
LINEAR BEHAVIOUR OF TERM GRAPH REWRITING PROGRAMS

Richard Banach George A. Papadopoulos

CS Department, University of Manchester CS Department, University of Cyprus

Abstract

et al. ([18]) gives an accurate reflection of contemporary
interest in this area.

The generalised term graph rewriting computational model is
exploited to implement concurrent languages based on
Girard’s Linear Logic (LL). In particular a fragment of LL is
identified which is able to serve as a “process calculus” and
on which the design of a number of languages can be based. It
is then shown how this fragment can be mapped onto
equivalent sets of graph rewriting rules that both preserve the
functionality of the LL connectives and also exploit the
properties of linearity for efficient implementation on a
distributed architecture. Notions such as channels,
production and consumption of messages, and N-to-N
communication between agents, are interpreted in the world of
(term) graph rewriting. This work serves two purposes: i) to
extend the notion of Term Graph Rewriting as a generalised
computational model for the case of linear concurrent
languages, and ii) to act as an initial investigation towards a
fully linear term graph rewriting model of computation able
to be implemented efficiently on distributed architectures.

Keywords: Programming Languages far Distributed
Execution; Linear Concurrent Programming; Term Graph
Rewriting.

Introduction

Term graph rewriting systems (TGRSs) first emerged in their
currently recognisable form in Barendregt et of. ([5]). The
impetus for this work was the desire to establish a precise
framework within which lower level issues appertaining to the
implementation of (among others) functional and logic
languages could be reasoned about mathematically. A number
of groups, in particular in Nijmegen, East Anglia and London,
have taken up TGRSs as a useful vehicle at the
implementation level. The ability of TGRS to accommodate
the, often divergent, needs of a number of language families
such as concurrent logic ([131) and functional ([lo]) justifies
its nature as a general purpose computational model, and
languages based on TGRSs are suitable as compiler target
(intermediate) languages. In particular, a number of specific
TGR languages have been developed, all closely related,
among which we may mention Clean ([14]), DACTL ([9]), and
MONSTR ([2]). The last of these, MONSTR, can be viewed as a
subset of DACTL, at least in the syntactic sense, and it is the
“machine language” of the distributed architecture Flagship
(II 111. MONSTR will be of considerable concern to us in this
iape;, being the target of our translation of a fragment of
Girard’s Linear Logic (LL). More recently, the relationship of
TGR to both other paradigms for graph rewriting and to other
issues in computer science has been explored, and the uses to
which TGR has been put have expanded. The collection Sleep

“Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commerical advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. TO copy
otherwise, or to republish, requires a fee and/or specific permission.”

0 1995 ACM O-89791-658-1 95 ooO2 3.50

Girard’s LL ([S]) arose as a result of making logic more
sensitive to the way formulae were produced and consumed
during reasoning, eg. in the sequent calculus. The
multiplicative fragment in particular, enforces the constraint
that each formula is produced exactly once, and is consumed
exactly once, This restriction has obvious computational
repercussions, and forces distinct pieces of a computation to
interact in only the simplest and cleanest of ways, giving
scope for cheap approaches to resource management. This
realisation has spread rapidly through a number of areas of
computer science, and has spawned research into the “linear”
subsets of many already extant models of computation. The
logic and functional programming models have
unsurprisingly been prime candidates for such work and in
this paper we concentrate on a fragment of LL that is used in
such languages ([6,12,15,16,19]).

What is perhaps more surprising, is that the implementation
problems of distributed parallel TGR, crystallized in the
design of the MONSTR language, threw up many questions
whose answers turned out to be closely related to the criteria
forced by linearity, and in a piquant historical coincidence,
did so at around the same time. See for instance the work by
Watson and Watson ([ZO]), Watson et al. ([21]), and Banach
and Watson ([4]). The smoothness of the translation we
present in this paper is concrete evidence for this claim.

It should be emphasised here that the purpose of the present
work is not to describe in detail the implementation of any
specific coQcurrent linear language in MONSTR, this is one of
the additional issues addressed in the extended version of
this paper. Instead, we identify a number of key programming
techniques based on linearity and we show how they can be
mapped onto equivalent sets of TGRS rules. In the process we
(hopefully!) succeed in: i) justifying a number of important
decisions that were taken in the design of Dactl and MONSTR,
ii) illustrating how the concepts of linearity can be expressed
in TGRS by means of the notion of a statehofder, and iii)
providing evidence that the TGRS model can also be viewed
as a generalised computational model for linear concurre’nt
languages.

The rest of the paper is organised as follows. The next section
introduces the MONSTR computational model. This is
followed by a description of a fragment of LL on which a
number of linear languages are based ([6,12,19]). The main
part of the paper presents the mapping of this fragment onto
operationally equivalent sets of MONSTR rewrite rules. For
lack of space, we present the key concepts by discussing
illustrative examples. A more formal translation scheme will
be presented in the full version of the paper. The paper ends
with some conclusions and suggestions for further work.

MONSTR

MONSTR arose as a result of the attempt to reconcile the
desire for an intermediate language with rewriting-based
semantics, with the reality of a parallel machine such as

157

Flagship ([11,211) where the primitive atomic actions were in
principle of much smaller granularity than atomic rewrites of
arbitrary size. The result was the term graph rewriting
language MONSTR, for which the implementation problem
did not make excessive demands on the architecture’s
semantics.

The operational semantics of MONSTR deal with the
transformation of term graphs. These are graphs in which the
nodes are labelled with fured arity symbols; each node having
a number of out-arcs determined by its symbol, while itself
being the target of an arbitrary number of in-arcs. The nodes
and arcs of MONSTR graphs are further decorated with certain
markings. If a node is marked with ‘*‘, then it is active and
can serve as the root of a redex. If it is marked with ‘tn’, then
it is suspended waiting for n notifications (see below), and
then and only then n of its out-arcs are marked with the
notification mark ‘I’. (This correspondence between 1” and n
*‘s is called balancedness, a vital invariant of MONSTR
graphs.) The only other possibilities are that nodes and arcs
are unmarked (i.e. idle).

Computation proceeds by arbitrarily selecting an active node
t in the execution graph and attempting to find a rule that
matches at t. The easiest case to describe is when there is no
such rule, whereupon notification takes place: The active
marking is removed from t and a “notification” is sent up
along each *-marked in-arc of t. When this notification
arrives at its (necessarily) X” -marked source node p, the A
mark is removed from the arc, and the n in p’s tn marking is
decremented, preserving balancedness (to is replaced by l , so
suspended nodes eventually wake when all their
subcomputations have notified).

The other case, when a rule matches at t, needs a little more
background for its description. The symbols that label nodes
are statically divided into three classes: functions,
constructors, and stateholders. Functions label roots of LHSs
of rules but are not allowed to occur at subroot positions;
they may be redirected (see below). Constructors and
stateholders can only occur at subroot positions of LHSs of
rules; and while stateholders may be redirected, constructors
may not. Here is a MONSTR rule:

F[Uns[a b] x:Var] =P. WC1 a ^*b] , x := *m

The LHS and RHS are separated by ‘=>‘. On the left is the
pattern with root labelled by function F, whose arguments are
a constructor labelled Cons with two unspecified arguments,
and a stateholder x labelled by Var. The notation makes it
plain that F-Iabelled nodes have two out-arcs, and that if this
rule is to match at t, then the subgraph immediately
descending from t must be of the specified form.

For future reference we note that when rules are separated by
‘ ; ’ they are pattern matched in sequence (whereas a group of
rules separated by ’ 1’ are matched in an arbitrary order). With
this proviso, the first rule that is found to match is used.

Suppose the rule indeed matches at active t. The RHS of the
rule specifies new pieces to be glued into the execution graph,
namely firstly, a node labelled by G, created suspended and
with the same arguments as the LHS Cons node, the second of
which is activated (i.e. has its marking changed to l if
previously idle), and such that G is waiting for this second
argument to notify; and secondly, a node labelled by
SUCCEED, created active. The => further indicates that the LHS
root F is to be redirected to G, and x : = *SUCCEED indicates

15

that the node matched to x is to be redirected to the new
SUCCEED node. Redirection itself consists of swinging all in-
arcs of the LHS node of the redirection (eg. F) so that they
point to the RHS node of the redirection (eg. G). All
redirections are performed simultaneously.

According to the above, no node in a MONSTR execution
graph is ever destroyed. The rewriting model does not
prescribe what nodes are ever to be removed from an
execution graph because the rather arbitrary way in which arcs
of the graph may cause it to be connected up, means that we
can not statically determine which nodes are useless.
Destruction of nodes is therefore done by garbage collection.
Apart from specially designated system roots, active nodes
are live, as are nodes accessible from a live node along an idle
arc, as are also nodes which can access a live node along a
notification arc. All others are garbage. This definition turns
out to be sound.

In order that executions have various desirable properties,
MONSTR imposes a further collection of restrictions. All
functions must have a default rule (i.e. one that does no
pattern matching at all in the LHS), so that every active
function node can rewrite. (Correspondingly, all active
constructors and stateholders can only notify.) Pattern
matching by functions is only allowed to be one level deep,
and each function has a statically fixed set of positions at
which non-default rules must pattern match; at most (a
statically fixed) one of these is permitted to match a
stateholder. A further restriction is imposed ihat any
notification arc must point to a node which is either non-idle
or a stateholder (arcs are said to be state saturated). Finally, if
an argument needed for matching by a rewrite is found to be
non-idle, the rewrite suspends until the subcomputation
notifies in the normal way, although this is a feature of
MONSTR semantics that we will not need below.

The above constitutes a brief sketch of MONSTR and its
abstract execution model; for a more detailed account see [2].
At the implementation level, term graphs may be represented
by “packets” in memory, a packet being a data structure
containing principally, a marking, a symbol, and a sequence
of pointers to child packets. Thus each packet represents a
node and its out-arcs. Notification arcs are in fact represented
by reversed pointers (the balancedness invariant is vital for
this), and there is thus some additional machinery needed to
cope with the fact that a node can be the target of an arbitrary
number of notification in-arcs. This representation of
notification arcs is also in sympathy with the definition of
livenessjgarbage given above. Redirection is efficiently
implemented by overwriting the LHS packet with the RHS
packet; all in-arcs automatically point to the RHS packet
when this is done. Garbage collection may take place at any
time convenient to the implementation and is not mentioned
further below.

When the packet store is distributed, as in a distributed store
parallel machine, the shallowness of the pattern matching
helps make rewriting tractable. The usual strategy is to move
the active root to any stateholder if necessary (since there can
be no more than one of them, this is possible), collect copies
of needed constructors (since these are not redirectable, they
will not change subsequently in the packet store), and then
complete the rewrite. The suspension mechanism mentioned
above conceals most of the lower level machinations from
higher levels of abstraction. The details of these tricks are
thoroughly discussed in [2].

From the perspective of higher levels of abstraction, “linear”
models of computation correspond closely to the principal
features of MONSTR, neatly eliminating some awkward
special cases that MONSTR otherwise has to take into
account. The single stateholder argument of a MONSTR
function in a rewrite maps nicely to the interaction of exactly
two entities in a single computational step of a linear model;
the fact that both function and stateholder can be redirected in
a single computational step reflects the symmetric role played
by function and data in linear models. The mapping of a
fragment of multiplicative LL to MONSTR illustrated in the
fourth section is a good example of this. The whole
phenomenon is not surprising since the forces underlying the
designs of MONSTR and of linear models of computation are
fairly similar at the implementation level.

A fragment of Linear Logic as a “Process Caicuius”

In order to express one of the most important concepts of LL,
that of accounting, most linear languages ([6,12,19]) are
based around the notion of channels and messages. In
particular, the traditional notion of a variable shared among a
number of processes and instantiated to some value is
replaced by the notion of a channel shared among a number of

- agents which are able to post messages to that channel as well
as consume them. Concurrency is then achieved by allowing
the asynchronous or synchronous communication between a
number of agents by means of posting or receiving messages
through shared channels. The way a particular message that
was posted to a channel is selected by some agent is specified
using merhods.

A method can consume messages (which are possibly required
to match specific patterns), and can suspend (if necessary)
until the required messages have been posted there, thus
achieving the required synchronisation between concurrently
executing agents. Upon commencing execution, methods can
create further messages and channels. Depending on the
characteristics of each particular linear language, an agent
may be able to post to a channel, in addition to messages,
methods as well as other channels.

The linear behaviour of such a framework stems from the fact
that by “reading” a message from a channel, an agent causes
its deletion. On the other hand, if the same message is posted
to a channel more than once by one or more agents, it will
appear there precisely that many times. Furthermore,
depending again on a language’s characteristics, other
features are also offered such as specifying whether a
particular agent should execute once or multiple times,
examining the messages posted to a channel without
removing them, modelling higher-order linear concurrent
programming, etc.

A number of linear concurrent languages have been designed
around the above notions, where the underlying logic
supported is essentially the (9, &, -0,3, V) fragment of LL. In
particular, the basic syntax of such a language is as follows
(where A, x, T, c, and M denote agents, channels, terms,
constraints and messages respectively and terms and
messages comprise an appropriate combination of data terms
and channels):

Idle agent (Unit, Termination) 1

This agent does nothing. It denotes termination of the
program.

Create new channel (Hiding) 3X.A

Create a new channel x local to agent A (‘3’ is the existential
quantifier).

Send a message X:#

Send message M to channel X, where ‘: ’ is the channel
operator.

Linear implication (method) (I] VY.H -0 A

where H : : == Idle agent 1 Procedure Call 1 Linear
Composition) X:M

For the latter case (where H is X : M) the agent receives message
M from channel x and then behaves like A where free
occurrences of Y are substituted by M (‘V ’ is the local
universal quantifier). Note that unless the reusability operator
‘ ! ’ is used, the agent will execute just once. Upon receiving M,
the message is deleted from the channel X.

Blocking ask (matching method) vx.c -> A

Wait until (if ever) the constraint c is satisfied and then
execute agent A. For the purposes of this work we only
consider primitive constraints.

Parallel (Linear) Composition ABA

Both agents execute concurrently.

Procedure Call P(Tl,.m,Tn)

where P is a procedure name and ~1 to in are terms.

Choice Rl&Rl

Each one of Rl, R2 is. respectively of the form p -Q A, q -0 B,
so (p -Q A & q -0 B) reduces to either A or B depending on
whether it is p or q respectively that it is supplied; p and q are
themselves Oft& fOm X:M Or&Y&.

Thus by applying the LL principle of “formula as msource and
proof as computation” one can view the linear operators as the
building blocks for constructing sequents, i.e. configurations
of concurrently executing agents. In the following section we
present a number of examples which are used to illustrate the
use of the particular fragment of LL we are considering in this
paper but also to describe the mapping of the LL connectives
to equivalent sets of MONSTR rewrite rules.

A Term Graph Rewriting Modelling of Linear Logic Agents

Here we discuss how the functionality of the LL fragment
described in the previous section can be modelled in terms of
operations on term graphs, and more generally how a run-time
configuration for a number of LL agents executing
concurrently and communicating by means of exchanging
messages can be represented as a term graph comprising a
number of active and suspended graph nodes synchronised
by access to a number of stateholders. .In the next subsection
we present such a MONSTR run-time configuration and we
show the strong relationship between stateholders and
channels as well as the power of the former. We then present
by means of suitable examples the effectiveness of our model
in implementing a variety of programming paradigms.

A MONSTR run-time configuration for channels

One of the most important aspects of implementing a LL
language is how to represent the notions of channels and

159

sending and receiving messages. Activity at run-time evolves
around channels: messages posted to a channel remain ‘in a
suspension queue until claimed by some method posted to
that channel. Also, methods posted to a channel consume
messages posted to the channel, suspending if necessary until
the required message has appeared there. The methods are then
deleted from the queue of methods associated with that
pa&ular channel except if the reusability operator has been

-used. Note that in a distributed implementation of such a
language, the load distribution of a program uses the
channels as points of reference, and methods and messages
associated with a channel are moved to the processor where
the channel in question is located ([15,191).

We recall from the second section that this is exactly how a
distributed implementation of MONSTR would behave; in
particular when a rule that is candidate for reduction involves
the use of constructors and a stateholder, both the function
and the constructors are moved (respectively copied) to the
processor where the stateholder is held. We highlight here
some features of MONSTR which have proved invaluable in
the design of a LL language to MONSTR mapping strategy:

l Atomic overwriting of a stateholder, allowing a number of
concurrently executing processes to compete for control of
it.

l Repeated updating of a stateholder (modelled by a
sequence of overwrites of the representing packet),
allowing the modelling of side-effects such as destructive
assignment.

l Ability to organise workload locality around the
stateholders involved in the computation.

l Arbitrary format of a stateholder node in terms of number
of descendant arcs and type of arguments which, as shown
later on, allows among others the modelling of higher-
order LL features.

We now describe a MONSTR configuration which is able to
model the run-time behaviour as described above. A channel
is, obviously, a stateholder. Posting of messages to this
channel is modelled by means of the following MONSTR rule
system (see below for the significance of the
GARBAGE-COLLECT CO?IShUCtOr):

c:=*~l[message] ;
sad[c message] => #serKyc llBsage1;

The first rule matches an empty stateholder and posts its
message there while the second one suspends if the
stateholder already contains a value. Any number of Send
processes, all of which share the stateholder Channel-Empty,
can attempt to reduce in parallel; however, only one of them
will be able to post its message. The rest of them will suspend
waiting for some other process- to “consume” the message and
free the stateholder again. Which one of the Send processes
will succeed in “posting” its message is of course non
deterministic, thus modelling correctly the asynchronous
posting of messages to a channel. Note that the s end
processes suspended on some stateholder (channel)
effectively form the message suspension queue associated
with that stateholder. The consumption of the message held in
the stateholder by a corresponding “receive” process causes
the waking of the Send processes suspended on it which will
compete again for the next posting. Actual adherence to the
aforementioned operational semantics is guaranteed by
MONSTR’s ability to update stateholders atomically.

The consumption of messages posted to a channel can be
modelled by means of “symmetric” MONSTR rule systems
similar to the following one:

Rf32&Je[c:cIlzmel~~l[~l I 3 -aXUtzr,

l?Exz&e[c:m~ 1 => #ReceiV2[Acl:

where we assume the existence of some process Consume that
“uses up” message. Again here, the fust rule is responsible
for getting the message while the second provides the
required synchronisation by suspending if necessary.

In practice the actual MONSTR rule sets produced do not
make use of a general Receive process, only of a Send one.
The reason is that the functionality of Receive is coded up in
the rule sets of the methods associated with a stateholder,
which themselves are represented as MONSTR functions.

Again a process representing a method suspends if it attempts
to access the value of an empty stateholder, thus achieving
the required synchronisation. A number of such processes can
be suspended on the same stateholder, effectively modelling a
method suspension queue.

The run-time behaviour of a MONSTR graph configuration
can be seen diagrammatically as follows:

*Send[]

#Pl[. . .

#PSI 1 ..“..

\,

h

\

h

ch:Channel-Empty

where Pl and ~2 represent methods suspended on receiving a
suitable message on the stateholder ch by the concurrently
executing Send processes.

Note that all the MONSTR functions produced have no parent
nodes in the RHS of any rule that creates them. (in other words
the values that they themselves generate are consumed by no
one). In fact, the only graph sharing produced is that of
stateholders. Thus we could have written alternatively

Receive[c:cI=mel~lftlglell -> l 2+ztlyftxplel ,
c:=B;

I&szeive[c:~ I --z #PJEc&ve[^c];

using Dactl’s ‘->’ operator to avoid a superfluous root
redirection ([Q]). But this is not permitted in MONSTR so we
rewrite all functions to the dummy constructor
GARBAGE-COLLECT, its name indicating what ought to
happen to it. In fact to establish that no function node has a

parent in the run-time configuration requires a global
analysis of the whole ruleset, although an extremely simple
one WI).

The above run-time configuration can be used to model most
of the types of communication using channels: one-to-one
(point-to-point), one-to-many (broadcasting) and many-to-
one are implemented trivially; one-to-one-of-many (Linda
type) and many-to-many can also be implemented provided
that the methods that will consume the posted messages have
themselves already been posted to the appropriate channel.

Example programs

In this subsection we show concrete translations of a number
of representative LL programs, illustrating how various
programming idioms of LL are transformed into equivalent
MONSTR rule sets. Note that in practice, before the actual
translation is performed, a LL program is translated into a
“kernel” form suitable for direct mapping onto MONSTR
rewrite rules; for lack of space we do not present these
intermediate transformations here and instead we refer the
interested reader to the full version of the paper. Nevertheless,
the main stages in these transformations are: i) the use of only
one level of agent definition and the pulling of all the others
to the top level (possibly by means of introducing additional
auxilliary agents), ii) the use of multi-clause style instead of
the block structured one because the former can be translated
directly to an equivalent rewrite rule system, and iii) the
deletion of any matching operators and incorporation of the
associated functionality into the generated rewrite rule
system. We start with the unavoidable append:

! vLl,~,o.l&Ipd(Ll,L2,o)

--o (! vM.Ll:M 4 (M=[l -> OS2

& ! VA,B.K=[A(B~ -> (Ek.o:[~(ci @ ALpgd(~,L2,cl 1

The above program uses channel continuations to increase
performance. Note that ‘(4’ is the “forward messages” operator
([191) which effectively replaces one channel by another. Its
translation to MONSTR is as follows:

Appad[ll:a.lamel~l~ilI l2o]*~mLB2r,
-10 121,
ll:=*ctmmsl~l

AFpendlU:Cbarm&#lDna[a bll I2 01
- *GARBa&!!,

*MC0 ams[a c:clmrndRfptyl I, l w[b I2 cl,
11:=*-l

ALparlu1:chipmel_Btpty 12 01 3 Y~[All I2 01;

A few points should be made about the above program. First
of all, in order to keep the code size presented at a manageable
level and avoid unneccesary details we have deliberately
ignored the one level pattern matching restriction of
MONSTR. In general a rule of the form

Pk:c?lECSl~l[Patteml ."I 3 l G?!lWGQgYucr, -,

is actually a combination of

c : =*cllma-m;

PIc:(%Tmel~Full[Pat~] ".I
=' Q+FwGE-m, *P_aarx[c Fatxem];

PJIDc[c . ..I => *Wm. c:=*W~;

where P-aux performs the multiple level pattern matching.
Bearing this in mind, we note that a LL agent definition is
compiled into n+l MONSTR rules where n is the number of
clauses defining the agent and there is one more rule

implementing the required synchronisation on an empty
channel. Note also that each rule matching the stateholder
includes a non-root overwrite in its RHS which effectively
implements the consumption of the message. Finally, note
that if the reusability operator is used then this is
implemented in MONSTR by means of recursion.

The above MONSTR program makes use of the function
Forward[y x] which implements the ‘@’ operator by
forwarding messages from channel x to channel y. This
function is defined in MONSTR as follows:

Fhma?rd[y x:-1 => wozwazdry +X1 :

A possible call to the above append program is the following

u:r1p.12:[[2 w:rJll, L4:r3p&r4 L6:r111, Appad(L1,L4,0)

which in MONSTR is translated as follows:

nurrDL3 o:v,
ll:v, 12:-~,
l3:v, 14:-m.
Vi:-, 16:v,
*Smxl[ll caIs[l 1211, *sead[l2 azls[Z
*sad1l3 Nil], *S&i114 a?S[3 1511,
l sarl[lS Cms[l 161 I, *%~I[16 Nil],
l zQzefa[ll 14 01;

Ull*

where INITIAL denotes a redex that by convention starts off
the computation.

MONSTR’s insistence that stateholders must be updated
atomically allows the modelling of Linda-like generative type
of communication ([7]). For instance, the two agents

VL.Receivel(L)

-+ (VM.L:M -0 (VC.M(a,C) -> ansmal(c) 1)

VL.Recei~(L)

4 (VM.L:M 4 (VC,D.M=III(CX) --> OXSUE~,(~,D)))

translated to MONSTR as follows

ocnsunel[cl;

R?ceivS~l:Uszm~~AJUll[M[c dill 0 wafUX?r,
Ca=.sdlc dl;

can compete for consuming the single message III (a, X) . The
usefulness of such a technique in modelling open and
distributed systems is discussed in ([12]).

Finally we show how higher order LL programming
techniques can be modelled using stateholders. Consider the
following LL agent which connects a number of processes
Proc in a linear topology by means of Left and Right
communication channels (where ‘ ’ is the “black hole”
operator which simply consumes any message it receives).

! v~,~t.Fd.gilt.~(Ra.Left,Ri.ght)

4 (tjM.ProcM4 (FHIil ->-

& VPr.&m(Pr,Nil) --> Pr(Left,Rigbt)

& VPr,Prs.~(Pr,Pre)

161

--> (3Link,Pr(Left,Link: (8

t43pcPrs,G.rlk.RightirPIt))))

Note that PI-oc is of the form m (PI-, pr s) where Pr is a
function (process) name and PUS is a channel continuation or
Ni 1. For lack of space we do not show the whole translation
(which adheres to the principles outlined so far) but instead
we concentrate on the modelling of, say, the third case where a
new process Pr is created and linked to the rest of the
processes.

Msp[Fna:--FullrM[pr:~ PI 1 left rigfit
3 %ap[prs link rightI, *&pl~lwpr left link],

link:Qnnnel~Ellpty;

The above rewrite rule exploits the extensive pattern
matching facilities that are supported by Dactl (and hence by
MONSTR too) and the so called screwdriver techniques ([9])
which allow the efficient manipulation of the graph itself. In
particular, the left hand side matches the graph only if the
first part of the message in the channel is a REWRITABLE node,
i.e. a function name. Then in the right hand side a new
function application is generated by means of the screwdriver
function apply-TO which is defined at the MONSTR level as
follows:

A&y_?b[f:Fuoet.i~e a@_. argn] 3 ‘F[azyl . ~1;

where F is the function name of the respective handle f.

Performance Issues and Discussion

The following essentially short performance analysis
illustrates the behaviour of a TGRS implementing a linear
concurrent program compared with the TGRS generated for the
equivalent version of the program written in a non linear
concurrent language. In particular, we compare the linear
version of Append presented in the previous section with the
equivalent version written in a state-of-the-art concurrent
logic language ([171) which was transtated to MONSTR using
the techniques described in [3,13]. The programs were mn
using the Dactl interpreter ([9]) and exploiting the statistics
facilities offered by that implementation. Note that what we
compare here are the relative differences in the statistics of the
two programs rather than the absolute performance figures.

Perf Params: R FC AvP MrP GrN
CL Append 148 75 1.97 4 147 (24 INDs)
Lin Append 7 6 27 2.81 3 100 (51 INDS)

R: Rewrites; PC: Parallel cycles performed; AvP: Activations
processed per cycle (mean value); Mr P: Activations

processed per cycle (peak value); GrN: Graph nodes created

The linear version (Lin Append) is in all respects more
efficient than the corresponding non linear one. The linear
version does not need to reflect on failure (the capture of
failing derivations must be coded up by the programmer
himself if he so wishes) like the corresponding concurrent
logic version (CL Append) and hence we can dispense with
the associated set of MONSTR rewrite rules that would
otherwise be needed ([3]) and the overhead they incur.
However, the linear version is also more efficient in memory
consumption. The concurrent logic version generates 147
nodes, 24 of which are IND ones needed for sharing rewritten
packets; this is a standard technique used in implementing
languages using graph rewriting ([5,14,19,20,21]). These IND
nodes cannot be dispensed with since in a concurrent logic

program a data structure may indeed be shared by more than
one process. The linear version, on the other hand, generates
100 nodes and 51 of them are IND nodes which can be
dispensed with because it is guaranteed by the linear notion
of accounting for resources that only one agent will use a data
structure. In the full version of the paper we further explore
the effects of linearity in a TGRS program.

Composite data structures and typing

Many of the LL languages proposed support composite data
structures and typing ([6,12,19]). Here we can oniy touch
upon this issue and we refer the reader to the full paper for
further details. The representation of composite data
structures such as arrays and the implementation of
associated operations on them can be efficiently supported by
means of the Vet tors module that is supported by the Dactl
implementation and allows a variety of accessing methods
(lazy, eager, parallel, etc.).

Regarding typing it is very easy in MONSTR (as, indeed, it is
in Dactl as well) to impose type restrictions on stateholders.
For instance, the following typed version of Send refrains
from sending a message that is not either an integer or real.

3 fG?PBmLazcLEKT, c:=*vI~l;
~lc:-mYl rressagel * #M[^o nw=X?=l;
SarlVmy Any1 3 QSBGlL-;

Note the use of the union operator ‘+‘; in particular a rule with
a pattern such as n : (A+B) is a candidate for matching if the
graph node matches either A or B. Pattern matching operators
are further discussed in [9].

Conclusions

We have investigated the possibility of using term graph
rewriting, as expressed in the distributed model MONSTR, to
implement ‘linear concurrent languages. In particular, we
identified a fragment of LL on which the modelling of a
number of linear concurrent languages is based and we
showed how it can be implemented in terms of equivalent sets
of term graphs. In the process we identified a number of
important issues where both LL and MONSTR have adopted
similar solutions, for instance in the case of stateholdes
(channels).

The MONSTR term graphs produced, exhibit a linear
behaviour focused mainly on the “interaction” of a
stateholder representing a channel with the root packet
representing the consumer method. They also enjoy certain
properties such as the fact that graph sharing is constrained
only on stateholders. Coupled with a dataflow analysis ([l]),
this can assist the underlying implementation significantly,
for instance in garbage collection. We view the work
presented here as a step towards designing a linear term graph
rewriting model.

It is significant to note that many of the techniques discussed
in this work have been around in the graph rewriting
community for some time ([3,4,11]). In fact, the code
produced by our LL to MONSTR methodology is similar to
that for other concurrent logic languages ([3]). There,
however, the insistence on single-assignment stateholders
stemmed from the requirement to keep in line with the non-
destructive nature of single-assignment logic variables. The

162 .

notion of a channel proposed in many LL languages frees the
implementor to use the semantics of stateholders more fully.

Indeed, regarding implementation, similar compilers that
have been written for mapping a variety of concurrent logic
languages onto Dactl and MONSTR ([13,3]) are currently
being modified to suit our purposes. The derived code would
be able to run on the distributed Flagship machine
([11,20,211).

A final point to note is that intermediate compiler target
languages such as MONSTR (and Dactl for that matter) can be
used as a basis for comparing the various ways certain
important aspects of linearity are handled by different
concurrent linear languages such as synchronisation
mechanisms. The fact that computational models like
MONSTR are very careful to support only those features
which can be efficiently implemented by a parallel machine
makes this research work even more important.

Acknowledgments U31

We thank the referees for many constructive comments and
criticisms which helped in the preparation of the final version
of the paper.

Contact Addresses for Authors

Richard Banach, Department of Computer Science, University
of Manchester, Oxford Road, Manchester Ml3 9PL, UK. E-
Mail: banach@cs.man.ac.uk

George A. Papadopoulos, Department of Computer Science,
University of Cyprus, 75 Kallipoleos Str., Nicosia, P.O.B. 537,
CY-1678, Cyprus. E-Mail: george@turing.cs.ucy.ac.cy.

References

111 R. Banach, Dataflow Analysis of Term Graph Rewriting
Systems, PARLE’89, Eindhoven, The Netherlands, June
12-16, LNCS 366, Springer Verlag, pp. 55-72.

PI R. Banach, MONSTR I - Fundamental Issues and the
Design of MONSTR, submitted to New Generation
Computing, 1993.

[31 R. Banach and G. A. Papadopoulos, Parallel Term Graph
Rewriting and Concurrent Logic Programs, WP&DP’93,
Sofia, Bulgaria, 4-7 May, Bulgarian Academy of
Sciences, pp. 303-322, North Holland (to appear).

t41 R. Banach and P. Watson, Dealing with State in
Flagship: The MONSTR Computational Model,
CONPAR’88, Manchester, UK, Sept. 12-16, Cambridge
University Press, pp. 595-604.

[51 H. P. Barendregt, M. C. J. D. Eekelen, J. R. W. Glauert, J.
R. Kennaway, M. J. Plasmeijer and M. R. Sleep, Term
Graph Rewriting, PARLE ‘8 7, Eindhoven, The
Netherlands, June 15-19, LNCS 259, Springer Verlag,
pp. 141-158.

161 I. Darlington, Y. Guo and M. Kahler, Functional
Programming Languages with Logical Variables: A
Linear Logic View, Internal Report, DOC, Imperial

’ College, 1993.

[71 D. Gelemter, Generative Communication in Linda, ACM
TOPLAS, Vol. 7(l), pp, 80-l 12, 1985.

PI

[91

[lOI

[Ill

t121

[141

[I51

[I61

r171

11’31

1191

PO1

1211

J-Y. Girard, Linear Logic, Theoreticnl Computer
Science Vol. 50, pp. l-102, 1987.

J. R. W. Glauert, J. R. Kennaway, M. R. Sleep and G. W.
Somner, Final Specification of Dactl, Internal Report
SYS-C88-11, University of East Anglia, Norwich, UK,
1988.

K. Hammond, Parallel SML: A Functional Language
and its Implementation in Dactl, Ph.D. Thesis, School
of Information Systems, University of East Anglia,
Norwich, UK, published by Pitman Publishers, 1990.

J. A. Keane, An Overview of the Flagship System,
Journal of Functional Programming, Vol. 4 (I), pp,
19-45, January 1994.

N. Kobayashi and A. Yonezawa, ACL - A Concurrent
Linear Logic Programming Paradigm, ISLP ‘93,
Vancouver, Canada, Oct., MIT Press, pp. 279-294.

G. A. Papadopoulos, Parallel Implementation of
Concurrent Logic Languages Using Graph Rewriting
Techniques, Ph.D. Thesis, School of Information
Systems, University of East Anglia, Norwich, UK,
1989.

M. J. Plasmeijer and M. C. J. D. van Eekelen,
Functional Programming and Parallel Graph
Rewriting, Addison-Wesley, New York, 1993:

V. Saraswat, A Brief Introduction to Linear Concurrent
Constraint Programming, Technical Report, Xerox
PARC, April, 1993.

V. Saraswat and P. Lincoln, Higher Order, Linear,
Concurrent Constraint Programming, Technical
Report, Xerox PARC, July, 1992.

E. Y. Shapiro, The Family of Concurrent Logic
Programming Languages, Computing Surveys, Vol. 21
(3), 1989, pp. 412-510.

M. R. Sleep, M. J. Plasmeijer and M. C. J. D. van
Eekelen (eds.), Term Graph Rewriting: Theory and
Practice, John Wiley, New York, 1993.

C. S. C. Tse, The Design and Implementation of an
Actor Language Based on Linear Logic, Thesis Report,
MIT, 1994.

P. Watson and I. Watson, Evaluating Functional
Programs on the Flagship Machine. FPLCA ‘8 7,
Portland, Oregon, USA, Sept. 14-16, LNCS 274,
Springer Verlag, pp. 80-97.

I. Watson, V. Woods, P. Watson, R. Banach, M.
Greenberg and J. Sargeant, Flagship: A Parallel
Architecture for Declarative Programming. 15th
Annual ISCA, Hawaii, May 30 - June 2, 1988, pp. 124-
130.

163

