Concurrent Object-Oriented Programming Techniques
in a Term Graph Rewriting Framework

George A. Papadopoulos

Department of Computer Science
University of Cyprus
75 Kallipoleos Str.
Nicosia, P.O. Box 537, CY 1678
CYPRUS

Email: george@turing.cs.ucy.ac.cy

Abstract

The relationship between the generalised computational
model of Term Graph Rewriting (TGRS) and Object-Oriented
Programming (OOP) is explored and exploited by extending
the TGRS model with records where access to parameters is
done by naming rather than position. Records are then used
as the basis for expressing object-oriented techniques such as
delegation and (various forms of) inheritance. The effect is
that TGRS with records can now be used as an
implementation model for a variety of (concurrent) object-
oriented (functional, logic or otherwise) languages but also as
a common formalism for comparing various related
techniques (such as different forms of inheritance).

Keywords: Term Graph Rewriting; Records; Delegation;
Inheritance; (Concurrent) Object-Oriented Programming
Techniques.

1. Introduction

The generalised computational model of Term Graph
Rewriting Systems ([1]) has been used extensively as an
implementation vehicle for a number of, often divergent,
programming paradigms ranging from the traditional
functional programming ones ([6,8]) to the (concurrent) logic
programming ones ([5,10]). The model is also capable of
supporting imperative programming techniques such as
destructive assignment which is needed frequently for
modelling object behaviour (say, the changing of an object’s
state); in addition, the notion of sharing, a fundamental
concept in the graph rewriting world, corresponds directly to
the notion of reusability. However, there has not been so far
a coherent attempt to use TGRS as an implementation model
for Object-Oriented Programming (OOP) techniques.

In this paper we explore and exploit the relationship
between TGRS and OOP by means of extending the TGRS
framework with records where access to parameters is done by
naming rather than position. Records are then used as the
basis for expressing OOP techniques such as delegation and
(various forms of) inheritance ([2,11]). Furthermore, if we

1066-6192/96 $5.00 © 1996 IEEE
Proceedings of PDP ’96

87

also enforce a programming methodology where all functions
defined and used in a program access their parameters via the
use of a single record we end up with a framework where all
pattern matching and function application is done based on
named rather than positional parameters. This enhanced
framework of “TGRS with records” (or “TGRS with names”)
provides a powerful formalism able to play the role of a
generalised implementation model for a variety of (possibly
concurrent) OOP languages but also act as a common
platform for comparing the various OOP techniques and
assessing their usefulness with respect to each other.

In particular, using as a vehicle the intermediate compiler
target language Dactl ([4,3]) based on TGRS and playing the
role of a high-level machine language in the FLAGSHIP
project ([7]), we first show how records can be implemented
in the language without the need to extend the semantics of
the associated TGR computational model; then, we use
records as the basis for implementing a variety of OOP
techniques. The rest of the paper is organised as follows: the
next section introduces the TGRS model and the language
Dactl and the third one extends Dactl with records; the fourth
section introduces the methodology of using solely records
for function definition and application and the fifth one
provides a number of techniques for modelling fundamental
OOP techniques such as delegation and inheritance. The paper
ends with a discussion of current, future and related research.
2. Term Graph Rewriting Systems and
the Associated Language Dactl

The TGRS model of computation is based around the
notion of manipulating term graphs or simply graphs. In
particular, a program is composed of a set of graph rewriting
rules ‘L=>R’ which specify the transformations that could be
performed on those parts of a graph (redexes) which match
some LHS of such a rule and can thus evolve to the form
specified by the corresponding RHS. Usually ([1]), a graph G
is represented as the tuple <N, rootq, Symg, Succg>
where:
¢ Ng is the set of nodes for G
¢ rootg is a special member of N, the root of G

* Symg is a function from Ng to the set of all function
symbols

* Succg is a function from N to the set of tuples NG*,
such that if Succ (N) = (Nq1..Ny) then k is the arity of
N and N ..Ny are the arguments of N.

Note that the arguments of a graph node are identified by
position and in fact we write Succ (N, 1) to refer to the ith
argument of N using a left-to-right ordering. The context-free
grammar for describing a graph could be something like

graph ::= node | node+graph
node = A(node,...,node) |identifier |
identifier:A(node,..,node)

where A ranges over a set of function symbols and an
identifier is simply a name for some node.

In the associated compiler target language Dactl, a graph G
is represented as the tuple <Ng, rootg, Symg, Succg,

NMarkg, AMarkg> where in addition to those parts of the

tuple described above we also have:
* NMarkg which is a function from Ng to the set of node

markings {€, *, #7}
* AMarkg which is a function from Ng to the set of
tuples of arc markings {€, "} *
A Dactl rule is of the form

Pattern -> Contractum,
Xl :=y1,...,xi :=yi,
p,lzl,...,p.ij

where after matching the Pattern of the rule with a piece
of the graph representing the current state of the
computation, the Contractum is used to add new pieces of
graph to the existing one and the redirections
X1 :=Yq1 ., Xj :=y4 are used to redirect a number of arcs

(where the arc pointing to the root of the graph being
matched is usually also involved) to point to other nodes
(some of which will usually be part of the new ones
introduced in the Contractum); the last part of the rule
H1Z1 /s B2 specifies the state of some nodes (idle,
active or suspended).

In order to illustrate some of Dactl’s features which are
important for understanding the rest of the paper we present
below the equivalent Dactl program for a non-deterministic
merge as it would be written in any state-of-the-art concurrent
(constraint) logic programming language.

merge ([X|XS],YS,2ZS] :-
75=[X|ZS1], merge(XS,YS,ZzS1).

merge (XS, [Y]|¥S],ZS) :-
7S=[Y|ZS1], merge(XS,YS,zS1).

merge([],YS,Z2S8) :- ZS=YS.

merge (XS, [1,2S8) :- ZS=XS.

MODULE Merge;
IMPORTS Arithmetic; Logic;
SYMBOL: RENRTITABRLE PUBLIC CREATABRLE Merge;
SYMBOL OVERWRITABLE PUBLIC OVERWRITABLE Var;
SYMBOL, CREATARLE PUBLIC CREATARIE Cons; Nil;
PATTERN PUBLIC

PATR = Cons [head:ANY tail:ANY];

88

LIST =
RULE
Merge[Cons[x xs] ys zs:Var] =>
*Merge[xs ys zsl],
zs:=*Cons [x zsl:Var] |
Merge[xs 1:PATR zs:Var] =>
*Merge[xs l.tail zsll,
zs:=*Cons[1.head zsl:Var]|
Merge[Nil ys zs:Var] => *True, zs:=*ys|
Merge[xs Nil zs:Var] => *True, zs:=*xs;
(Merge([pl p2 p3l&
Merge[Var ANY ANY]+Merge[ANY Var ANY]) =>
#Merge["pl "p2 p3];
Merge [ANY ANY ANY] => *False;
ENIMODULE Merge;

The first four Dactl rules implement the corresponding
ones of the original program. Note here the use of ‘=>’
instead of ‘~>’ for root overwriting and the use of ‘: =" to
model assignment. Note also the selection operator *.” used
for illustrative purposes in the second rule where x .y is used
to refer to a node y of some pattern x (in other words, the
first two rules illustrate an explicit and an implicit,
respectively, way for performing pattern matching).

The fifth rule models the suspension of the process if none
of its first two input arguments is instantiated yet; here note
the use of the pattern operators ‘&’ (conjunction) and ‘+’
(sum) where A&B must match both A and B and A+B can
match either A or B. Therefore, what this rule says is that if
both the two input arguments of Merge are still
unistantiated (i.e. Var) then the process suspends.

Finally, the last rule reports failure if the input arguments
have been instantiated to anything other than a Cons or
Nil. Rules separated by a ‘|’ can be tested in any order
whereas those separated by a ;’ will be tested sequentially.
So, in describing the previous rule we said “both” although
the rule formulation suggested “either of”’ because the
sequential operator used there guaranteed that if either input
argument was instantiated then one of the first four rules
would have been matched.

Another thing to note is that the nodes of a graph are
labelled with symbols for which an associated access class is
specified. In particular, a REWRITABLE symbol (such as
Merge) can be rewritten only by means of ordinary root
redirections whereas an OVERWRITABLE symbol (such as
Var) can be rewritten only by means of non-root
redirections; also a CREATABLE symbol can only be used as
the name implies. An overwritable symbol can be “assigned”
values by means of non-root overwrites as many times as it
is required, and can thus play the role of either a declarative
single-assignment variable or the usual imperative one.

3.

(PATR+Ni1) ;

Term Graph Rewriting with Records

In order to be able to model some fundamental OOP
techniques we propose the introduction of records where the
aim is to support standard record manipulation operations
such as record creation, selection and updating of a record’s
elements, etc. without the need to extend the semantics of the
underlying TGR model of computation. In particular, a record
is a data structure of the form

Record[“string 1 ”
Name, [value]

Name, [value,]]
where the following symbol declarations have been defined.

SYMBOL CREATABLE
PUBLIC CREATABLE Record; Unbound;

SYMBOL OVERWRITABLE
PUBLIC OVERWRITABLE Name); ... ;Name;
PATTERN PUBLIC
RECORD = (Record[STRING]+
Record [STRING ANY]+
Record [STRING ANY ANY]+
Record [STRING ANY ANY ANY]+
NAME = (Name;+ .. +Nemep) ;

In other words, a record is a data structure comprising a
string (its name id), and a sufficient number of overwritable
symbols (possibly none if the record denotes a constant
value) which represent the fields of the record. In
Name [valuel, value can be any value (even another
record or a function invocation) including the special
(OVERWRITABLE) symbol Unbound with the obvious
meaning. The following fundamental operations are allowed
on records.

CreateRecord [rec_name: STRING
Names [name; ... name,]
Values [value; .. value,]]

=> *Record[rec_name
Name, [valueq]

)i

Namen[valuen]] ;
RecordElement [rec:RECORD name:NAME] => *value;

SetRecordElement [rec:RECORD name:NAME value] =>
*True, name:=*value;

Note that in selecting the value of a record element in the
second rule, if Name is not a field of the record the rule
returns False as the answer. However, an attempt to update
a record field which does not exist (third rule) is considered a
null operation; SetRecordElement will still return
True but of course no field will be updated. This is a typical
approach when named parameters or variables are involved in
a computation ([2,11]).

All these three operations on records are implemented at a
lower level in the language but in a way that adheres to the
already established semantics for TGRS. Name comparison,
for instance, is done by mapping the respective symbols onto
their equivalent string values and checking for string equality.
As it has already been mentioned, records in Dactl are
updatable objects where the value of a (named) field can be
changed multiple times by virtue of the semantics of non-
root redirections supported by the underlying TGR model.

4. Term Graph Rewriting with Names

If the use of records is coupled with an enforced
programming methodology where function parameters are
encapsulated within a record and operations such as pattern

89

matching are viewed as field selections, a compact formalism
is yielded able to accommodate fully the needs of OOP such
as support for software composition. A user program, for
instance, does not have to rely on knowing information like
the arity of a function or the full range of parameters it takes.
In addition, reusability comes for free due to the inherent
notion of sharing available in a graph rewriting framework.

We show the principles of programming in “TGRS with
names” by encoding some well known list manipulation
functions using records.

SYMBOL OVERWRITARLE
PUBLIC OVERWRITABRLE Head; Tail;
PATTERN PUBLIC Nil = Record[“Nil”];
Cons = Record(“Cons” Head [ANY]
Tail [ANY]];

Length[rec:Nil] => *0|
Length[rec:Cons] =>
#IAdA[1 "#length[~*RecordElement [rec Taill]l;

Append[recl:Nil rec2] => *rec2|
Append[recl:Cons rec2] =>
#Cons [“*RecordElement [rec Head]
#Append [**RecordElement [rec Tail] rec2]l];

A call to Length, for instance, could take the following
form (where INITIAL denotes the first rule to be tried in a
Dactl program).

INITIAL => #Length[“record list],

record list:#CreateRecord[“Cons”
Names [Head Tail]
~values[l "“taill]],

taill:#CreateRecord[“Cons”
Names [Head Taill
“#Values (2 ~tail2]],

tail2:*CreateRecord[“"Nil”
Names({] Values[]];

Note in the second rule for Append the concurrent
building of both the head and the tail of the appended list.
The use of names introduces extra verbosity in the code
which, however, can be taken care of by means of syntactic
sugar extensions. We can define, for instance, a field
selection operator ‘°’ and rewrite Append, say, as follows:

Append [recl:Nil rec2] => *rec2|
Append [recl:Cons rec2] =>
*Cons [recl°Head *Append[recl®Tail rec2]];

In order to reduce verbosity in the rhs of some rule during
the creation of a new record, we can define a “record template”
and use ‘°’ again to instantiate its named parameters. So
assuming the following list template declaration

PATTERN PUBLIC LIST = Record[“Cons”
Head [Unbound]
Tail [Unbound]] ;

the rule for INITIAL can be written as follows.

INITIAL => *Length[list], list:LIST,
list°Head:=1, list®°Tail:=listl:LIST,
list1°Head:=2, 1list1°Tail:=Nil;

Other similar syntactic extensions are also possible. For
instance, we can write

Flrec®X:'A’ .] => ..
Flrec®Y: (Unbound+INT) ..] => ..;

where the pattern matching for F will succeed if its first
argument is a record having either a field named X with value
‘A’ or a field named Y whose value is the symbol Unbound
or some integer. All these syntactic extensions can be
translated to the core subset of the language using the
fundamental operations on records and a sufficient number of
auxiliary rules. In the rest of the paper, however, we use this
core subset only (even at the expense of rendering sometimes
the code less readable) to highlight the fact that everything
we do requires no semantic extensions to the underlying TGR
model.

5. Delegation and Inheritance in TGRS
with Names

We now show the principles of expressing delegation and
inheritance in our framework. The first subsection describes
the basic strategy for achieving object encapsulation and
representation which is subsequently used to model these
OOP techniques.

5.1 Object Encapsulation and Representation

The extended with records framework provides the required
mechanism needed for object encapsulation and representation
and acts as the basis for modelling delegation and inheritance.
There are a number of ways ([2]) to achieve encapsulation
(and hence inheritance) and here for lack of space we
concentrate our attention on only two of them; as an example
we use as object the unavoidable 2-dimensional point with a
number of elementary methods associated with it.

SYMBOL CREATABLE
PUBLIC CREATABLE

SetX; SetY; Move; Clear; { methods
SYMBOL REWRITABLE
PUBLIC CREATABLE Point2D; { object

SYMBOL REWRITABLE Point2D aux;
SYMBOL, OVERWRITABLE PUBLIC OVERWRITABLE

XCoord; YCoord; { parameters
PATTERN PUBLIC
POINT = Record|[“Point2D”
XCoord [ANY]
YCoord [ANY]] ; { class

NAME = (XCoord+YCoord) ;

Point2D[rec:POINT Nil] => *rec]|

Point2D[rec:POINT Cons [message rest]] =>
#Point2D[~*Point2D aux[rec message] rest] |

Point2D[rec : POINT fun:REWRITABLE] =>
#Point2D[rec ~*fun] |

Point2D[rec:POINT var:OVEWRITARLE] =>
#Point2D([rec "var];

Point2D[ANY ANY] => *False;

90

Point2D aux[rec name:NAME] =>
*RecordEleament [rec name] |
Point2D aux[rec SetX[dx:INT]] =>
*SetRecordElement [rec XCoord dx] |
Point2D aux[rec SetY[dy:INT]] =>
*SetRecordElement [rec YCoord dy] |
Point2D _aux|[rec Move[dx:INT dy:INT]] =>
#HiWait [rec "updatel “update2],
updatel : #SetRecordElement [rec XCoord “new_x],
new_x:#IAJd[“*RecordElement [rec XCoord] k],
update? : #SetRecordElement [rec YCoord “new_y],
new_y: #IAdd[~*RecordElement [rec YCoord] dy] |
Point2D aux[rec Clear] =>
#iwait [rec “updatel “update2],
updatel : *SetRecordElement [rec XCoord 0],
update?2 : *SetRecordElement [rec YCoord 0];

A number of points should be cleared before we continue
the discussion. A 2-dimensional point is represented by
means of an appropriate record. The corresponding object is
represented by means of a recursive function comprising two
arguments: the record and a stream parameter accepting a list
of messages to this object. Each message in the list is
handled by an associated auxiliary function which returns the
updated record. Note the third and fourth rules in Point2D
where we model synchronisation. Depending on whether the
paradigm is functional or other (concurrent logic say), the
stream of messages may be a function application needed to
be fired (if the paradigm supports lazyness) or a logical
variable waiting to be instantiated by some message
producer. The last rule reports failure if the object is invoked
with the wrong type of arguments.

In the fourth and fifth rules for Point2D_aux note the
following points. First, we use imperative techniques to
update the record fields rather than a “more proper” declarative
approach where a fresh record is generated and returned with
updated fields; this is donme, of course, for the sake of
efficiency by exploiting the power of repeatable non-root
overwrites. Second, the updating operations of different fields
in the record are done concurrently, exploiting here the high
degree of fine grain parallelism available in the TGR model.
The auxiliary function Wait is simply waiting for both
updating operations to complete before returning the record as
its result. Third, messages like Move should, strictly
speaking, also be records so that the textual position of their
componens (and possibly other information such as their
number) need not be known by the object handling them. We
choose the ordinary positional approach however for the sake
of keeping the complexity of the presentable code down to a
manageable level.

Finally, note that the above implementation of methods
for a 2-dimensional point can also be used for any other type
of point (3-dimensional, etc.), simply by extending the
pattern definition of POINT.

PATTERN PUBLIC POINT = (Record[“Point2D”
XCoord [ANY] YCoord [ANY]]

o+
Record[“Point3D” ..]
+
Record [“Point3DColour” ..]
+)5

This is possible because the use of records renders the update
operations polymorphic and independent of, say, the number
and names of arguments in other types of points.

The above approach achieves object encapsulation and
reuse of methods by instances of other similar classes.
However, an even more flexible approach is the following
where the record itself is extended with a Class parameter
denoting the class of the object and allowing the extracting of
a method from a class and its direct application to instances
of subclasses. We present only that part of the code which is
different from the one shown above.

SYMBOL, CREATABLE PUBLIC CREATABLE
GetX; GetY; SetX; SetY; Move; Clear;

SYMBOL OVERWRITABLE PUBLIC OVERWRITABLE
Class; XCoord; YCoord;

PATTERN PUBLIC
POINT = Record[“Point2D”
Class [Point2D]
XCoord [ANY]
YCoord [ANY]];
METHOD = (GetX+GetY+SetX+SetY+Movet+Clear) ;

Point2D[method:METHOD] => *Point2D aux [method] |

Point2D[Nil] => *Nil|

Point2D[Cons [message rest]] =>
#Point2D[**Point2D_aux[message] rest] |

Point2D[fun:REWRTTABLE] => #Point2D[**fun] |

Point2D(var:OVEWRITABLE] => #Point2D["var] ;

Point2D{ANY] => *False;

Point2D_aux [GetX[rec:POINT]] =>
*RecordElement [rec XCoord] |
Point2D aux[GetY[rec:POINT]] =>
*RecordElement [rec YCoord] |
Point2D_aux [SetX [rec:POINT dx:INT]] =>
*SetRecordElement [rec XCoord dx] |
Point2D aux[SetY[rec:POINT dy:INT]] =>
*SetRecordElement [rec YCoord dy] |
Point2D_aux[Move [rec:POINT dx:INT dy:INT]] =>
##Wait [rec ~updatel “update2],
updatel : #SetRecordElement [rec XCoord “new x],
new_x:#IAd4 [~ *RecordElament [rec XCoord] dx],
update2 : #SetRecordElement [rec YCoord "new_y],
new_y: #TA3d [**RecordEl ement [rec YCoord] dy] |
Point2D aux[Clear[rec:POINT]] =>
#HWait [rec “updatel “update2],
updatel : *SetRecordElement [rec XCoord 0],
update2 : *SetRecordElement [rec YCoord 0] ;

Note that in order to use this approach the appropriate class
must be selected first followed by a selection of the required
method. Here we make use of the following “metarule”
available in Dactl.

Apply To[f:FUNCTION NAME paramy .. param,] =>
*F[param; .. param,] ;

A typical query now takes the following form (Wherc
MovedPoint is an instance of Point2D).

91

MovedPoint [rec: POINT messages] =>
#2pply To[**RecordElement [rec Class]
messages) ;
INITIAL => #MovedPoint [**CreateRecord[“Point2D”
‘Names [Class XCoord YCoord]
Values [Point2D 0 0]]
messages] ;

where we assume that messages denotes a list of messages
where their first argument is the record to be updated.

5.2 Delegation

Delegation using records can be expressed by representing
the values of some of its parameters as selection functions of
fields in other records as in the following example.

Delegator [rec:RECORD] =>
*CreateRecord [*Delegator” Names[X Y Z]
Values[2 5 RecordElement[rec Z1]];

where the value of the Z field in Delegator is taken to be
that of the corresponding field in rec. Dynamic delegation
involving a variable set of named parameters is also possible
although some preprocessing is required. In the following
delegation construct

Delegator {rec:RECORD] =>
*CreateRecord [*Delegator” Names[X Y Other]
Values[2 5 RecordElement[rec Other]]];

Other is a special name which stands for all names
involved or a subset of them. There is the need to enhance
the functionality of the basic record manipulation operations
so that they can substitute Other with the right name
parameter but since the set of these names is finite this can
be done with reasonable programming effort.

5.3 Inheritance

The second technique for object encapsulation and
representation discussed in section 5.1 can be used as the
basis for modelling inheritance where methods defined in a
certain class are applied to instances of some other class. In
order to illustrate this ability we define a 3-dimensional point
which inherits the methods of its 2-dimensional counterpart
(some pattern definitions must be redefined and their new
values are also shown below).

SYMBOL: CREATABLE
PUBLIC CREATABRLE GetZ; SetZ; Move2D; Move3D;

SYMBOL REWRITABLE PUBLIC CREATABLE Point3D;
SYMBOL: REWRITABLE Point3D aux;
SYMBOL, OVERWRITABLE PUBLIC OVERWRITABLE ZCoord;

PATTERN PUBLIC
POINT = (Record[“Point2D” Class([Point2D]
XCoord [ANY] YCoord[ANY]]
+
Record[“Point3D” Class[Point3D]
XCoord [ANY] YCoord[ANY]

ZCoord [ANY]) ;
METHOD2D = (GetX{[ANY]+GetY [ANY]+
SetX [ANY] +SetY [ANY]) ;
METHOD = (METHOD2D+GetZ [ANY]+SetZ [ANY]+
Move2D[ANY ANY ANY]+
Move3D[ANY ANY ANY ANY]);

Point3D is the same as Point2D

Point3D_aux[GetZ [rec:POINT]] =>
*RecordElement [rec ZCoord] |
Point3D aux[SetZ[rec:POINT dz:INT]] =>
*SetRecordElement [rec ZCoord dz] |
Point3D_aux [method:Move2D[rec: POINT dx:INT
dy:INT]] =>
*Point2D[Move[rec dx dyl] |
Point3D _aux [Move3D[rec:POINT dx:INT dy:INT
dz:INT]]
=> #i#Wait[rec “updatel2 “update3},
updatel2: *Point2D[Move [rec dx dy]],
update3 : #SetRecordElement [rec ZCoord
“new_z],
new_z: #IAdd [*RecordElement [rec ZCoord]
dz] |
Point3D aux [method:METHOD2D] => *Point2D[method] ;

In the example above, Point3D renames Move to
Move2D and inherits its code from Point2D in order to
implement a Move3D operation, defines new methods for
accessing and updating the third argument, and delegates all
the other messages to Point2D. This is sufficient for
modelling inheritance based on static binding. However, it is
also possible to model more flexible forms of inheritance
based on dynamic binding by noting that: i) instead of
mentioning explicitly class (and super class) names we can
get them from the record information, and ii) methods such
as Move and Move3D can in fact be implemented in terms
of more elementary methods such as GetX, etc. defined in
the same class. So assuming that Point3D is now of the
form

Record[“Point3D” Class[Point3D] Super[Point2D]
XCoord [INT] YCoord[INT] ZCoord[INT]]

its implementation can be defined as follows.

Point3D_aux [GetZ [rec:POINT]] =>
*RecordElement [rec ZCoord] |
Point3D aux[SetZ[rec:POINT dz:INT]] =>
*SetRecordElement [rec ZCoord dz] |
Point3D_aux [method :Move2D [rec: POINT d&x:INT
dy:INT]]
=> #Apply_ TO["*RecordElement [rec Super]
Move [rec dx dyl]]
Point3D_aux [Move3D[rec:POINT dx:INT dy:INT
dz:INT]]
=> ##Wait [rec “updatel2 “update3],
updatel2: #2pply TO["*RecordElement [rec
Super]
Move [rec dx dyl],
update3 : #SetRecordElement [rec ZCoord
“new_z],
new_z:#IAJA [“#Apply TO["~*RecordElement [rec
Class] GetZz] dz]|

92

Point3D aux[method:METHOD2D] =>
#Apply. TO["*RecordElement [method Super]
method] ;

where we rely again on the functionality of the Apply_To
metarule to create dynamically function applications. Note
that the classes involved (Point2D and Point3D) are not
mentioned explicitly and are derived by means of retrieving
the appropriate values from the parameters Class and
Super. These classes can, of course, be changed
dynamically as in the following example

Point [rec:POINT] =>
*Point3D[rec],
*SetRecordElement [rec Super Point3DColour];

where all references to super will now use the methods in the
class Point3DColour. ’

Admittedly, the programs produced are verbose but they
can be viewed as being written in the kernel form of the
language, the high level one being similar to the syntactic
sugaring discussed at the end of section 4.

6. Conclusions; Current, Further and
Related Work

We have extended the framework of TGRS to support
record manipulation and we have shown how this extended
framework can be used as the basis for modelling OOP
techniques such as delegation and inheritance in a TGR
framework. Thus, such an extended model of TGRS with
records (or TGRS with names) can play the same role that
the ordinary TGRS model has played for the past decade wrt
(concurrent) logic ([5,10]) and functional ([6,8]) languages,
namely to provide an implementation vehicle for a number of
OOP languages. In addition, as it was again the case for other
declarative formalisms ([3]), it is possible to use TGRS as a
common basis for comparing various OOP languages but
perhaps more importantly for studying and comparing
different approaches regarding object encapsulation,
inheritance, etc.

The use of named parameters as the basis for providing
OOP capabilities has been used in a number of
computational models ranging from (constraint or otherwise)
logic ([11]) to functional ([2]) paradigms. In fact, the work
reported in [2] which introduces AN (A-calculus with names)
was the initial inspiration for conducting this research.

In the more general setting of Rewriting Systems, one
must mention the work of Meseguer ([9]) who defines a
theory of concurrent objects within the framework of the
concurrent functional object-oriented language Maude, an
extension of OBJ. The developed framework is very powerful
but the underlying execution model is multiset rewriting
which requires the use of a special Rewrite Rule Machine
using associative memory. Also, Maude seems to allow
multi-headed lhs of rules which is a very powerful albeit
difficult to implement formalism. Our approach, driven from
practical considerations, is more modest, admittedly narrower
in scope, but also easier to implement.

We are currently defining a high-level syntax aiming at
reducing program verbosity and we study the extension of the
current framework with a suitable type system. Also, we

investigate the interaction of parallelism and non-
determinism with the OOP extensions.

References

1

[2]

3]

[4]

[6]

(7

[8]

[9]

[10]

(11]

H. P. Barendregt, M. C. J. D. Eekelen, J. R. W.
Glauert, J. R. Kennaway, M. J. Plasmeijer and M. R.
Sleep, Term Graph Rewriting, PARLE’87,
Eindhoven, The Netherlands, June 15-19, LNCS 259,
Springer Verlag, pp. 141-158.

L. Dami, Software Composition: Towards an
Integration of Functional and Object-Oriented
Approaches, Ph.D. Thesis, Department of Computer
Science, University of Geneva, Switzerland, 1994.

J. R. W. Glauert, K. Hammond, J. R. Kennaway and
G. A. Papadopoulos, Using Dactl to Implement
Declarative Languages, CONPAR’88, Manchester,
UK, Sept. 12-16, Cambridge University Press, pp.
116-124.

J. R. W. Glauert, J. R. Kennaway, and M. R. Sleep,
Final Specification of Dactl, Internal Report SYS-
C88-11, School of Information Systems, University
of East Anglia, Norwich, UK, 1988.

J. R. W. Glauert and G. A. Papadopoulos, A Parallel
Implementation of GHC, FGCS’88, Tokyo, Japan,
Nov. 28 - Dec. 2, Vol. 3, pp. 1051-1058.

K. Hammond, Parallel SML: A Functional Language
and its Implementation in Dactl, Ph.D. Thesis,
School of Information Systems, University of East
Anglia, Norwich, UK, published by Pitman
Publishers, 1990.

J. A. Keane, An Overview of the Flagship System,
Journal of Functional Programming, Vol. 4 (1), pp.
19-45, January 1994.

J. R. Kennaway, Implementing Term Rewrite
Languages in Dactl, CAAP’88, Nancy, France, March
21-24, LNCS 299, Springer Verlag, pp. 117-131;
extended version in Theoretical Computer Science,
Vol. 72, 1990, pp. 225-250.

J. Meseguer, A Logical Theory of Concurrent Objects,
OOPSLA/ECOOP’90, Ottawa, Canada, Oct. 21-25,
ACM/SIGPLAN, pp. 101-115.

G. A. Papadopoulos, A Fine Grain Parallel
Implementation of Parlog, TAPSOFT’89, Barcelona,
Spain, March 13-17, LNCS 352, Springer Verlag, pp.
313-327.

G. Smolka and R. Treinen, Records for Logic
Programming, The Journal of Logic Programming,
Vol. 18 (3), April, 1994, pp. 229-258.

93

