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1 Introduction

Abduction was introduced by the philosopher Pierce
as one of the three main forms of reasoning (the
other two being deduction and induction). Recently,
the importance of abductive reasoning has been
demonstrated in many areas of Artificial Intelligence
and elsewhere such as in the field of databases. As a
result, it is useful to study ways for making the
computation of abduction more effective. One such
way which this paper addresses is the parallelisation
of abduction.

It has been argued ([6]) that abductive inference
and its parallel realisation should be one of the
future research themes in parallel logic
programming. The problem of parallel abduction
has been studied in [8] using a model generation
theorem prover. This approach is based mainly on a
bottom-up computation of models corresponding to
abductive explanations. The approach taken in this
paper will be based on a top-down computational
model for generating abductive explanations and
testing their satisfiability with respect to integrity
constraints.

In this work we study the problems of
parallelisation of abduction by concentrating in one
framework, that of Abductive Logic Programming
(ALP). Many of the ideas however are applicable,
more generally, to other frameworks of abduction or
hypothetical reasoning. The framework of ALP that
we will adopt was originally proposed by Eshghi
and Kowalski ([4,5]) and developed further by Kakas
and Mancarella ([12,13]).

The operational semantics for sequential
execution of abduction is well defined within this
framework and has been used in building meta
interpreters on top of Prolog systems. However, as
in ordinary (deductive) logic programming,
abductive inference mechanisms have several
sources of parallelism of many forms (OR-
parallelism, independent and dependent AND-
parallelism). In this work we examine the
introduction of these forms of parallelism into an
abductive logic program, we study the operational
behaviour of such a program enhanced with
parallelism and we highlight its effect on the
efficiency of execution compared with the
corresponding sequential version. A parallel
computational model for abductive logic
programming is defined as an extension of the basic
Andorra model featuring new sources of parallelism
(and non determinism) stemming from abduction
and the integrity checking that it contains. We
illustrate how our parallel computational model for
abduction can be implemented in AKL and we
present the basics of such an implementation.

The work in this paper provides a first step in
parallelising top-down abductive reasoning. Based
on this we aim to apply these ideas to more general
forms of abduction, such as constructive abduction

(eg. [3]) and integrated forms of abductive and
constraint programming ([2,14]).

2 Abductive Logic 
Programming

Abduction is reasoning to explanations for an
observation using a known background theory
about the domain of the observations. In many
cases, together with the background theory, we also
have a set of integrity constraints whose purpose is
to restrict the possible abductive explanations. For
example, the observation that “the grass is wet” can
be explained either by the hypothesis “it rained” or
by the hypothesis that “the sprinkler is on” using
the known theory that “rain or sprinkler causes the
grass to be wet”. If in addition we know that “the
ground is dry” then the associated integrity
constraint that “raining implies that everything
must be wet” renders the first explanation
unacceptable.

In ALP an abductive logic program is a triple
<P,A,I> where P (the known theory) is a general
logic program, A  (the hypotheses) is a set of
abducible atoms and I a set of integrity constraints.
The definition of abduction is then given as
follows:

• Given an abductive logic program <P,A,I>
and a goal (or observation) G, then ∆⊆A is an
abductive explanation for G iff: i) P∪∆ |= G

and P∪∆ satisfies the integrity constraints I
where ‘| = ’ is given by some chosen
underlying semantics for logic programming,
and ii) P∪∆ satisfies I under some notion of
integrity constraint satisfaction.

An example of this semantics for abduction is
the generalised stable model semantics ([12]). In
this ∆ is an abductive explanation iff there exists a
stable model M(∆) of P∪∆ such that: i) M(∆) |=
G and ii) M(∆) |= I where |= denotes truth in the
model M(∆). For simplicity we assume the usual
restrictions: there are no rules for abducible atoms,
integrity constraints have been compiled into
denials with at least one abducible and the
hypotheses generated are variable free.

In the abductive proof procedure for logic
programming [5,12] (see also [11] for a review of
the main ideas), the computation interleaves
between abductive phases that generate and collect
abductive hypotheses with consistency phases that
incrementally check these hypotheses for
consistency with respect to the integrity
constraints. Consider the following example where
a , b , c  are abducibles and ‘<- ’ in I  denotes
negation; so for instance, ‘<-  a,  s ’ means
‘¬(a∧s)’.
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P: p <- a, r.

p <- u, b.
r <- a.
s <- s1, s2.
s <- s3.
v <- not w.
w <- c.
t <- c.

I: <- a, s.

<- b, v.
<- b, t.

Assuming a Prolog-like evaluation order, the
query <- p will reduce using the first clause to <-
a, r. Consequently, a will be abduced and the
computation will enter a consistency phase to
satisfy the constraint <-  a,  s . During the
consistency phase all rules for s will be tried with
the aim to show their failure and hence the
satisfaction of the constraint. Assuming that this is
the case, r will then be reduced to the abducible a.
This is already part of the hypotheses set ∆ that we
are trying to construct. The computation will thus
end with ∆={a}.

On backtracking, the second clause for p will be
tried which, assuming that u  will be evaluated
successfully, it will then cause the abduction of b
and the commencing of a consistency phase for it.
The constraint <- b, v requires the failure of v,
and subsequently of not  w , which causes the
abduction of c and hence the extension of ∆ to
{b,c}. However, the evaluation of the second
constraint <-  b,  t  requires the absence of c ,
resulting in an overall failure to generate another
solution (explanation) to the query <- p using the
second rule for p.

In the above scenario note the synchronisation
performed implicitly by the processes involved in
an abductive or consistency phase via the updating
of the hypotheses set ∆. The main point of interest
here is that inconsistencies can potentially be
detected earlier in a parallel realisation of the model
especially in view of the fact that the model allows
the recording of abducibles in ∆ at the beginning of
their consistency phase.

3 Sources of Parallelism in
an Abductive Logic
Program

The above example demonstrates the high potential
of parallelism that exists in an abductive logic
program. In this section we will describe the
various sources of parallelism which can exist in
ALP.

As in deductive logic programming one place
where we can introduce parallelism is in the
evaluation of a conjunction in an abductive phase.
The process oriented behaviour of the model allows

the exploitation of a synchronised form of AND-
parallelism during the parallel evaluation of these
conjunctions. More importantly, this parallelism
can, in fact, be combined and interleaved with the
parallelism that can be exploited in the consistency
phase leading to a number of interesting and
important optimisations.

The consistency phase can give rise to both
AND- and OR-parallelism; both sources of
parallelism are illustrated in the integrity checking
for the abducible a of the example in the previous
section. In particular, while trying to satisfy the
constraint <- a, s the two different clauses for s
can be tried in parallel. This is, in fact, AND- rather
than OR-parallelism since both clauses must end in
failure and the set of hypotheses ∆  formed is
common to both rules and processes for s  and
should therefore be jointly consistent. Note that
this AND-parallelism is combined with the AND-
parallelism in the abductive phase.

The OR-parallelism that can appear in the
consistency phase can be illustrated by considering
the first rule for s (in the same example) where the
failure of either s1 or s2 suffices to fail s. Hence,
as far as the consistency phase is concerned, the
evaluation of a conjunction of literals in parallel is
OR-parallelism. This form of OR-parallelism in the
consistency phase can, in fact, appear quite often
and gives rise to different possible explanations.

Another new aspect of parallel abductive
computation is the issue of communication and
synchronisation of processes through the common
set of abducibles in ∆ . When a literal has been
abduced, this information can be made available to
all other processes running in parallel. We recall
from the previous section that in the computational
model of abduction used in this paper, the
hypotheses generated during an abductive phase can
be recorded immediately in ∆ without waiting for
the successful termination of the associated
consistency phase. The sequential implementation
uses this fact but in a limited way. A parallel
realisation of the model can exploit it much more
effectively.

We can also record in ∆ those abducibles that
during a consistency phase are assumed to be
absent. This, together with the recording of the
presence of hypotheses in ∆ and the fact that we can
have in parallel abductive and consistency
processes, leads to the following important
optimisation: if some other process requires the
absence of the abduced literal, this inconsistency
can be detected early and the computation can be
abandoned saving unnecessary work. In the example
of the previous section, this case arises in the
evaluation of the integrity constraints for b
(especially if u  represents a big computation),
where the inconsistency due to the needed presence
and absence of c can be detected early.

This synchronisation of processes through the
hypotheses set ∆  is an important aspect of
parallelism that appears in ALP on which any
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parallel implementation of abduction must
concentrate.

Other forms of AND- and OR-parallelism can be
exploited, similar to the ones found in deductive
logic programming. There is, for instance, the
usual kind of OR-parallelism where different parts
of the search space can be explored concurrently (as
is the case of resolving p in an abductive phase
with both its rules defining it). Thus, an abductive
logic program contains both a don’t know non
deterministic as well as a process oriented part, the
last one arising due to the “dependent” (because of
the synchronisation of the concurrently executing
processes via the common hypotheses set ∆) AND-
parallelism.

Negation as Failure Through Parallel
Abduction

Before closing this section it is worth mentioning
that the parallel framework of abductive logic
programming can, in fact, be used to enhance the
computational efficiency of ordinary logic
programming by applying it to the computation of
NAF. Eshghi and Kowalski ([4]) show how NAF
can be understood through abduction, where a
negative literal not p is considered as a primitive

abducible p* with the constraint <- p, p*. We

also have a disjunctive integrity constraint p∨p*

which has the effect that whenever we require the

absence of the abducible p* in a consistency phase,
we must enter a new abductive phase to prove the
goal p (cf. the execution of goals with nested NAF
in Prolog).

Effectively this means that we can i) compute in
parallel all the possible ways of failing to prove p
needed for the computation of not p and ii) detect
faster the incompatibility of requiring for the same
goal the success of the subgoals q and not q. In
the following example

p <- not q, not r.
r <- s.
r <- not q.
q <- …
s <- …

the query p will require ∆={not q, not r}
and subsequently we will compute in parallel all
possible ways of proving q and r to show that each
one cannot succeed. One of these ways for proving
r (coming from the second rule for r) will require
the absence of not q and hence the whole
computation will fail early by noticing the
incompatibility of needing both the presence and
the absence of not q.

Although in this special case of abduction for
NAF this can be seen as a form of tabulation of
NAF calls, for general abduction in ALP with other
integrity constraints and especially when we have
both NAF and abduction this is not the case and a
more general model like the one proposed in this
paper is required.

4 A Parallel Model for ALP

4 . 1 Description of the model

The ideas that have been described so far lead to the
design of a model of parallelising the execution of
an abductive logic program. This design must take
into consideration the following issues: i) the
benefits accrued from letting all concurrently
executing agents know at all times the contents of
the hypotheses set, and ii) the need for a mechanism
to handle the incompatible requests that may arise
during the parallel execution of abductive and
consistency phases.

Our model combines eager abduction with a lazy
non deterministic execution strategy that tries first
to reduce in parallel all deterministic goals before
adhering to don’t know OR-parallelism. We need to
explain here what we mean by “non deterministic
goal” in the context of abductive logic
programming.

• A goal is non deterministic if it can affect the
hypotheses set in a (don’t know) non
deterministic way. We can characterise a goal
as being non deterministic if either i) it is
involved in an abductive derivation and is
defined by more than one rule in a program P,
or ii) it is involved in a consistency derivation
and is a conjunction involving at least one
abductive literal not present in ∆.

The hypotheses set ∆  could be viewed as a
structure shared by all processes involved in a
computation. Every such process should be able to
either enhance ∆  with additional information
recording the presence or (need for) absence of an
abducible or, alternatively, check whether some
information relevant to what it is about to do
(abduce a literal or commence a consistency phase)
has already been recorded in ∆  by some other
process. Note that once some information is
recorded it is never retracted since, as we will
explain below, conflicts are handled by creating new
hypotheses sets. Note also that access to ∆ should
be an atomic operation.

Accessing ∆ for reading or writing can thus be
understood as operations over the constraint system
of bags ([15]) where we are particularly interested in
the following two operations (slightly modified to
serve our purposes): i) inform(∆ ,t)  which
succeeds if some new information t can be added to
the bag ∆ and fails otherwise, and ii) check(∆,t)
which succeeds if some information t is present in
the bag ∆ and fails otherwise. In particular, t is of
the form abd(present) or abd(absent)
where the labels present and absent denote
that the information recorded in the hypotheses set
∆ is that the literal abd has been abduced or its
absence has been assumed respectively. So
i n f o r m ( ∆ ,a b d ( p r e s e n t ) )  (or
inform(∆,abd(absent)) for that matter) will
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fail if the relevant information regarding abd is
already recorded in ∆.

We now describe in more detail the way an
abducible literal involved in an abductive or
consistency phase is handled by our model. First we
examine how abducibles are handled locally within
an abductive or a consistency phase and then
describe how different abductive and consistency
phases are put together to form a complete
computation.

In an abductive phase a literal abd is handled by
an operation abduce(∆,abd) which:

— terminates immediately successfully if
abd(present) is already recorded in ∆,

— fails immediately if abd(absent) is
already recorded in ∆,

— otherwise updates ∆ with abd(present)
and enters a consistency phase to check
whether abd’s constraints are satisfied.

In a consistency phase a literal abd is handled
by an operation consistency(∆,abd) which:

— terminates immediately successfully if
abd(absent) is already recorded in ∆,

— fails immediately if abd(present) is
already recorded in ∆,

— otherwise updates ∆ with abd(absent).

So far we have concentrated on how processes in
an abductive or consistency phase execute locally.
These processes form an AND-parallel process tree
which expands as long as the processes are able to
perform deterministic reductions. However, we
recall for the case when non deterministic goals are
involved, that if an abduce process is executed in
the context of a predicate where more than one of
its defining rules are applicable, or, alternatively, a
consistency process is executed in the context
of a rule including at least one abducible not already
present in ∆, separate OR-branches must be created
to compute the different explanation sets.

We now turn our attention to this issue of non
determinism explaining also how the concepts of
stability and non determinate promotion, two
important properties of the Andorra family of
languages, can be exploited by the model we
propose to handle this nature of abduction. Using
AKL terminology again, we notice that the
inform  operation is the only one that can be
“noisy” (i.e. affect its external environment) and
may therefore be a need for it to suspend. Such a
need arises if inform is executed in a choice-box.
An inform operation is executed in a choice-box
if the abducible involved in it is part of a non
deterministic (in the sense defined above) goal. The
example beside helps to clarify the way the
deterministic part of the computation interacts with
the non deterministic one.

Figure 1 shows the configuration of the query
< -  t  when the deterministic part of the
computation has completed execution and the non
deterministic part has suspended. Note here that

abd* is a shorthand for abd(absent). Note
also that the thicker lines denote potential OR-
parallelism (referred to as CHOICE-branches in
AKL terminology).

P: t <- p, q, s.

p <- a.
p <- b.
q <- c.
r <- c, e, f.
s <- d.
u <- g.

I: <- a, c.

<- a, v.
<- d, r.
<- b, u.

where all the literals from a to g denote abducible
literals.

c

a*

Fig 1 — and/or configuration - reduction of the deterministic part
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c

a*

f*e*

d

t

sqp

b

CHOICE

AND

Fig 2 — and/or configuration - fully-fledged state of the deterministic part

g* •
•

•
•
•

•

Figure 2 presents an AND-conjunction where
the reduction of p, q and s is done as an AND-
parallel computation. Dotted lines show parts that
can potentially get suspended because of the
presence of non determinism. Assuming that the
hypotheses set ∆ starts empty, the reduction of the
above literals causes the abduction of c and d, their
inclusion in ∆  and the commencing of a
corresponding number of consistency phases for c
and d . Note, however, that the reduction of p
suspends initially, because either of its two rules
could be used, resulting in the possibility of
different hypotheses sets. Since the abduction of c
can only be consistent with the absence of a, the
computation along this particular AND-branch
(which contains an abductive and a consistency
phase) is allowed to complete enhancing ∆ with c

and a*. On the other hand, since d can be made
consistent with the failure of r and hence either
with the failure of c or e or f, the consistency
phase for d gives rise to a non deterministic choice
and hence its execution suspends.

Now the successful abduction of c along the
middle AND-branch, allows the deterministic
promotion of the CHOICE-branch associated with
p since now the only consistent way to reduce it is
with the abduction of b. This enhances ∆ further
with b itself and, eventually, also with the absence
of g. In addition, one of the CHOICE-branches that
comprise the computation associated with the
consistency phase for d  (in particular the one
corresponding to the absence of c) can now be
removed. At this stage the deterministic phase ends
since the system quiescences with those
computations that are still possible and require the
“noisy” application of the inform operation being
suspended. Figure 2 shows the state of the fully-
fledged deterministic part of the computation.

The computation will now split into two OR-
branches, each one inheriting the hypotheses set
that has been computed so far, namely ∆ =

{c,d,a*,b,g*} and extended with e* for one

branch and f* for the other, to eventually give the

two solutions ∆1 = {∆ ,e*} and ∆2 = {∆ ,f*}
respectively.

To summarise, the computation interleaves
between a deterministic reduction phase and a non
deterministic splitting phase. During the
deterministic phase all abductive and consistency
derivations that are deterministic are done in
parallel; non deterministic derivations are
suspended. At the end of the deterministic phase,
any one process which has not failed, has either
terminated (successfully) or suspended. If there are
processes which are suspended this means that there
are potentially more than one explanation sets ∆ for
the original query. We thus have a non
deterministic stage where the computation splits
into independent OR-branches, for every different
combination of choices in the suspended goals,
which can be explored in parallel. Every such
derivation inherits the explanation set ∆  of the
parent deterministic derivation.

The suspension of a non deterministic
consistency phase provides a way of handling the
problem of resolution of conflict when a process
wants to record the abduction of some abducible
while some other wants to record its absence. In the
current example, had the consistency phase
corresponding to the abducible d been allowed to
proceed this would have resulted in an inconsistency
since it would have attempted to record in ∆ the
absence of c while the reduction of q would try to
record its presence. In such a case, it is not possible
(without extra information) to determine on whose
favour the conflict must be resolved and so we treat
this situation as a non deterministic one allowing
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the computation to proceed in different OR-
branches, thus covering all possibilities.

As a final but more concrete illustration of the
above discussion, consider the following recursive
definition of a multiple of 4, where again we treat
NAF as a primitive abducible.

rec_mult4(0).
rec_mult4(X) :-

even(X), not rec_mult4(X-2).

even(0).
even(X) :- not even(X-1).

Given the query rec_mult4(4) the abductive
derivations for e v e n ( 4 )  and n o t

rec_mult4(2) start in parallel. The abductive
and consistency derivations associated with the first
goal even(4) are all deterministic and they are
allowed to proceed to completion. However, the
abduction of not rec_mult4(2) leads, initially,
to a non deterministic consistency derivation where
the failure of either one of not even(1) or not
rec_mult4(0) alone is sufficient for the success
of the derivation. Hence the consistency phase
suspends and will resume when the whole
computation has reached quiescence (i.e. the
computation of even(4) has terminated). It will
then detect immediately the inconsistency generated
by its attempt to record the absence of even(1) in
∆ (which has already been recorded in ∆ as present
by the process even(4))  and allow the
deterministic promotion of the second CHOICE-
branch which will succeed updating ∆ with the
absence of rec_mult4(0). The final solution is
therefore ∆ = {not even(3), not even(1),
not  rec_mult4(2)} where only those
abducibles that must be present are shown here.

4 . 2 Rewrite Rules

We now provide a more formal description of the
model in terms of a set of operational rewrite rules.
This set of rewrite rules should be seen as an
enhancement and extension of those for AKL ([9]).
Where possible we refrain from including
information particular to AKL per se. For example,
the treatment of variable bindings is done in exactly
the same way as in AKL. Note though that
abducible goals remain suspended until they are
fully ground. Also for simplicity of presentation we
will not include here the rules required for negation
as failure. Using the abductive treatment of NAF
([5]) these extra rules are analogous to the ones
presented below together with an additional rule that
generates a new abductive phase within a
consistency phase.

An important new characteristic of our model is
the fact that the constraint satisfaction, namely the
integrity checking of the abducibles in the
consistency phases, is not assumed to be external to
the parallel model. Instead this is incorporated into
the model so that this task can itself be parallelised
and also be carried out in parallel to the usual task
of goal reduction and constraint (namely abducible)

generation. Thus apart from the usual and ,
choice and or boxes of AKL we also have a new
box, denoted by and

con
, to capture the AND-

parallelism inside the consistency phases where the
integrity checking is performed.

Computation starts with a top level query which
is enclosed in an AND box whose purpose is to
define the context of the current ∆ . All the
deterministic (with respect to abduction) part of a
computation is performed within the context of
such an AND box. In the sequel A will always stand
for a ground abducible.

Top level initiation of computation

P => AND(and(P);∆)

The rest of rewrite rules can be split into two
groups corresponding to the abductive and
consistency phases respectively.

Abductive phase – ordinary local forking

and(S,P,T) =>
and(S,choice(and(Q1),…,and(Qn)),

T)

where Pi :- Qi, i=1…n, are the defining
clauses for the non abducible literal P.

Abductive phase – simplification

and(S,A,T) => and(S,T) if A ∈ ∆

Abductive phase – propagation of failure

and(S,A,T) => fail if A* ∈ ∆

Abductive phase – deterministic
promotion

and(S,choice(and(P)),T) =>
and(S,P,T)

Abductive phase – abducing a literal

and(S,A,T) =>

and(S,con(A),T), ∆ ∪ A

if A,A* ∉ ∆

This rule is applied only if the left hand side is not
inside some choice box. When it is applied note
that it modifies the environment ∆ of its parent
AND box.

Linking rule

con(A) =>

and
con

(and*(Q1),…,and*(Qn))

where ¬(A,Qi) , i=1…n, are the integrity
constraints involving the abducible literal A.
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The purpose of the new box and* is, like in an
and  box, to capture the local unification
environment of each separate branch of the
consistency phase and

con
 box. Note that an

and* box never rewrites by itself.

The rewrite rules for and
con are as follows.

Consistency phase – local expansion

and
con

(R,and*(S,P,T),U) =>

and
con

(R,and*(S1,Q1,T1),…,

and*(Sn,Qn,Tn),U)

where Pi :- Qi, i=1…n, are the defining rules
for the predicate P  and Si , Qi , Ti , is the non
empty resolvent of P with the corresponding clause.

Consistency phase – simplification

and
con

(R,and*(S,A,T),U) =>

and
con

(R,and*(S,T),U)

if A ∈ ∆ and at least one of S or T is non empty.

Consistency phase – local forking, first
case

and
con

(R,and*(S,A,T),U) =>

choice(and
con

(R,U),

and
con

(R,and*(S,T),U)

if A* ∈ ∆

Consistency phase – local forking,
second case

and
con

(R,and*(S,A,T),U) =>

choice(and
con

(R,and*(A),U),

and
con

(R,and*(S,T),U)

if A,A*  ∉ ∆  and at least one of S  or T  is non
empty.

Consistency phase – abducing literal’s
absence

and
con

(S,and*(A),T) =>

and
con

(S,T), ∆ ∪ A*

if A,A* ∉ ∆

As in the abductive phase this rule is applied only
when the left hand side and

con
 is not inside some

choice  box. When it is applied note that it
modifies the environment ∆ of its parent AND box.

Consistency phase – deterministic
promotion

choice(and
con

(P)) => and
con

(P)

Finally, we have the rule for the non deterministic
promotion which is the same for both the abductive
and consistency phases.

Non deterministic promotion

AND(and(S,choice(P,Q),T);∆) =>

OR(AND(and(S,P,T);∆),

AND(and(S,Q,T);∆)

where each AND box inherits a copy of ∆.

In addition to the above rules there are a number
of trivial rules for promotion which are not
mentioned here.

Any successful computation using these rules
can easily be mapped onto a successful derivation
(or a set of them) of the sequential computational
model for abductive logic programming as defined
in [5, 13] by following the order in which the
abducible hypotheses have been added into the set
∆. The converse is also trivially true. Hence the
parallel model is correct whenever the corresponding
sequential model is so and can compute any
solution that the sequential model is able to
compute.

5 Implementation Issues

The model described in this paper was initially
tested on a meta-interpreter written in the concurrent
logic programming language Parlog using, for the
case of don’t know non determinism, the machinery
that was developed for its extension Pandora ([1]).
∆  was implemented as a list managed by a
corresponding monitor process. Access to it by the
processes running concurrently was done via stream
channels (using mergers where required). This
common store was used to synchronise the
execution of the processes, thus detecting
inconsistencies earlier and saving unnecessary
recomputations. The results of running a number of
example programs on that interpreter were quite
promising. For instance, the non recursive
abductive version of a multiple of 4 defined by the
following rule

mult4(X) :- even(X), even(X/2).

where even is defined as before run nearly twice as
fast than the usual NAF version.

We are currently rewriting the interpeter in AKL
([9]), exploiting in the process the characteristics of
the language. Access to ∆ is done by means of
ports ([10]), which provide efficient many-to-one
communication, coupled with a monitoring process
which effectively implements the operations
check and inform. This first attempt serves
more to provide a means of evaluating the model
rather than being tuned for performance.

Another interesting issue regarding the
implementation of the hypotheses set ∆ is whether
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the updating of information via the inform
operation is done atomically or not. Here, we stress
the fact that the correctness of our model does not
depend on whether the abduction of some literal (or
the need for its absence) is recorded in ∆ as an
atomic action or as an eventual publication.
However, it is a factor that could influence the
performance since a process may or may not be able
to use results that have already been computed by
some other process. For the case of a shared-
memory based implementation, which is what we
are aiming for in this paper, we believe that the
benefits of atomic updating outweigh its
limitations (see also relevant discussion in [7]).

A set of clauses representing a predicate
definition in an abductive logic program together
with the associated set of constraints for the
abducibles invoked in its clauses is compiled as two
sets of AKL rewrite rules, one for the case of using
it in the abductive phase, and the other one for the
case of using it in the consistency phase (we recall
that in the consistency phase AND-parallelism is
reversed to OR-parallelism and vice versa). Suitable
guard operators, available in the AKL system, are
used to express the required execution behaviour of
the code. As an example, and using only the most
important of the AKL rules generated for a
procedure, we present below those AKL rules
generated for some of the predicates of the first
example program in section 4.

% Code for procedure p

p_abd :- abduce(∆,a) ? true.

p_abd :- abduce(∆,b) ? true.

p_con :- consistency(∆,a),

consistency(∆,b).

% Code for procedure q

q_abd :- abduce(∆,c).

q_con :- consistency(∆,c) ? true.

% Code for procedure r

r_abd :- abduce(∆,c), abduce(∆,e),

abduce(∆,f).

r_con :- consistency(∆,c) ? true.

r_con :- consistency(∆,e) ? true.

r_con :- consistency(∆,f) ? true.

Process abduce can be defined as follows:

abduce(∆,abd) :-

abduce(abd,Ans)@∆,

abduce1(∆,Ans,abd).

abduce1(∆,recorded,abd) :-
| constraints(abd,C), 

consistency(∆,C).

abduce1(∆,present,abd) :- | true.

abduce1(∆,absent,abd) :- | fail.

where we assume the existence of a predicate
constraints(abd,C) which returns in C (in
an appropriate format) the constraints associated

with the abducible abd, i.e. those denials which
contain a condition with the same abducible
predicate as that of abd. Note the use of ports in
this (indirect) implementation of the operations
inform  and check . In particular, a monitor
process controls access to ∆ and responds with the
message recorded if abd(present) succeeded
in being informed, and present or absent if
abd(present) or abd(absent) respectively
have already been recorded.

Furthermore, process consistency can be
defined as follows:

consistency(∆,abd) :-

consistent(abd,Ans)@∆,

consistency1(∆,Ans,abd).

consistency1(∆,recorded,abd) :-
| true.

consistency1(∆,present,abd) :-
| fail.

consistency1(∆,absent,abd) :-
| true.

Regarding the first rule for consistency1,
we should note that the absence of abd cannot
cause a violation of the integrity constraints for the
particular denial form of integrity constraints we
have considered and so there is no need for any other
action. There are, however, cases where there is a
need to call an abductive phase. For example, if we
have disjunctive integrity constraints such as
p∨abd, the absence of abd requires the proof of p,
i.e. the invocation of an abductive phase for p.
Such a case arises, for instance, with NAF where
we effectively have integrity constraints of the form

p∨p*. For these cases this rule takes the following
form:

consistency1(∆,recorded,abd) :- |

constraints(abd,C), abduce(∆,C).

6 Conclusions and Further
Work

In this paper we have proposed and studied a parallel
computational model for abduction in logic
programming. The exploitation of the different
forms of AND/OR-parallelism available in an
abductive logic program has many benefits. Among
others, it reduces the search space, causes a faster
detection of inconsistencies, and allows the sharing
and reuse of hypotheses.

Although it is not possible to exploit all forms
of parallelism efficiently, the initial aim is to
identify the best possible combination of AND/OR-
parallelism on top of existing parallel models of
logic programming, that also take into
consideration the special needs of abductive logic
programs. Along these lines we have concentrated
on the Andorra model which, we believe, offers a
number of characteristics suitable to our purpose.
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Our first attempt to design and implement such a
parallel model of abductive logic programming
concentrates on the use of the AKL system which
offers the potential we require ranging from issues
of programming expressiveness (such as ability to
interface non deterministic computations with
reactive ones - an important property of our model)
to implementation ones (such as a good
programming and developing environment).

A number of issues need further consideration.
The effectiveness and efficiency of the model should
be evaluated further by means of more application
programs (ranging from simple benchmarks to real
life applications). We intend to evaluate the
effectiveness of our model compared with the
sequential model and with the bottom up model of
[8]. Also, the model should be extended to handle
non ground abducible literals along the lines of
constructive abduction in logic programming as
defined for example in [3]. It will then be necessary
to incorporate in the model an enhanced unification
constraint solver for equality and disequality
constraints. More generally, the integration of the
model with Constraint Logic Programming and the
generalisation of the types of integrity constraints
that are supported need further investigation and are
topics of future research. In particular, it is useful
to compare our parallel model of abduction where
the task of integrity checking is itself parallelised
and incorporated explicitly into the model, with an
alternative parallel model where the integrity
checking is performed by a separate specialised
module tightly coupled with the generation of the
abductive hypotheses.
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