
DiálogoP - A Language and a Graphical
Tool for Formally Defining

GDPR Purposes

Evangelia Vanezi(B), Georgia M. Kapitsaki, Dimitrios Kouzapas,
Anna Philippou, and George A. Papadopoulos

Department of Computer Science, University of Cyprus, Nicosia, Cyprus
{evanez01,gkapi,dimitrios.kouzapas,annap,george}@cs.ucy.ac.cy

Abstract. The notion of processing purpose, as set out in the EU Gen-
eral Data Protection Regulation (GDPR), comprises a crucial part of a
software system’s privacy policy. Processing purposes are meant to char-
acterize the usage of personal data within a system. In this work, we pro-
pose a formal type language for defining purposes as the communication
exchanges between a system’s entities, based on session types enhanced
with privacy notions. In order to provide software engineers with the
means to easily define processing purposes, we encode the formal lan-
guage syntax to a UML-based domain model and we present DiálogoP,
a tool that supports the graphical model definition and subsequently
translates it into formal language definitions.

1 Introduction

The European Union applied the General Data Protection Regulation
(GDPR) [2] in order to face the challenge of protecting personal data. The GDPR
imposes the notion of purpose in privacy policies, defining that “personal data
shall be collected for specified, explicit and legitimate purposes and not further
processed in a manner that is incompatible with those purposes”.

In software engineering, validation of privacy policies against software sys-
tems is either done by testing techniques, or by human auditing. Alternatively, a
formal verification method can guarantee the compliance of a system to its pri-
vacy policy, by relying, for instance, on type checking techniques. Proposals for
validating privacy requirements in software systems include [9], where automata
are used as a formalism for designing and enforcing privacy policies on social
networks. Other works aim to extract and model requirements out of regulatory
text [12], or to model laws by using primitives, such as roles and norms, and
the relationships between them [5]. In [8], the authors present RSLingo4Privacy
Studio, a tool for supporting the specification and analysis of privacy policies in
software systems, using the RSL-IL4Privacy domain specific language proposed
in [1], for the specification of privacy-aware requirements. In turn, [7] employs
UML diagrams to define the design of a software’s architectural structure, facili-
tating software engineers in implementing the desired functionality and achieving
c© Springer Nature Switzerland AG 2020
F. Dalpiaz et al. (Eds.): RCIS 2020, LNBIP 385, pp. 569–575, 2020.
https://doi.org/10.1007/978-3-030-50316-1_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50316-1_40&domain=pdf
https://doi.org/10.1007/978-3-030-50316-1_40

570 E. Vanezi et al.

privacy by design and by default. Finally, we mention [11], where a two-tiered
UML representation of the GDPR is presented, aiming towards a cost-effective
method that will help the business sector systems achieve GDPR compliance.

Our work shares similar aims to the above-mentioned works and complements
them by adopting a formal approach towards rigorously verifying that software
systems comply to their privacy requirements. We propose thus, a language for
formal specification of processing purposes in software systems based on session
types [3,4,10] and the Privacy Calculus [6]. Furthermore, we propose a graphi-
cal modelling language for privacy policies and a methodology for transforming
graphically defined privacy policies into formal type language definitions. We
present DiálogoP, a tool for defining purposes as diagrams through a domain
model and a toolbox, without requiring knowledge of the formal language. We
utilise Domain Specific Languages (DSL) covering privacy purpose for any soft-
ware system. Each diagram is translated into a formal specification using the
introduced transformation process.

Use Case: A Healthcare System. As a use case, we consider an automated
medical system for hospitals, for which the responsible authority, i.e. the Ministry
of Health, defines the functionality and the privacy policy, and each hospital is
responsible to implement its own system. A part of the system handles appoint-
ments as follows: the system knows the full name, the date of birth and the
hospital id number of each patient that has an appointment. At the entrance, a
patient scans her hospital identity card, which stores the above data. The sys-
tem compares the data from the card and the booked appointment and, if they
match, it allows the patient to proceed with the visit. The data cannot be used
in any other way. The system retrieves from the database the patient’s record,
i.e. all visits and diagnoses, and forwards that information to the doctor without
reading the data. The doctor reads the data, examines the patient and adds
information for symptoms and latest diagnosis to the record.

2 A Formal Language for Defining Purposes

We build on multiparty session types [4], to formally define processing purposes,
enriching them with the notion of personal data stores inspired by the Privacy
Calculus [6]. Session types are based on message exchanges between the entities
of the system. In our language, in each purpose definition a number of distinct
sessions can be set up, able to run in parallel and be interleaved, the entities
participating in each session and their interactions. Entities belonging to the
same session can exchange messages including personal data either by directly
sending them to each other, or based on conditions’ evaluation. Such interac-
tions should occur in a specific defined sequence within each session. In order to
integrate the notion of personal data we exploit the structure of personal data
stores, first defined in the Privacy Calculus [6], including a unique id and a set
of data. Each store has an owner entity. Other entities of a system may obtain
references to stores, and use them to access the respective personal data.

DiálogoP 571

Figure 1 presents the syntax. Metavariable, g, denotes ground types such as
integer and boolean. Exchange types, U , include ground types, g, annotations, α,
and private data types, pd[U]α. Annotations, α, are identifiers used to annotate
private data. Private data type, pd[U]α, is used to type a reference on private
data storage that contains private data of type U . We also assume labels for true,
tt, and false, ff, and a set of participants p, q, . . . ∈ P. A global type, G, defines
a multiparty session type able to describe privacy purpose. Global type end is
the termination type. Type p → q : U.G describe that participant p sends to
participant q an exchange value U and then proceeds with global type G. Global
types include α → p : U.G and p → α : U.G describing the reading from or the
writing to a store annotated by α personal data of type U , respectively. Finally,
conditional branching type, p → q : (U op U ′){tt : G1, ff : G2}, describes the
choice that takes place on participant p based on the type of the expression
U op U ′ and, moreover, participant q is informed and proceeds accordingly.

Ground Types g ::= int | bool | . . .
Exchange Types U ::= g | pd[U]α | α

Global Types G ::= end Termination
| p → q : U.G Value Exchange
| α → p : U.G Personal Data Read
| p → α : U.G Personal Data Storage
| p → q : (U op U ′){tt : G1, ff : G2}

Conditional Branching

Operators op ::= = | ≥ | ≤

Fig. 1. Multiparty session types for privacy purpose

3 DiálogoP - A Graphical Tool for Defining Purposes

Aiming to simplify the procedure of specifying purposes we elevate the defini-
tion to diagrams that are subsequently automatically translated to session types
through DiálogoP. The tool was developed using Eclipse Sirius, through Obeo
Designer1 and EMF (Eclipse Modeling Framework) modelling.

Meta-Model. The first step was to create an EMF meta-model, shown in
Fig. 22, the source code of which is then generated and imported into new mod-
elling projects, allowing to define purposes as diagrams and dictating the struc-
ture that such diagrams should have. PDataStoreReference, PersonalData, and
Operator, were defined as types. Purpose is the main kind of entity, composed
of a set of Sessions, composed in turn out of one or more Ends and sets of Com-
municating Entities, Messages, and Conditions. Communicating entities may be

1 https://www.obeodesigner.com/.
2 Full-size figures can be found at http://www.cs.ucy.ac.cy/seit/dialogop/.

https://www.obeodesigner.com/
http://www.cs.ucy.ac.cy/seit/dialogop/

572 E. Vanezi et al.

Fig. 2. DiálogoP metamodel

either Receiving Entities or Sending Entities. Each session needs to have pre-
cisely one initial entity, that will be a Sending Entity. Sending Entities may
be Single Entities or Personal Data Stores. Receiving Entities may be Single
Entities, Personal Data Stores or blocks of Multiple Entities. Conditions are
composed of two sets of Data that will be compared based on an operator, as
well as exactly one message for evaluating the condition as True and exactly one
message for False. Sending Entities can be connected to at most one Condition
or at most one Message, Messages can be connected to exactly one Receiving
Entity, Receiving Entities can be connected directly to a Sending Entity, and all
entities can be connected to an End.

Graphical Designer. New modelling projects can be created by the user in
order to design models, either via the tree view or via the palette. The tree
form allows the addition of children and siblings for each model entity. The tree
structure root is a Purpose entity that can only have Session entities as children.
In each Session, new children can be added including Single Entities, Multiple
Entities, Personal Data Stores, Messages, Conditions and Ends, as shown in
Fig. 3. All other entities cannot have any children added, except a Condition
that can have Data, True Message and False Message entities as children. Each
added entity has a set of properties that can be set up by the user, including
its attributes values and relations with other entities. Different class instances
are represented by different icons3. Figure 4 shows the palette that includes the

3 Iconset source: https://www.iconfinder.com/iconsets/message-and-communication-
sets, under Creative Commons License Attribution 3.0 Unported (CC BY 3.0).

https://www.iconfinder.com/iconsets/message-and-communication-sets
https://www.iconfinder.com/iconsets/message-and-communication-sets

DiálogoP 573

Nodes section with all entities, and the Edges section, with all relations. The
attributes are set. To add a node, one should first click on the respective icon
from the palette, and then click on an already existing entity which is higher in
the hierarchy and already placed on the canvas. Figure 5 displays the purpose
diagram for the healthcare use case.

Translation into Formal Session Types. The purpose model is extracted
in an XML (Extensible Markup Language) format and is fed into the custom
made parser, implemented in Java, to be translated into session types definition.
Two main classes, PurposeEdge and PurposeEntity, are used. The parser recog-
nises all nodes and edges (with xmi:type equals to “diagram:DEdge”) by their
ownedDiagramElements tag, and subsequently all inner tags semanticElements,
from the XML document. All recognised objects with their data, are stored in
lists. The lists are then parsed, recognising sessions, and the sequence of actions
beginning with the initial entity and following all edges towards the end of the
session by calling function findPath. Each situation is then handled in a different
manner, e.g. in the case of conditional statements the function is called recur-
sively for the two possible paths. Figure 6 shows the translation of the running
use case to session types, as given automatically by the tool.

Fig. 3. New entities in a session Fig. 4. Palette

Fig. 5. The graphical purpose

574 E. Vanezi et al.

Fig. 6. The translation output

4 Conclusions

We have presented our work towards an automated process for compliance of
software systems to privacy policies, focusing on the GDPR notion of purpose.
We have defined a formal language for purpose using session types, and we have
created a graphical modelling environment that allows the definition of purposes
for systems using the introduced meta-model, and the automatic transformation
to the formal language. As future work, we intend to use the output to perform
compliance analysis, and to extend our approach to other areas of GDPR.

References

1. Caramujo, J., da Silva, A.R., Monfared, S., Ribeiro, A., Calado, P., Breaux, T.:
RSL-IL4Privacy: a domain-specific language for the rigorous specification of pri-
vacy policies. Requir. Eng. 24(1), 1–26 (2019). https://doi.org/10.1007/s00766-
018-0305-2

2. European Parliament and Council of the European Union: General data protection
regulation (2015). Official Journal of the European Union

3. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

4. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp. 273–284 (2008)

5. Ingolfo, S., Siena, A., Mylopoulos, J.: Nómos 3: reasoning about regulatory compli-
ance of requirements. In: IEEE Requirements Engineering Conference, pp. 313–314.
IEEE (2014)

6. Kouzapas, D., Philippou, A.: Privacy by typing in the π-calculus. Logical Methods
Comput. Sci. 13(4), 1–42 (2017)

7. Mougiakou, E., Virvou, M.: Based on GDPR privacy in UML: case of e-learning
program. In: International Conference on Information, Intelligence, Systems &
Applications, pp. 1–8. IEEE (2017)

8. Ribeiro, A., da Silva, A.R.: RSLingo4Privacy studio-a tool to improve the specifi-
cation and analysis of privacy policies. In: ICEIS, vol. 2, pp. 52–63 (2017)

9. Pardo, R., Colombo, C., Pace, G.J., Schneider, G.: An automata-based approach
to evolving privacy policies for social networks. In: Falcone, Y., Sánchez, C. (eds.)
RV 2016. LNCS, vol. 10012, pp. 285–301. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-46982-9 18

https://doi.org/10.1007/s00766-018-0305-2
https://doi.org/10.1007/s00766-018-0305-2
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/978-3-319-46982-9_18
https://doi.org/10.1007/978-3-319-46982-9_18

DiálogoP 575

10. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-
ing system. In: Halatsis, C., Maritsas, D., Philokyprou, G., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58184-7 118

11. Torre, D., Soltana, G., Sabetzadeh, M., Briand, L.C., Auffinger, Y., Goes, P.: Using
models to enable compliance checking against the GDPR: an experience report.
In: 2019 ACM/IEEE International Conference on Model Driven Engineering Lan-
guages and Systems, pp. 1–11. IEEE (2019)

12. Zeni, N., Kiyavitskaya, N., Mich, L., Cordy, J.R., Mylopoulos, J.: GaiusT: sup-
porting the extraction of rights and obligations for regulatory compliance. Requir.
Eng. 20(1), 1–22 (2015). https://doi.org/10.1007/s00766-013-0181-8

https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/s00766-013-0181-8

