a stateholder (arcs are said to be state saturated). Finally, if 
an argument needed for matching by a rewrite is found to be 
non-idle, the rewrite suspends until the subcomputation 
notifies in the normal way, although this is a feature of 
MONSTR semantics that we will not need below. 

The above constitutes a brief sketch of MONSTR and its 
abstract execution model; for a more detailed account see [2]. 
At the implementation level, term graphs may be represented 
by “packets” in memory, a packet being a data structure 
containing principally, a marking, a symbol, and a sequence 
of pointers to child packets. Thus each packet represents a 
node and its out-arcs. Notification arcs are in fact represented 
by reversed pointers (the balancedness invariant is vital for 
this), and there is thus some additional machinery needed to 
cope with the fact that a node can be the target of an arbitrary 
number of notification in-arcs. This representation of 
notification arcs is also in sympathy with the definition of 
livenessjgarbage given above. Redirection is efficiently 
implemented by overwriting the LHS packet with the RHS 
packet; all in-arcs automatically point to the RHS packet 
when this is done. Garbage collection may take place at any 
time convenient to the implementation and is not mentioned 
further below. 

When the packet store is distributed, as in a distributed store 
parallel machine, the shallowness of the pattern matching 
helps make rewriting tractable. The usual strategy is to move 
the active root to any stateholder if necessary (since there can 
be no more than one of them, this is possible), collect copies 
of needed constructors (since these are not redirectable, they 
will not change subsequently in the packet store), and then 
complete the rewrite. The suspension mechanism mentioned 
above conceals most of the lower level machinations from 
higher levels of abstraction. The details of these tricks are 
thoroughly discussed in [2]. 



From the perspective of higher levels of abstraction, “linear” 
models of computation correspond closely to the principal 
features of MONSTR, neatly eliminating some awkward 
special cases that MONSTR otherwise has to take into 
account. The single stateholder argument of a MONSTR 
function in a rewrite maps nicely to the interaction of exactly 
two entities in a single computational step of a linear model; 
the fact that both function and stateholder can be redirected in 
a single computational step reflects the symmetric role played 
by function and data in linear models. The mapping of a 
fragment of multiplicative LL to MONSTR illustrated in the 
fourth section is a good example of this. The whole 
phenomenon is not surprising since the forces underlying the 
designs of MONSTR and of linear models of computation are 
fairly similar at the implementation level. 

A fragment of Linear Logic as a “Process Caicuius” 

In order to express one of the most important concepts of LL, 
that of accounting, most linear languages ([6,12,19]) are 
based around the notion of channels and messages. In 
particular, the traditional notion of a variable shared among a 
number of processes and instantiated to some value is 
replaced by the notion of a channel shared among a number of 

- agents which are able to post messages to that channel as well 
as consume them. Concurrency is then achieved by allowing 
the asynchronous or synchronous communication between a 
number of agents by means of posting or receiving messages 
through shared channels. The way a particular message that 
was posted to a channel is selected by some agent is specified 
using merhods. 

A method can consume messages (which are possibly required 
to match specific patterns), and can suspend (if necessary) 
until the required messages have been posted there, thus 
achieving the required synchronisation between concurrently 
executing agents. Upon commencing execution, methods can 
create further messages and channels. Depending on the 
characteristics of each particular linear language, an agent 
may be able to post to a channel, in addition to messages, 
methods as well as other channels. 

The linear behaviour of such a framework stems from the fact 
that by “reading” a message from a channel, an agent causes 
its deletion. On the other hand, if the same message is posted 
to a channel more than once by one or more agents, it will 
appear there precisely that many times. Furthermore, 
depending again on a language’s characteristics, other 
features are also offered such as specifying whether a 
particular agent should execute once or multiple times, 
examining the messages posted to a channel without 
removing them, modelling higher-order linear concurrent 
programming, etc. 

A number of linear concurrent languages have been designed 
around the above notions, where the underlying logic 
supported is essentially the (9, &, -0,3, V) fragment of LL. In 
particular, the basic syntax of such a language is as follows 
(where A, x, T, c, and M denote agents, channels, terms, 
constraints and messages respectively and terms and 
messages comprise an appropriate combination of data terms 
and channels): 

Idle agent (Unit, Termination) 1 

This agent does nothing. It denotes termination of the 
program. 

Create new channel (Hiding) 3X.A 

Create a new channel x local to agent A (‘3’ is the existential 
quantifier). 

Send a message X:# 

Send message M to channel X, where ‘: ’ is the channel 
operator. 

Linear implication (method) (I] VY.H -0 A 

where H : : == Idle agent 1 Procedure Call 1 Linear 
Composition ) X:M 

For the latter case (where H is X : M) the agent receives message 
M from channel x and then behaves like A where free 
occurrences of Y are substituted by M (‘V ’ is the local 
universal quantifier). Note that unless the reusability operator 
‘ ! ’ is used, the agent will execute just once. Upon receiving M, 
the message is deleted from the channel X. 

Blocking ask (matching method) vx.c -> A 

Wait until (if ever) the constraint c is satisfied and then 
execute agent A. For the purposes of this work we only 
consider primitive constraints. 

Parallel (Linear) Composition ABA 

Both agents execute concurrently. 

Procedure Call P(Tl,.m,Tn) 

where P is a procedure name and ~1 to in are terms. 

Choice Rl&Rl 

Each one of Rl, R2 is. respectively of the form p -Q A, q -0 B, 
so (p -Q A & q -0 B) reduces to either A or B depending on 
whether it is p or q respectively that it is supplied; p and q are 
themselves Oft& fOm X:M Or&Y&. 

Thus by applying the LL principle of “formula as msource and 
proof as computation” one can view the linear operators as the 
building blocks for constructing sequents, i.e. configurations 
of concurrently executing agents. In the following section we 
present a number of examples which are used to illustrate the 
use of the particular fragment of LL we are considering in this 
paper but also to describe the mapping of the LL connectives 
to equivalent sets of MONSTR rewrite rules. 

A Term Graph Rewriting Modelling of Linear Logic Agents 

Here we discuss how the functionality of the LL fragment 
described in the previous section can be modelled in terms of 
operations on term graphs, and more generally how a run-time 
configuration for a number of LL agents executing 
concurrently and communicating by means of exchanging 
messages can be represented as a term graph comprising a 
number of active and suspended graph nodes synchronised 
by access to a number of stateholders. .In the next subsection 
we present such a MONSTR run-time configuration and we 
show the strong relationship between stateholders and 
channels as well as the power of the former. We then present 
by means of suitable examples the effectiveness of our model 
in implementing a variety of programming paradigms. 

A MONSTR run-time configuration for channels 

One of the most important aspects of implementing a LL 
language is how to represent the notions of channels and 
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sending and receiving messages. Activity at run-time evolves 
around channels: messages posted to a channel remain ‘in a 
suspension queue until claimed by some method posted to 
that channel. Also, methods posted to a channel consume 
messages posted to the channel, suspending if necessary until 
the required message has appeared there. The methods are then 
deleted from the queue of methods associated with that 
pa&ular channel except if the reusability operator has been 

-used. Note that in a distributed implementation of such a 
language, the load distribution of a program uses the 
channels as points of reference, and methods and messages 
associated with a channel are moved to the processor where 
the channel in question is located ([ 15,191). 

We recall from the second section that this is exactly how a 
distributed implementation of MONSTR would behave; in 
particular when a rule that is candidate for reduction involves 
the use of constructors and a stateholder, both the function 
and the constructors are moved (respectively copied) to the 
processor where the stateholder is held. We highlight here 
some features of MONSTR which have proved invaluable in 
the design of a LL language to MONSTR mapping strategy: 

l Atomic overwriting of a stateholder, allowing a number of 
concurrently executing processes to compete for control of 
it. 

l Repeated updating of a stateholder (modelled by a 
sequence of overwrites of the representing packet), 
allowing the modelling of side-effects such as destructive 
assignment. 

l Ability to organise workload locality around the 
stateholders involved in the computation. 

l Arbitrary format of a stateholder node in terms of number 
of descendant arcs and type of arguments which, as shown 
later on, allows among others the modelling of higher- 
order LL features. 

We now describe a MONSTR configuration which is able to 
model the run-time behaviour as described above. A channel 
is, obviously, a stateholder. Posting of messages to this 
channel is modelled by means of the following MONSTR rule 
system (see below for the significance of the 
GARBAGE-COLLECT CO?IShUCtOr): 

c:=*~l[message] ; 
sad[c message] => #serKyc llBsage1; 

The first rule matches an empty stateholder and posts its 
message there while the second one suspends if the 
stateholder already contains a value. Any number of Send 
processes, all of which share the stateholder Channel-Empty, 
can attempt to reduce in parallel; however, only one of them 
will be able to post its message. The rest of them will suspend 
waiting for some other process- to “consume” the message and 
free the stateholder again. Which one of the Send processes 
will succeed in “posting” its message is of course non 
deterministic, thus modelling correctly the asynchronous 
posting of messages to a channel. Note that the s end 
processes suspended on some stateholder (channel) 
effectively form the message suspension queue associated 
with that stateholder. The consumption of the message held in 
the stateholder by a corresponding “receive” process causes 
the waking of the Send processes suspended on it which will 
compete again for the next posting. Actual adherence to the 
aforementioned operational semantics is guaranteed by 
MONSTR’s ability to update stateholders atomically. 

The consumption of messages posted to a channel can be 
modelled by means of “symmetric” MONSTR rule systems 
similar to the following one: 

Rf32&Je[c:cIlzmel~~l[~l I 3 -aXUtzr, 

l?Exz&e[c:m~ 1 => #ReceiV2[Acl: 

where we assume the existence of some process Consume that 
“uses up” message. Again here, the fust rule is responsible 
for getting the message while the second provides the 
required synchronisation by suspending if necessary. 

In practice the actual MONSTR rule sets produced do not 
make use of a general Receive process, only of a Send one. 
The reason is that the functionality of Receive is coded up in 
the rule sets of the methods associated with a stateholder, 
which themselves are represented as MONSTR functions. 

Again a process representing a method suspends if it attempts 
to access the value of an empty stateholder, thus achieving 
the required synchronisation. A number of such processes can 
be suspended on the same stateholder, effectively modelling a 
method suspension queue. 

The run-time behaviour of a MONSTR graph configuration 
can be seen diagrammatically as follows: 

*Send[ ] 

#Pl[ . . . 

#PSI 1 ..“.. 

\, 

h 

\ 

h 

ch:Channel-Empty 

where Pl and ~2 represent methods suspended on receiving a 
suitable message on the stateholder ch by the concurrently 
executing Send processes. 

Note that all the MONSTR functions produced have no parent 
nodes in the RHS of any rule that creates them. (in other words 
the values that they themselves generate are consumed by no 
one). In fact, the only graph sharing produced is that of 
stateholders. Thus we could have written alternatively 

Receive[c:cI=mel~lftlglell -> l 2+ztlyftxplel , 
c:=B; 

I&szeive[c:~ I --z #PJEc&ve[^c]; 

using Dactl’s ‘->’ operator to avoid a superfluous root 
redirection ([Q]). But this is not permitted in MONSTR so we 
rewrite all functions to the dummy constructor 
GARBAGE-COLLECT, its name indicating what ought to 
happen to it. In fact to establish that no function node has a 



parent in the run-time configuration requires a global 
analysis of the whole ruleset, although an extremely simple 
one WI). 

The above run-time configuration can be used to model most 
of the types of communication using channels: one-to-one 
(point-to-point), one-to-many (broadcasting) and many-to- 
one are implemented trivially; one-to-one-of-many (Linda 
type) and many-to-many can also be implemented provided 
that the methods that will consume the posted messages have 
themselves already been posted to the appropriate channel. 

Example programs 

In this subsection we show concrete translations of a number 
of representative LL programs, illustrating how various 
programming idioms of LL are transformed into equivalent 
MONSTR rule sets. Note that in practice, before the actual 
translation is performed, a LL program is translated into a 
“kernel” form suitable for direct mapping onto MONSTR 
rewrite rules; for lack of space we do not present these 
intermediate transformations here and instead we refer the 
interested reader to the full version of the paper. Nevertheless, 
the main stages in these transformations are: i) the use of only 
one level of agent definition and the pulling of all the others 
to the top level (possibly by means of introducing additional 
auxilliary agents), ii) the use of multi-clause style instead of 
the block structured one because the former can be translated 
directly to an equivalent rewrite rule system, and iii) the 
deletion of any matching operators and incorporation of the 
associated functionality into the generated rewrite rule 
system. We start with the unavoidable append: 

! vLl,~,o.l&Ipd(Ll,L2,o) 

--o (! vM.Ll:M 4 ( M=[l -> OS2 

& ! VA,B.K=[A(B~ -> ( Ek.o:[~(ci @ ALpgd(~,L2,cl 1 

The above program uses channel continuations to increase 
performance. Note that ‘(4’ is the “forward messages” operator 
([ 191) which effectively replaces one channel by another. Its 
translation to MONSTR is as follows: 

Appad[ll:a.lamel~l~ilI l2o]*~mLB2r, 
-10 121, 
ll:=*ctmmsl~l 

AFpendlU:Cbarm&#lDna[a bll I2 01 
- *GARBa&!!, 

*MC0 ams[a c:clmrndRfptyl I, l w[b I2 cl, 
11:=*-l 

ALparlu1:chipmel_Btpty 12 01 3 Y~[All I2 01; 

A few points should be made about the above program. First 
of all, in order to keep the code size presented at a manageable 
level and avoid unneccesary details we have deliberately 
ignored the one level pattern matching restriction of 
MONSTR. In general a rule of the form 

Pk:c?lECSl~l[Patteml ."I 3 l G?!lWGQgYucr, -, 

is actually a combination of 

c : =*cllma-m; 

PIc:(%Tmel~Full[Pat~] ".I 
=' Q+FwGE-m, *P_aarx[c Fatxem]; 

PJIDc[c . ..I => *Wm. c:=*W~; 

where P-aux performs the multiple level pattern matching. 
Bearing this in mind, we note that a LL agent definition is 
compiled into n+l MONSTR rules where n is the number of 
clauses defining the agent and there is one more rule 

implementing the required synchronisation on an empty 
channel. Note also that each rule matching the stateholder 
includes a non-root overwrite in its RHS which effectively 
implements the consumption of the message. Finally, note 
that if the reusability operator is used then this is 
implemented in MONSTR by means of recursion. 

The above MONSTR program makes use of the function 
Forward[y x] which implements the ‘@’ operator by 
forwarding messages from channel x to channel y. This 
function is defined in MONSTR as follows: 

Fhma?rd[y x:-1 => wozwazdry +X1 : 

A possible call to the above append program is the following 

u:r1p.12:[[2 w:rJll, L4:r3p&r4 L6:r111, Appad(L1,L4,0) 

which in MONSTR is translated as follows: 

nurrDL3 o:v, 
ll:v, 12:-~, 
l3:v, 14:-m. 
Vi:-, 16:v, 
*Smxl[ll caIs[l 1211, *sead[l2 azls[Z 
*sad1l3 Nil], *S&i114 a?S[3 1511, 
l sarl[lS Cms[l 161 I, *%~I[16 Nil], 
l zQzefa[ll 14 01; 

Ull* 

where INITIAL denotes a redex that by convention starts off 
the computation. 

MONSTR’s insistence that stateholders must be updated 
atomically allows the modelling of Linda-like generative type 
of communication ([7]). For instance, the two agents 

VL.Receivel(L) 

-+ ( VM.L:M -0 ( VC.M(a,C) -> ansmal(c) 1) 

VL.Recei~(L) 

4 ( VM.L:M 4 ( VC,D.M=III(CX) --> OXSUE~,(~,D))) 

translated to MONSTR as follows 

ocnsunel[cl; 

R?ceivS~l:Uszm~~AJUll[M[c dill 0 wafUX?r, 
Ca=.sdlc dl; 

can compete for consuming the single message III (a, X) . The 
usefulness of such a technique in modelling open and 
distributed systems is discussed in ([12]). 

Finally we show how higher order LL programming 
techniques can be modelled using stateholders. Consider the 
following LL agent which connects a number of processes 
Proc in a linear topology by means of Left and Right 
communication channels (where ‘ ’ is the “black hole” 
operator which simply consumes any message it receives). 

! v~,~t.Fd.gilt.~(Ra.Left,Ri.ght) 

4 ( tjM.ProcM4 ( FHIil ->- 

& VPr.&m(Pr,Nil) --> Pr(Left,Rigbt) 

& VPr,Prs.~(Pr,Pre) 
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--> ( 3Link,Pr(Left,Link: (8 

t43pcPrs,G.rlk.RightirPIt) ) ) ) 

Note that PI-oc is of the form m (PI-, pr s ) where Pr is a 
function (process) name and PUS is a channel continuation or 
Ni 1. For lack of space we do not show the whole translation 
(which adheres to the principles outlined so far) but instead 
we concentrate on the modelling of, say, the third case where a 
new process Pr is created and linked to the rest of the 
processes. 

Msp[Fna:--FullrM[pr:~ PI 1 left rigfit 
3 %ap[prs link rightI, *&pl~lwpr left link], 

link:Qnnnel~Ellpty; 

The above rewrite rule exploits the extensive pattern 
matching facilities that are supported by Dactl (and hence by 
MONSTR too) and the so called screwdriver techniques ([9]) 
which allow the efficient manipulation of the graph itself. In 
particular, the left hand side matches the graph only if the 
first part of the message in the channel is a REWRITABLE node, 
i.e. a function name. Then in the right hand side a new 
function application is generated by means of the screwdriver 
function apply-TO which is defined at the MONSTR level as 
follows: 

A&y_?b[f:Fuoet.i~e a@_. argn] 3 ‘F[azyl . ~1; 

where F is the function name of the respective handle f. 

Performance Issues and Discussion 

The following essentially short performance analysis 
illustrates the behaviour of a TGRS implementing a linear 
concurrent program compared with the TGRS generated for the 
equivalent version of the program written in a non linear 
concurrent language. In particular, we compare the linear 
version of Append presented in the previous section with the 
equivalent version written in a state-of-the-art concurrent 
logic language ([ 171) which was transtated to MONSTR using 
the techniques described in [3,13]. The programs were mn 
using the Dactl interpreter ([9]) and exploiting the statistics 
facilities offered by that implementation. Note that what we 
compare here are the relative differences in the statistics of the 
two programs rather than the absolute performance figures. 

Perf Params: R FC AvP MrP GrN 
CL Append 148 75 1.97 4 147 (24 INDs) 
Lin Append 7 6 27 2.81 3 100 (51 INDS) 

R: Rewrites; PC: Parallel cycles performed; AvP: Activations 
processed per cycle (mean value); Mr P: Activations 

processed per cycle (peak value); GrN: Graph nodes created 

The linear version (Lin Append) is in all respects more 
efficient than the corresponding non linear one. The linear 
version does not need to reflect on failure (the capture of 
failing derivations must be coded up by the programmer 
himself if he so wishes) like the corresponding concurrent 
logic version (CL Append) and hence we can dispense with 
the associated set of MONSTR rewrite rules that would 
otherwise be needed ([3]) and the overhead they incur. 
However, the linear version is also more efficient in memory 
consumption. The concurrent logic version generates 147 
nodes, 24 of which are IND ones needed for sharing rewritten 
packets; this is a standard technique used in implementing 
languages using graph rewriting ([5,14,19,20,21]). These IND 
nodes cannot be dispensed with since in a concurrent logic 

program a data structure may indeed be shared by more than 
one process. The linear version, on the other hand, generates 
100 nodes and 51 of them are IND nodes which can be 
dispensed with because it is guaranteed by the linear notion 
of accounting for resources that only one agent will use a data 
structure. In the full version of the paper we further explore 
the effects of linearity in a TGRS program. 

Composite data structures and typing 

Many of the LL languages proposed support composite data 
structures and typing ([6,12,19]). Here we can oniy touch 
upon this issue and we refer the reader to the full paper for 
further details. The representation of composite data 
structures such as arrays and the implementation of 
associated operations on them can be efficiently supported by 
means of the Vet tors module that is supported by the Dactl 
implementation and allows a variety of accessing methods 
(lazy, eager, parallel, etc.). 

Regarding typing it is very easy in MONSTR (as, indeed, it is 
in Dactl as well) to impose type restrictions on stateholders. 
For instance, the following typed version of Send refrains 
from sending a message that is not either an integer or real. 

3 fG?PBmLazcLEKT, c:=*vI~l; 
~lc:-mYl rressagel * #M[^o nw=X?=l; 
SarlVmy Any1 3 QSBGlL-; 

Note the use of the union operator ‘+‘; in particular a rule with 
a pattern such as n : (A+B) is a candidate for matching if the 
graph node matches either A or B. Pattern matching operators 
are further discussed in [9]. 

Conclusions 

We have investigated the possibility of using term graph 
rewriting, as expressed in the distributed model MONSTR, to 
implement ‘linear concurrent languages. In particular, we 
identified a fragment of LL on which the modelling of a 
number of linear concurrent languages is based and we 
showed how it can be implemented in terms of equivalent sets 
of term graphs. In the process we identified a number of 
important issues where both LL and MONSTR have adopted 
similar solutions, for instance in the case of stateholdes 
(channels). 

The MONSTR term graphs produced, exhibit a linear 
behaviour focused mainly on the “interaction” of a 
stateholder representing a channel with the root packet 
representing the consumer method. They also enjoy certain 
properties such as the fact that graph sharing is constrained 
only on stateholders. Coupled with a dataflow analysis ([l]), 
this can assist the underlying implementation significantly, 
for instance in garbage collection. We view the work 
presented here as a step towards designing a linear term graph 
rewriting model. 

It is significant to note that many of the techniques discussed 
in this work have been around in the graph rewriting 
community for some time ([3,4,11]). In fact, the code 
produced by our LL to MONSTR methodology is similar to 
that for other concurrent logic languages ([3]). There, 
however, the insistence on single-assignment stateholders 
stemmed from the requirement to keep in line with the non- 
destructive nature of single-assignment logic variables. The 
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notion of a channel proposed in many LL languages frees the 
implementor to use the semantics of stateholders more fully. 

Indeed, regarding implementation, similar compilers that 
have been written for mapping a variety of concurrent logic 
languages onto Dactl and MONSTR ([13,3]) are currently 
being modified to suit our purposes. The derived code would 
be able to run on the distributed Flagship machine 
([11,20,211). 

A final point to note is that intermediate compiler target 
languages such as MONSTR (and Dactl for that matter) can be 
used as a basis for comparing the various ways certain 
important aspects of linearity are handled by different 
concurrent linear languages such as synchronisation 
mechanisms. The fact that computational models like 
MONSTR are very careful to support only those features 
which can be efficiently implemented by a parallel machine 
makes this research work even more important. 
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