
Control-Driven Coordination Programming

in Shared Dataspace

George A. Papadopoulos

Department of Computer Science
University of Cyprus

75 Kallipoleos Str, P.O.B. 537
CY-1678 Nicosia, Cyprus

E-mail: george@turing.cs.ucy.ac.cy

Farhad Arbab

Department of Interactive Systems
CWI

Kruislaan 413, 1098 SJ Amsterdam
The Netherlands

E-mail: farhad@cwi.nl

Abstract.  This paper argues for an alternative way of designing
coordination models for parallel and distributed environments based on
a complete symmetry between and decoupling of producers and
consumers, as well as a clear distinction between the computational and
the coordination/communication work performed by each process. The
novel idea is to allow both producer and consumer processes to
communicate with each other in a fashion that does not dictate any one
of them to have specific knowledge about the rest of the processes
involved in a coordinated activity. Furthermore, the model is inherently
control-driven where communicating processes observe state changes
and react to the presence of events and where the main communication
mechanism is limited broadcasting (as opposed to either point-to-point
or unrestricted broadcasting communication). Although a direct
realisation of this model in terms of a concrete coordination language
does already exist, we argue that the underlying principles can be
applied to other similar models. We demonstrate our point by
comparing our model with an established and widely used coordination
framework, namely the Linda-type Shared Dataspace model, and we
show how the functionality of the former can be embedded into the
latter, thus yielding an alternative Linda-based coordination framework.

1  Introduction

The concept of coordinating a number of activities, possibly created independently

from each other, such that they can run concurrently in a parallel and/or distributed

fashion has recently received wide attention. A number of coordination models have

been developed for many application areas such as high-performance computing and

distributed systems ([7]). Most of these models address important issues such as

modularity, reuse of existing software components, language interoperability,

portability, etc. However, we believe that they also share some weak points: (i) Lack

of complete separation between the computational and coordination/communication

components of the processes involved; (ii) Lack of complete symmetry between the

processes in the sense that traditionally, producers may have to know more



information about consumers than vice versa; (iii) Need for some process (producer

or consumer) to know important information about the rest of the processes involved

in a coordination activity such as their id, types and fashion (lazy, eager or otherwise)

of communicating data, etc., which compromises the decoupling between them.

In this paper we argue for an alternative way of designing coordination models

for parallel and distributed environments based on a complete symmetry between and

decoupling of producers and consumers, as well as a clear distinction between the

computational and the coordination/communication work performed by each process.

The novel idea is to allow both producer and consumer processes to communicate

with each other in a fashion that does not obligate any one of them to have specific

knowledge about the rest of the processes involved in a coordinated activity.

Furthermore, the above aims are achieved by employing a control-driven coordination

mechanism (as opposed to the data-driven used by many other similar models) where

the agent processes that are involved in some coordination activity observe state

changes of both themselves and other relevant agents, raise events and react to

observing events raised by other agents and communicate between each other by

having output ports of themselves connected to input ports of other agents, thus

employing a certain form of limited broadcasting. This new model is referred to as

Ideal Worker Ideal Manager (IWIM,[3]). Although a direct realisation of IWIM in

terms of a concrete coordination language does already exist ([5, 10]), we argue that

the underlying principles can be applied to other similar models. We demonstrate our

point by comparing our model with a state-of-the-art coordination framework, namely

the Linda-type Shared Dataspace model, and we show how the functionality of the

former can be embedded into the latter thus yielding an alternative Linda-based

coordination framework.

An additional advantage of the proposed framework, stemming from the

complete separation between computation and coordination/communication is that the

two sets of activities can be isolated in respective sets of modules ([4]). The former

set plays the role of what is already known as “computing farm” but the latter offers a

new form of reusable entity, a “coordination farm”. Thus, different computational

modules of similar operational behaviour can be plugged together with the same set

of coordination modules enhancing the reusability of both sets and allowing the

design of novel and interesting forms of “coordination programming”.

The rest of this paper is organised as follows. The next section is a brief

introduction to IWIM; here we highlight those features of the model which we feel

are unique to this particular philosophy of coordination. We then compare IWIM with

the family of coordination models based on the metaphor of Shared Dataspace and in

particular the most prominent of its members, namely Linda. We show how the IWIM

features can be embedded in Linda, thus deriving an alternative Linda-based

coordination framework which we term IWIM-Linda. The paper ends with some

conclusions where we argue that such a comparison should be extended to include a

variety of other families of coordination models.



2  The IWIM Model

Most of the message passing models of communication can be classified under the

generic title of TSR (Targeted-Send/Receive) in the sense that there is some

asymmetry in the sending and receiving of messages between processes; it is usually

the case that the sender is generally aware of the receiver(s) of its message(s) whereas

a receiver does not care about the origin of a received message. The following

example, describing an abstract send-receive scenario, illustrates the idea:

process Prod: process Cons:

compute M1 receive M1

send M1 to Cons let PR be M1’s sender

compute M2 receive M2

send M2 to Cons compute M using M1 and M2

do other things send M to PR

receive M

do other things with M

There are two points worth noting in the above scenario:

• The purely computational part of the processes Prod and Cons is mixed and

interspersed with the communication part in each process. Thus, the final source

code is a specification of both what each process computes and how the process

communicates with its environment.

• Every send  operation must specify a target for its message, whereas a

receive operation can accept a message from any anonymous source. So, in

the above example, Prod must know the identity of Cons although the latter

one can receive messages from anyone.

Intermixing communication with computation makes the cooperation model of

an application implicit in the communication primitives that are scattered throughout

the (computational) source code. Also, the coupling between the cooperating

processes is tighter than is really necessary, with the names of particular receiver

processes hardwired into the rest of the code. Although parameterisation can be used

to avoid explicit hardwiring of process names, this effectively camouflages the

dependency on the environment under more computation. Thus, in order to change

the cooperation infrastructure between a set of processes one must actually modify the

source code of these processes.

Alternatively, the IWIM (Ideal Worker Ideal Manager) communication model

([3]) aims at completely separating the computational part of a process from its

communication part, thus encouraging a weak coupling between worker processes in

the coordination environment. IWIM is itself a generic title (like TSR) in the sense

that it actually defines a family of communication models, rather than a specific one,



each of which may have different significant characteristics such as supporting

synchronous or asynchronous communication, etc.

How are processes adhering to an IWIM model structured and how is their inter-

communication and coordination perceived in such a model? One way to address this

issue is to start from the fact that in IWIM there are two different types of processes:

managers (or coordinators) and workers . A manager is responsible for setting up and

taking care of the communication needs of the group of worker processes it controls

(non-exclusively). A worker on the other hand is completely unaware of who (if

anyone) needs the results it computes or from where it itself receives the data to

process. This suggests that a suitable (albeit by no means unique) combination of

entities a coordination language based on IWIM should possess is the following:

• Processes . A process is a black box with well defined ports  of connection

through which it exchanges units  of information with the rest of the world. A

process can be either a manager (coordinator) process or a worker. A manager

process is responsible for setting up and managing the computation performed by

a group of workers. Note that worker processes can themselves be managers of

subgroups of other processes and that more than one manager can coordinate a

worker’s activities as a member of different subgroups. The bottom line in this

hierarchy is atomic processes which may in fact be written in any programming

language.

• Ports . These are named openings in the boundary walls of a process through

which units of information are exchanged using standard I/O type primitives

analogous to read and write. Without loss of generality, we assume that each port

is used for the exchange of information in only one direction: either into ( input

port) or out of (output  port) a process. We use the notation p.i to refer to the

port i of a process instance p.

• Channels . These are the means by which interconnections between the ports of

processes are realised. A channel connects a (port of a) producer (process) to a

(port of a) consumer (process). We write p.o -> q.i to denote a channel

connecting the port o of a producer process p to the port i of a consumer process

q.

• Events . Independent of channels, there is also an event mechanism for

information exchange. Events are broadcast by their sources in the environment,

yielding event occurrences . In principle, any process in the environment can pick

up a broadcast event; in practice though, usually only a subset of the potential

receivers is interested in an event occurrence. We say that these processes are

tuned in to the sources of the events they receive. We write e.p to refer to the

event e raised by a source p.

The IWIM model supports anonymous communication : in general, a process

does not, and need not, know the identity of the processes with which it exchanges

information. This concept reduces the dependence of a process on its environment



and makes processes more reusable. Using IWIM, our example can now take the

following form:

process Prod: process Cons:

compute M1 receive M1 from in port I1

write M1 to out port O1 receive M2 from in port I2

compute M2 compute M using M1 and M2

write M2 to out port O2 write M to out port O1

do other things

receive M from in port I1

do other things with M

process Coord:

do other things

create the channel Prod.O1 -> Cons.I1

create the channel Prod.O2 -> Cons.I2

create the channel Cons.O1 -> Prod.I1

carry on doing other things

Note that in the IWIM version of the example all the communication between

Prod and Cons is established by a new coordinator process Coord which defines

the required connections between the ports of the processes by means of channels.

Note also that not only Prod and Cons need not know anything about each other,

but also Coord need not know about the actual functionality of the processes it

coordinates.

The IWIM model has already been implemented by means of a concrete

coordination language, namely MANIFOLD ([3, 4, 5, 10]); however, as we have

already said its principles apply to other coordination languages and the rest of this

paper will illustrate this point.

3  Comparison with Shared Dataspace and IWIM-Linda

The notion of a conceptually shared dataspace via which concurrently executing

agents exchange messages is a fundamental programming metaphor and a number of

models make use of it in one way or another. Probably the most well known

realisation of this notion is the Tuple Space as used by Linda ([2]). Linda’s four tuple

operations (out, in, rd, eval) constitute a minimal set via which coordination of a

number of concurrently executing activities can be achieved. Linda is a true

coordination model in that the executing processes can be written in any

programming language and indeed there are a number of such successful marriages

([2]) such as C-Linda, Fortran-Linda and Prolog-Linda ([6]).



It is worth pointing out that Linda is not a concrete language but rather a set of

“add on” primitives. This has many advantages (such as the fact that these primitives

can fit into almost any computational model); however, the functionality offered,

although simple to use and intuitive, is also minimal. One still has to program realistic

coordination patterns on top of the “vanilla” ones offered by the model. We explore

(and exploit) this aspect of comparison in the rest of this section essentially by

deriving an IWIM-Linda model which we feel leads to an alternative Linda-based

coordination framework.

Probably the most important notion of IWIM that must be expressed in Linda (or

any other coordination model for that matter) is the sending and receiving of

messages with complete lack of knowledge on the part of a receiver (respectively

sender) as to who is the sender(s) (respectively receiver(s)) of a message. In other

words we want to model the fundamental operation

prod.out -> cons.in

Of course, every such transaction can only be done via the Tuple Space. The

following is a vanilla realisation of a communication channel.

channel(prod,out,cons,in)

{

 while (1)

 {

  in(prod,out,Index,Data);

  out(cons,in,Index,Data);

 }

}

The above process is effectively a Linda-like coordinator which makes the data

tuples sent to the Tuple Space by some producer available to some consumer process.

Each such data tuple, equivalent to an IWIM’s unit of data as it flows through a

stream, is of the form <pid,chid,index,data> where pid is the producer or

consumer process id, chid is the id of the output or input channel, index is used to

serialise access to the stream of data units and data is the actual data sent.

Note that, as it is proper in IWIM, the producer has no knowledge of who will

consume its messages and vice versa. Also, the channel process can at any time

redirect the flow of data without the awareness of the producer and/or consumer.

Furthermore, using different values for the tuple field cons, a channel coordinator

can duplicate data tuples from one producer process to a number of consumer ones.

For instance the IWIM/ construct prod.out -> (-> cons1.in, ->

cons2.in) can be realised in IWIM-Linda as follows:

channel(prod,out,cons1,in1,cons2,in2)

{

 while (1)



 {

  in(prod,out,Index,Data);

  out(cons1,in1,Index,Data);

  out(cons2,in2,Index,Data);

 }

}

This vanilla apparatus, however, does not really express the actual functionality

of a proper IWIM stream connection. There is no provision for the producer and/or

the consumer to break its connection with a channel in a graceful way. If prod or

cons dies, channel will carry on “forwarding” the data resulting in either an

indefinite suspension (if prod is dead) and/or data loss (if cons is dead). Moreover,

there is no provision for merging  channels; although the output from prod can be

duplicated, it is not possible to redirect the output of a number of channels into a

single input “port”. Simply making channel (or some other similar process) to

transform tuples produced by other producers into ones having the same value for the

fields cons and in does not help because it is not possible to retain the partial

ordering of received data within some stream (although the receiving of data between

the streams can and will certainly be nondeterministic). This shortcoming is caused

by the fact that the n-tuple <prod,out,cons,in,…> actually defines a single

stream only if someone considers this structure as a whole. If we do not want the

producers and the consumers to know about each other, then in order for them to still

be able to distinguish between different streams, there is a need for an extra stream id

field available to both sets of processes.

The above scheme of implementing channel operations in Linda has a resulting

behaviour which is still different in some significant ways from the IWIM channels;

these differences stem from the very nature of the Tuple Space. One difference is

related to the issue of secured communication. An IWIM channel is secure in the

sense that it represents an unbounded buffer where data units that flow through it are

guaranteed to be delivered from source to sink. No loss of data can occur either

because of some overflow in the channel or for any other reason. The same is not true

when the Tuple Space is used as a communication medium since it is by nature a

public forum. Safe delivery of data has to rely on the assumption that only the

intended processes either send data (out) down some “channel” or retrieve data (in)

from it. Otherwise we would have forging of some channel’s output or loss of data

units respectively. In order to achieve this security, which is of major importance in

realising IWIM, one would have to create additional guard or filter processes which

would check whether a process is actually allowed to perform some in or out

operation and if not either postpone or abort it completely ([9]). Alternatively, the

notion of multisets as in Bauhaus Linda ([8]) can be used to facilitate such secure

private communication.



Another major difference is related to efficiency. An IWIM channel is effectively

a point to point communication medium and transfer of data is physically confined to

only those processors handling the involved processes. However, this knowledge of

locality is lost when realising channels via the Tuple Space since this is only logically

shared but physically distributed. This problem can be alleviated to some extent by

providing the intended functionality at some higher level of abstraction and thus help

a Linda compiler derive more optimised code ([1]). But to what extent this will be

practical for large dynamically evolving systems remains to be seen.

The purpose of the discussion so far was to highlight some important issues that

must be raised and dealt with in using the Tuple Space as a means to achieve

coordination and communication between processes in an IWIM fashion. We now

provide a more concrete realisation of IWIM-Linda. An IWIM-Linda computation

consists of the following groups of entities:

• Ordinary computation  processes using the Tuple Space by means of the usual

Linda primitives. Each such process should have no knowledge about the rest of

the processes involved in a computation. We recognise two different types of

such processes: (i) “IWIM-Linda compliant ones” which adhere to the principles

of IWIM as discussed in the previous section and behave as shown in the relevant

figure. These processes enjoy the full functionality of the model since they are

able to communicate via multiple ports, broadcast and receive a plethora of

events, etc. (ii) Non-compliant (in the sense just described) processes. These

processes can still function within our framework where communication is done

via default input and output ports and events are raised by the underlying system

software (compiler, operating system, etc.).

• For each such process, whether it is IWIM-Linda compliant or not, we introduce

a monitor  process which intercepts all communication between the process and

the Tuple Space. The monitor process is effectively responsible for handling all

aspects related to the main process’ interface with the environment, namely

delivering input/output data from/to respective ports, handle raised events, etc.

• Finally, there are coordination  processes which set up the stream connections

between computational processes by communicating with the respective

monitoring processes.

The monitor and coordination processes can in fact be implemented in any

language (and we admit that a natural choice can be the host language the

computation processes are written in); for instance, the vanilla channel code above

was written in C. Nevertheless, we have found out that it is more natural to use a

symbolic language formalism, namely the concurrent logic language one ([11]). The

formulation of the necessary functionality is easily and succintly expressed; in

addition the concepts of guarded don’t care selection and concurrency, inherent in a

concurrent logic program, provide an almost ideal mechanism to express the non-

deterministic features of our model. Finally, the derived monitor/coordination

concurrent logic program can be used as a “skeleton” ([12]) for adding IWIM-based



coordination to other (non Linda-type) models. Due to space limitations we refrain

from describing here a detailed and complete implementation of IWIM-Linda and we

go directly to the implementation of a concrete example, namely the Fibonacci series

program shown in the previous section, and we describe its implementation in an

IWIM-Linda fashion, explaining in the process the features of our methodology.

sigma()

{

 while (1)

 {

  in(“unit”,x,?int1); in(“unit”,y,?int2);

  if (safe to add numbers)

     out(“unit”,out,int1+int2)

  else { out(“event”,overflow); out(“unit”,out,error); break; }

 }

}

sigma is written in the host language (C in this case) and it is IWIM-Linda

compliant in the sense that it recognises the concept of receiving data from multiple

(input in this case) ports, raises events (overflow) and repeats the procedure by

enclosing everything in an infinite loop. Otherwise, it is an ordinary computation

process unware of who sends it data, who (if anyone) is receiving its output, how

many producers and/or consumers are connected by means of streams to its input and

output ports, etc. We stress again the fact that this need not be the case; a non-

compliant sigma which simply ins two data tuples and outs the result without

recognising ports, supporting repetition or raising of events can also function in an

IWIM fashion at the expense of creating a more elaborate monitor process than the

one shown below: the monitor would have to filter out all references to ports from

tuples, trap the raising of events from the underlying system software (compiler,

operating system, etc.) and reactivate sigma each time a new pair of input data

arrives at the default nominal input port. The monitor process for a compliant sigma

follows promptly (only the most essential aspects of the functionality are shown for

the sake of brevity and clarity).

The first group of rules serves requests received for stream connections to

sigma’s ports that are sent by coordinators. For brevity we show the rule for the

input port x; the same procedure is followed for the rest of sigma’s ports whether

these are input or output.

sigma([in(“estbl_str”,Self,x,Str_Id)|Rest],X_Strs,Y_Strs,Out_Strs,Eve

nts,…)

   <- X_Strs=[(Str_Id,0)|_], out(“ack”,Self,Str_Id),

      sigma(Rest,X_Strs,Y_Strs,Out_Strs,Events,…).



sigma’s first argument is a stream providing a communication link to both the

Tuple Space and the respective computation sigma process. When a control tuple

requesting a stream connection and sent by some coordinator process is received, the

monitor keeps a note of the stream_id for the respective port and initialises a counter

to 0. More to the point, for each port sigma keeps in a respective number of

arguments a list (set) of the form [ ( s t r _ i d 1 , i n d e x 1 ) ,

(str_id2,index2), …]  where each member of the list (set) is a pair comprising

the id of a stream connected to that port and an associated index to be used in

retaining the partial ordering of units of data sent down the stream. There are

additional arguments for other related information (for instance, which events can be

observed and/or raised by the process, etc.). Note that Self refers always to the id of

the dual process entity (monitor-computation). Note also that upon receiving a request

for a stream connection, sigma outs an acknowledgment message to whichever

coordination process has requested it.

The second group of rules intercepts the attempted communication to and from

the Tuple Space and presents it to the processes involved in an IWIM fashion. Here

we show the rules executed for a typical in operation sending data from the Tuple

Space to the x port and a typical out operation sending data from the out port to the

Tuple Space.

sigma([in(“unit”,Self,Port_Id,Stream_Id,Data,Index)|Rest],X_Strs,…)

   <- Port_Id==x, (Stream_Id,Index+1)@X_Strs |

      sigma!out(“unit”,x,Data),

      Index’=Index+1, New_X_Strs=X_Strs.(Stream_Id,Index’),

      sigma(Rest,New_X_Strs,…).

sigma([Self?out(“unit”,Port_Id,Data)|Rest],…,Out_Strs,…)

   <- Port_Id==out |

      send_out(Data,Self,Port_Id,Out_Strs,New_Out_Strs),

      sigma(Rest,…,New_Out_Strs,…).

send_out(Data,Self,Port,[(Str_id,Index)|Rest],New_Port)

   <- out(“unit”,Self,Port,Str_Id,Data,Index),

      New_Port=[(Str_id,Index+1)|New_Port_Rest],

      send_out(Data,Self,Port,Rest,New_Port_Rest).

send_out(_,_,_,[],New_Port) <- New_Port=[].

The first rule intercepts a unit sent by some coordinator process to the x port of

sigma. The respective monitor process first establishes that the stream connection

does indeed exist; note here that the expression (Stream_Id,Index+1)

@X_Strs which uses the set operator ‘@’ succeeds if the pair (Stream_Id,

Index+1) is an element of the list X_Strs. Upon the successful evaluation of the

guard, the rule commits to the body where an “ordinary” version of the tuple is sent to



the sigma computation process. Here note the operator ‘!’ which forwards the tuple

to sigma. The rule updates the index entry kept for the stream and recurses.

The next two rules are used to intercept outgoing units from the computation

process to the Tuple Space via some output port. Upon receiving such a unit the

monitor process replicates it and sends it down all streams connected to the port in

question updating again, appropriately, the relevant indices. Note here the use of the

symmetric (to ‘!’) operator ‘?’ which is used by a monitor process to accept tuples

from its respective computation process.

The final group of rules handles the raising and receiving of events. In general,

events are truly broadcast to the whole Tuple Space to be picked up by any process

interested in them. Note that events are read by processes rather than being ined;

this is due to the fact that more than one process may be interested in the raising of

some event. The rules below are a sample of the actual set of events that can be raised

during the lifespan of the computation either by some process or by the system itself.

sigma([Self?out(“event”,type)|Rest],…,EventsRaised,…)

   <- type@EventsRaised | out(“event”,type,Self), sigma(Rest,…).

sigma([rd(“event”,type,Process_Id)|Rest],…,EventsReceived,…)

   <- type@EventsReceived | Self!in(“event”,type), sigma(Rest,…).

The first rule belongs to the category of those intercepting events raised by the

computation process. The respective monitor process first checks whether the

computation process can indeed raise the event by establishing that there is a relevant

entry in the list of events to be raised. It then forwards the event to the Tuple Space,

adding the id of the process and, in a typical IWIM fashion, carries on without

worrying about the outcome of the raising of the event. The second rule belongs to the

category of those events raised by some other process. The monitor process first

establishes that the raised event is observable by its dual computation process before

forwarding it to the latter. Note that observing an event typically leads to the breaking

up of some stream connections and/or termination of processes; eg. observing the

occurrence of the event halt leads to the execution of the following rule:

sigma([rd(“event”,halt,Process_Id)|Rest],X_Strs,Y_Strs,Out_Strs,…)

   <- out(“event”,ack_halt,Self), sigma(Rest,_,_,_,…).

Upon observing the raising of halt , the monitor process sends back an

acknowledgment message and clears all stream connections effectively suspending

the execution of the corresponding computation process. No data units will flow into

or out from that process until new stream connections have been established (the

actual procedure followed is in fact more complicated involving the termination and

restarting of the process but it is not shown here for brevity).

The next set of rules implement an IWIM “variable”; these special types of

processes are in practice implemented at a lower level for the sake of efficiency. Note

that there is no need to keep the value of the variable as a parameter to the coordinator



process since assignment can be realised by means of feeding the contents of the out

port back to the in port. Also, we choose to support no indices since attaching

multiple streams to the in port would be logically obscure. Due to the simplicity of

the process, there is no need for an associated computation process.

variable([in(“estbl_str”,Self,in,Str_Id)|Rest],In_Strs,Out_Strs,Event

s)

   <- In_Strs=[(Str_Id,0)|_], out(“ack”,Self,Str_Id),

      variable(Rest,In_Strs,Out_Strs,Events).

variable([in(“estbl_str”,Self,out,Str_Id)|Rest],In_Strs,Out_Strs,Even

ts)

   <- Out_Strs=[(Str_Id,0)|_], out(“ack”,Self,Str_Id),

      variable(Rest,In_Strs,Out_Strs,Events).

variable([in(“unit”,Self,in,Stream_Id,Data,_)|Rest],…)

   <- (Stream_Id,_)@X_Strs |

      send_out(Data,Self,out,Out_Strs,New_Out_Strs),

      variable(Rest,In_Strs,New_Out_Strs,Events).

variable([in(“event”,halt,Process_Id)|Rest],In_Strs,Out_Strs,Events)

   <- out(“event”,ack_halt,Self), variable(Rest,_,_,_).

This main section of the paper ends with the description of the coordinator

process responsible for setting up the whole apparatus. Again for brevity, we present

the relevant rules in a sketchy fashion. We urge the reader at this point to notice the

benefits of using a concurrent logic notation to express, naturally, the concurrency

involved in the activities performed by the coordinator process.

main(TS) <- out(“estbl_str”,variable0,out,StrId1),

            out(“estbl_str”,sigma,x,StrId1), /* v0->sigma.x */

        /* etc. for v1->sigma.y, v1->v0, sigma->v1, sigma->print */

            main1(TS,variable0,variable1,sigma,print,

                  StrId1,StrId2,StrId3,StrId4,StrId5).

main1([in(“ack”,variable0,StrId1),in(“ack”,variable0,StrId3),…],…)

   <- forward(TS,variable0,out,sigma,x,StrId1),

  /* etc. for the streams created by the rest of the connections */

      monitor_events(TS,…).

forward([in(“unit”,Producer,Out_Port,Str_Id,Data,Index)|Rest],

        Producer,Out_Port,Consumer,In_Port,Str_Id)

   <- out(“unit”,Consumer,In_Port,Str_Id,Data,Index),

      forward(Rest,Producer,Out_Port,Consumer,In_Port,Str_Id).

monitor_events([rd(“event”,overflow,sigma)|_],…) <-

out(“event”,halt,main).



main sends out the control tuples to establish the stream connections between

the processes involved in the coordination activities. It then calls main1 which waits

for the relevant acknowledgment messages to be sent back to it by the processes in

question, signifying that the requested stream connections have been established. It

then spawns a number of forward processes which are responsible for redirecting

the data units from output ports to input ones via the proper stream connections. In

addition, a monitor_events process scans the Tuple Space for any raised events.

For instance, once an overflow event is raised by sigma monitor_events

sends out a halt control tuple to signal termination of the stream connections and

thus the whole spectrum of computation and coordination activities.

We recall that the complete separation of computation and

coordination/communication activities enhances the reusability of both groups. Our

Fibonacci series example above, being a rather specialised one, is not the ideal

candidate for illustrating this point. Even so, one can notice that sigma behaves as

some sort of possibly specialised merger receiving from two input streams and

producing a single output stream after performing some computational activities.

Thus, a more general sigma could be the following:

sigma(err_sig)

{

 while (1)

 {

  in(“unit”,x,data1); in(“unit”,y,data2);

  compute results;

  if (all_ok)

     out(“unit”,out,results)

  else { out(“event”,err_sig); out(“unit”,out,error); break; }

 }

}

The IWIM coordination framework as it was realised before remains unchanged

(we assume only that monitor_events has a rule that will handle err_sig). In

fact, even the name sigma can be factored out by using some suitable predicate

name building operator which is offered by any standard concurrent logic

programming environment, thus supporting the notion of parameterised coordinators

which in MANIFOLD are called manners ([4]).

Conclusions - Related and Further Work

We have introduced an alternative approach to the modelling of coordination

activities based on the IWIM model. Although the model is already realised by means

of the concrete language MANIFOLD, we have argued that its principles are more

general and lead to the creation of a new formalism and an associated family of



IWIM-like coordination models and languages. We have demonstrated our point by

incorporating IWIM’s principles in the Linda framework, deriving the IWIM-Linda

coordination paradigm.

Our work is also somewhat similar in nature to Law-Governed Linda ([9])

where, again, Linda is enhanced with extra functionality in order to support some

desirable features such as secured communication, the lack of which had been noted

earlier by other researchers, and to enforce other constraints. In Law-Governed Linda,

laws regulate the interactions of individual processes with the shared Tuple Space

(and therefore with each other), analogous to the manner in which social laws do, e.g.

secure financial transactions in the market place. In effect, laws in Law-Governed

Linda establish various forms of secure message passing as well as multiple Tuple

Spaces. Every process has a controller that acts as the mediator between it and the

Tuple Space to ensure its compliance with the laws of the system. The laws are

expressed in a restricted version of Prolog much in the same way that our IWIM-

Linda coordinators are written using the concurrent logic programming notation.

There is a good deal of similarity in the conceptual level of complexity of controllers

and laws in Law-Governed Linda as compared to their analogous coordinators in

IWIM-Linda. The notion of events in Law-Governed Linda in particular, and their

role in coordination is also similar to the event mechanism supported by IWIM-Linda.

However, note here that events in the IWIM-based models are more general since an

event can also be erased from the (private) event memory of some coordinator

process; due to lack of space we have not dwelt into this aspect of event handling in

this paper. Finally, the capability-based message passing mechanism of Law-

Governed Linda resembles communication through ports in IWIM-Linda.

Some of the issues and associated problems just mentioned are addressed also by

Bauhaus Linda, a generalisation of the vanilla model where the notions of tuple and

tuple space are unified into the single notion of a multiset ([8]). This generalisation

both simplifies Linda and, simultaneously, makes it more powerful and expressive.

Bauhaus Linda makes no distinction between passive and active objects. The concept

of multisets allows multiple tuple spaces, as well as protected, safe, private

communication. It is possible to have a hierarchy of multiple tuple spaces in Bauhaus

Linda; this means that, as in IWIM-Linda, we can form meta-level coordinators.

However, as in Linda, Bauhaus Linda does not enforce a separation of computation

and coordination/communication concerns. Pure coordination and computation

modules can be constructed in Bauhaus Linda, due to the availability of multiple tuple

spaces and private communication through multisets, although there are no linguistic

features to enforce or even encourage such a style of programming. In contrast, in

IWIM-Linda this should be the only way to orchestrate the cooperation and

communication between the coordinated components.

We are currently pursuing an extensive study of other coordination models and

languages with the aim of deriving IWIM-like versions of them that, within the

philosophy advocated by each such model, also support IWIM’s basic principles. At



the implementation level we have embarked on realising IWIM-Linda by building a

complete set of “skeleton functions” ([12]) as described in the previous section using

some concurrent logic language and interfacing this apparatus to a Linda

environment.

Acknowledgements

Part of this work was done while the first author was visiting CWI as part of the

ERCIM-HCM Fellowship Programme financed by the Commission of the European

Community under contract no. ERBCHBGCT930350.

References

[1] S. Ahmed, N. Carriero and D. Gelernter, “A Program Building Tool for Parallel
Applications”, DIMACS Workshop on Specifications of Parallel Algorithms, Princeton
University, May, 1994.

[2] S. Ahuja, N. Carriero and D. Gelernter, “Linda and Friends”, IEEE Computer 19(8),
Aug. 1986, pp. 26-34.

[3] F. Arbab, “The IWIM Model for Coordination of Concurent Activities”, First
International Conference on Coordination Models, Languages and Applications
(Coordination’96), Cesena, Italy, 15-17 April, 1996, LNCS 1061, Springer Verlag, pp.
34-56.

[4] F. Arbab, C. L. Blom, F. J. Burger and C. T. H. Everaars, “Reusable Coordinator
Modules for Massively Concurrent Applications”, Europar’96, Lyon, France, 27-29
Aug., 1996, LNCS 1123, Springer Verlag, pp. 664-677.

[5] F. Arbab, I. Herman and P. Spilling, “An Overview of MANIFOLD and its
Implementation”, Concurrency: Practice and Experience  5(1) , Feb. 1993, pp. 23-70.

[6] A. Brogi and P. Ciancarini, “The Concurrent Language Shared-Prolog”, ACM
Transactions on Programming Languages and Systems 13(1) , 1991, pp. 99-123.

[7] N. Carriero and D. Gelernter, “Coordination Languages and their Significance”,
Communications of the ACM  35(2), Feb. 1992, pp. 97-107.

[8] N. Carriero, D. Gelernter and L. Zuck, “Bauhaus Linda”, Object-Based Models and
Languages for Concurrent Systems, Bologna, Italy, 5 July, 1994, LNCS 924, Springer
Verlag, pp. 66-76.

[9] N. H. Minsky and J. Leichter, “Law-Governed Linda as a Coordination Model”, Object -
Based Models and Languages for Concurrent Systems, Bologna, Italy, 5 July, 1994,
LNCS 924, Springer Verlag, pp. 125-145.

[10] F. Seredynski, P. Bouvry and F. Arbab, “Parallel and Distributed Evolutionary
Computation with MANIFOLD”, Fourth International Conference on Parallel
Computing Technologies (PaCT-97) , Yaroslavl, Russia, 8-12 Sept., 1997, LNCS,
Springer Verlag (these proceedings).

[11] E. Y. Shapiro, “The Family of Concurrent Logic Programming Languages”, Computing
Surveys  21 (3) , 1989, pp. 412-510.

[12] D. B. Skillicorn, “Towards a Higher Level of Abstraction in Parallel Programming”,
Programming Models for Massively Parallel Computers (MPPM’95) , Berlin, Germany,
9-12 Oct., 1995, IEEE Press, pp. 78-85.


