
Netnomics 2 (2000) 101–116 101

Coordinating electronic commerce activities in
MANIFOLD

George A. Papadopoulos a and Farhad Arbab b

a Department of Computer Science, University of Cyprus, 75 Kallipoleos Str, P.O. Box 20537,
CY-1678 Nicosia, Cyprus

E-mail: george@cs.ucy.ac.cy
b Department of Software Engineering, CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

E-mail: farhad@cwi.nl

Modern electronic commerce environments are heavily web-based and involve issues
such as distributed execution, multiuser interactive access or interface with and use of
middleware platforms. Thus, their components exhibit the properties of communication,
cooperation and coordination as in CSCW, groupware or workflow management systems.
In this paper we examine the potential of using coordination technology to model electronic
commerce activities and we show the benefits of such an approach. Furthermore, we argue
that control-oriented, event-driven coordination models (which enjoy some inherent prop-
erties such as security) are more suitable for electronic commerce than data-driven ones
which are based on accessing an open shared communication medium in almost unrestricted
ways.

Keywords: coordination models and languages, Web-based applications, electronic com-
merce

1. Introduction

Modelling of activities within an information system or between different infor-
mation systems has become a complex task. Performing these activities (often known as
groupware, workflow, electronic commerce and enterprise reengineering) is often done
in conjunction with computer-based cooperative environments such as electronic mail,
voice and video teleconferencing, electronic classrooms, etc. In addition, the emer-
gence of the World Wide Web as the main medium, not only for passive presentation
of information but also for active cooperation between different agents collaborating in
a single task, further enhances some properties of those activities such as distribution
and openness. Typical examples of such complex-in-nature activities range from find-
ing suitable time-slots and locations for group meetings, to performing administrative
procedures (e.g., organising conferences), to carrying out reviews of draft documents,
to developing distributed Web-based electronic commerce applications (e.g., reserving
flight seats and hotel rooms by means of dedicated WWW servers). Modelling these
activities has become a task, which is often impossible to perform by single individ-

 Baltzer Science Publishers BV



102 G.A. Papadopoulos, F. Arbab / Coordinating electronic commerce activities

uals, requiring groups of people, sometimes distributed over different organisations,
countries, etc.

Recently, we have seen a proliferation of the so-called coordination models and
their associated programming languages [2,6,16]. Coordination programming provides
a new perspective on constructing computer software. Instead of developing a com-
puter program from scratch, coordination models allow the gluing together of existing
components. Coordination, as a science in its own right whose role goes beyond com-
puter programming, has also been proposed [11]. More to the point, it is argued that
coordination has a number of advantages over traditional process models, such as ex-
plicit representation of organisational goals, constraints and dependencies (as opposed
to “compiled” process descriptions), opportunistic selection of required mechanisms
given current coordination requirements (as opposed to having fully-defined processes
ahead of time), and sensitivity to exception handling as well as the ability to adapt
dynamically (as opposed to having processes with rigid, well-defined behaviour).

In this paper we use the generic coordination model IWIM (Ideal Worker
Ideal Manager) and a specific control-oriented event-driven coordination language
(MANIFOLD) based on IWIM [3,4] to model electronic commerce activities. Elec-
tronic commerce makes heavy use of all aspects related to coordination technologies,
namely, communication (between, say, sellers and potential customers), cooperation
(as in the case of brokering) or coordination (as in the case of distributed auction bid-
ding). Furthermore, Web-based electronic commerce environments are inherently dis-
tributed and require support for security measures. IWIM and its associated language
MANIFOLD are based on point-to-point communication and are, therefore, inherently
secured coordination systems, as opposed to the category of shared dataspace coordina-
tion models which are inherently weaker in security aspects (see the following section).

The rest of this paper is organised as follows: in section 2 we briefly compare the
two main approaches to developing coordination models and languages. In section 3
we describe the coordination model IWIM and its associated language MANIFOLD.
In section 4 we use MANIFOLD to model electronic commerce activities, and, finally,
in section 5 we present some conclusions, and related and further work.

2. Data- versus control-driven coordination models and languages

Over the past few years a number of coordination models and languages have
been developed [2,6,16]. However, the first such model, which still remains the most
popular one, is Linda [1]. In Linda, the underlying view of the system to be coordinated
(which is usually distributed and open) is that of an asynchronous ensemble formed
by agents where the latter perform their activities independently from each other and
their coordination is achieved via some medium in an asynchronous manner. Linda
introduces the so-called notion of uncoupled communication whereby the agents in
question either insert to or retrieve from the shared medium the data to be exchanged
between them. This shared dataspace is referred to as the tuple space and information
exchange between agents via the tuple space is performed by posting and retrieving



G.A. Papadopoulos, F. Arbab / Coordinating electronic commerce activities 103

tuples. Tuples are addressed associatively by suitable patterns used to match one or
more tuples. In general, the tuples produced do not carry any information regarding the
identity of their producers or intended consumers, so communication is anonymous.

Although Linda is indeed a successful coordination model, it has some potentially
serious deficiencies (at least for some applications such as electronic commerce) which
penetrate to all other related models that are based on it. These deficiencies are:

• It is data-driven. The state of an agent is defined in terms of what kind of data
it posts to or retrieves from the tuple space. This is not very natural when we are
interested more in how the flow of information between the involved agents is set-
up and how an agent reacts to receiving some information, rather than what kind
of data it sends or receives.

• The shared dataspace through which all agents communicate may be intuitive when
ordinary parallel programming is concerned (offering easy to understand and use
metaphors such as the one of shared memory), but we believe that it is hardly
intuitive or realistic in other cases, such as for modelling organisational activities.
People in working environments do not take the work to be done by others to
common rooms where other people pass by and pick the work up! It is true that
sometimes there is selective broadcasting (e.g., in providing a group of people
doing the same job with some work and letting them sort out the workload among
themselves) but the unrestricted broadcasting that the tuple space and some of
its variants suggest and enforce is hardly appropriate and leads to unnecessary
efficiency overheads.

• Furthermore, and perhaps more importantly, the use of such a widely public medium
as the tuple space and its variants, suffers inherently from a major security problem
which gives rise to problems in at least three dimensions related to the fate of the
data posted there:

(i) they can be seen and examined by anyone,

(ii) they can be removed by the wrong agent (intentionally or unintentionally), and
even worse,

(iii) they can be forged without anyone noticing it.

The repercussions of these deficiencies in modelling information systems are rather
obvious and need not be discussed any further. It suffices to say, as an example
directly related to the context of this paper, that we would not want to broadcast
to the tuple space our credit card number hoping that it will be picked up by the
intended recipient.

Some of the above problems have already been of concern to researchers in the
area of shared-dataspace-based coordination models and solutions have been sought [7,
12,16]. Nevertheless, implementing these solutions requires quite some extra effort
and effectively leads to the design of new coordination models on top of the “vanilla”
type ones; these new models are often counter-intuitive and relatively complex when
compared with the inherent philosophy of their underlying basic model.



104 G.A. Papadopoulos, F. Arbab / Coordinating electronic commerce activities

3. The IWIM model and the language MANIFOLD

MANIFOLD [4] is a coordination language which, as opposed to the Linda family
of coordination models described in the previous section, is control- (rather than data-)
driven, and is a realisation of a new type of coordination models, namely, the Ideal
Worker Ideal Manager (IWIM) one [3]. In MANIFOLD there are two different types
of processes: managers (or coordinators) and workers. A manager is responsible for
setting up and taking care of the communication needs of the group of worker processes
it controls (non-exclusively). A worker, on the other hand, is completely unaware of
who (if anyone) needs the results it computes or from where it itself receives the data
to process. MANIFOLD possesses the following characteristics:

• Processes. A process is a black box with well-defined ports of connection through
which it exchanges units of information with the rest of the world. A process
can be either a manager (coordinator) process or a worker. A manager process is
responsible for setting up and managing the computation performed by a group of
workers. Note that worker processes can themselves be managers of subgroups of
other processes and that more than one manager can coordinate a worker’s activities
as a member of different subgroups. The bottom line in this hierarchy is atomic
processes, which may in fact be written, in any programming language.

• Ports. These are named openings in the boundary walls of a process through which
units of information are exchanged using standard I/O type primitives analogous to
read and write. Without loss of generality, we assume that each port is used for
the exchange of information in only one direction: either into (input port) or out of
(output port) a process. We use the notation p.i to refer to the port i of a process
instance p.

• Streams. These are the means by which interconnections between the ports of
processes are realised. A stream connects a (port of a) producer (process) to a (port
of a) consumer (process). We write p.o -> q.i to denote a stream connecting
the port o of a producer process p to the port i of a consumer process q.

• Events. Independent of streams, there is also an event mechanism for information
exchange. Events are broadcast by their sources in the environment, yielding event
occurrences. In principle, any process in the environment can pick up a broadcast
event; in practice though, usually only a subset of the potential receivers is interested
in an event occurrence. We say that these processes are tuned in to the sources of
the events they receive. We write e.p to refer to the event e raised by a source p.

Activity in a MANIFOLD configuration is event driven. A coordinator process
waits to observe an occurrence of some specific event (usually raised by a worker
process it coordinates) which triggers it to enter a certain state and perform some
actions. These actions typically consist of setting up or breaking off connections of
ports and channels. It then remains in that state until it observes the occurrence of
some other event, which causes the preemption of the current state in favour of a new



G.A. Papadopoulos, F. Arbab / Coordinating electronic commerce activities 105

Figure 1.

one corresponding to that event. Once an event has been raised, its source gener-
ally continues with its activities, while the event occurrence propagates through the
environment independently and is observed (if at all) by the other processes accord-
ing to each observer’s own sense of priorities. Figure 1 shows diagramatically the
infrastructure of a MANIFOLD process.

The process p has two input ports (in1,in2) and an output one (out). Two
input streams (s1,s2) are connected to in1 and another one (s3) to in2 delivering
input data to p. Furthermore, p itself produces data which via the out port are
replicated to all outgoing streams (s4,s5). Finally, p observes the occurrence of the
events e1 and e2 while it can itself raise the events e3 and e4. Note that p need
not know anything else about the environment within which it functions (i.e., who is
sending it data, to whom it itself sends data, etc.).

The following is a MANIFOLD program that computes the Fibonacci series.

manifold PrintUnits() import.
manifold variable(port in) import.
manifold sum(event)
port in x.
port in y.
import.

event overflow.

auto process v0 is variable(0).
auto process v1 is variable(1).
auto process print is PrintUnits.
auto process sigma is sum(overflow).

manifold Main()
{
begin:(v0->sigma.x, v1->sigma.y,v1->v0,sigma->v1,sigma->print).
overflow.sigma:halt.
}

The above code defines sigma as an instance of some predefined process sum
with two input ports (x,y) and a default output one. The main part of the program



106 G.A. Papadopoulos, F. Arbab / Coordinating electronic commerce activities

sets up the network where the initial values (0, 1) are fed into the network by means
of two “variables” (v0,v1). The continuous generation of the series is realised by
feeding the output of sigma back to itself via v0 and v1. Note that in MANIFOLD
there are no variables (or constants for that matter) as such. A MANIFOLD variable
is a rather simple process that forwards whatever input it receives via its input port to
all streams connected to its output port. A variable “assignment” is realised by feeding
the contents of an output port into its input. Note also that computation will end when
the event overflow is raised by sigma. Main will then get preempted from its
begin state and make a transition to the overflow state and subsequently terminate
by executing halt. Preemption of Main from its begin state causes the breaking
of the stream connections; the processes involved in the network will then detect the
breaking of their incoming streams and will also terminate.

4. Electronic commerce frameworks in MANIFOLD

In this section we show how a control-based event-driven coordination model
like MANIFOLD can be used to model transactions for electronic commerce. We
concentrate on three aspects: modelling e-commerce transactions, realizing security
mechanisms, and illustrating the integration of different components. In the process
we take the opportunity to introduce some additional features of MANIFOLD.

4.1. Modelling e-commerce transactions

We start with considering the case of a general scenario whereby sellers and
potential buyers are exchanging control and data information as follows:

• A seller can raise the event offer service whereby it informs the market of
some product that it is able to offer (for simplicity, we assume here that the seller
in question can offer just one product whose nature is self-evident by the event
that is being raised – this, certainly, need not be the case, and the seller may be
offering more than one product). In addition to raising this event, the seller places
the tuple <<Prod Desc>> with detailed description of the offered product to its
default output port.

• A potential buyer detects the raising of the event, and if interested, uses the id
of the event’s sender to connect to the seller’s output port in order to retrieve
the detailed description of the offered product (here we use the atomic process
propose, an instant of CheckDescr, which decides as to whether there is interest
in continuing the transaction activities). Then, if it decides to buy, it raises the event
i am interested (again for simplicity we assume that the event’s meaning is
self-evident in the sense that no other seller exists and there can be no confusion
as to the intention of the potential buyer – we point out once more that this need
not be the case and our model can handle arbitrarily complex transaction patterns).



G.A. Papadopoulos, F. Arbab / Coordinating electronic commerce activities 107

Figure 2.

• Upon detecting the presence of the event i am interested, the seller uses the
event’s source id to connect to the default input port of the potential buyer and
place there his detailed offer (including, perhaps, discounts, special prices, etc.).

• The potential buyer decides as to whether he wishes to complete the transaction or
abort it (here we use the atomic process CheckSpecs process introduced above
while describing Advisor) and sends the appropriate accept or reject message to
the seller, in the former case possibly along with some further information (e.g.,
his credit card number).

• If a reject message is sent, the transaction process is aborted. If, instead, an accept
message is sent (possibly along with some verification information), the buyer sends
the product to the user. Finally, the user sends the buyer the required amount of
money.

The above scenario is presented graphically above. It is interesting to point out
that figure 2 comes very close to being the visual coordination program that would be
written in the visual interface of MANIFOLD, namely, Visifold [5]. This suggests the
use of visual programming in modelling electronic commerce scenarios.

Furthermore, we should stress the point that, by virtue of the IWIM model, the
transactions are secured. In particular, the agents involved in the transaction (namely,
the seller and the potential buyer) broadcast only their intention of selling something
and their intention of possibly buying something, respectively. The rest of the infor-
mation involved in the transaction, i.e., the description of the product, the particular
offer that the seller may make to the potential buyer and the acceptance of the offer



108 G.A. Papadopoulos, F. Arbab / Coordinating electronic commerce activities

by the buyer along with possibly sensitive information such as a credit card number,
are exchanged between them by means of point-to-point port connections, which are
by default secure, private and reliable.

The actual MANIFOLD code for a seller and a potential buyer is shown below.

event offer service, i am interested.

manifold Seller()
{
event got answer, got money.
begin: (raise(offer service),

<<Prod Descr>> -> output, terminated(self)).
i am interested.*buyer: { begin: <<Proposal>> -> buyer;

if (input==<<Accept>>
then (<<product>> -> buyer, buyer -> payment).
}.

}

manifold Buyer (port in itemspeecs)
{
port out specs.
stream KK -> specs.
auto process myspecs is variable(itemspecs).

/ check product’s description /
auto process propose is CheckDescr().

/ check product’s specs */
auto process advise is CheckSpecs(myspecs).
begin: (variable(itemspecs) -> specs, terminated(self)).
offer service.*seller:
{ begin: (getunit(seller) -> propose, terminated(self)).
continue.propose: (raise(i am interested), getunit(input) -> advise,

terminated(self)).
recommend.advise: (<<Accept ...>> ->

seller, getunit(input) -> receiver);
<<Money>> -> seller.

got product: <<Money>> -> seller.
}.

next: post(begin).
}

We should probably stress here the fact that the actual information and particular
heroes of our scenario are parametric. In other words, the code specifies and imple-
ments, in a well-defined way, the coordination protocol of the transaction, paying atten-
tion to important issues such as security and anonymous communication (by virtue of
the IWIM model) but also paying little attention to what is being offered, who is offer-
ing it or is interested in buying it, and in the case of the purchase actually taking place,
how the buyer pays. Thus, the protocol is reusable and can be applied to many similar
cases, combined with other protocols to form more general and complicated ones, etc.



G.A. Papadopoulos, F. Arbab / Coordinating electronic commerce activities 109

4.2. Realizing security mechanisms

In the previous case we have seen how MANIFOLD can provide the necessary
security at the implementation level; in other words, we can be sure that the basic
communication among interacting agents is secured and the transmitted data cannot
be lost, intercepted or forged. However, we have not tackled the issue of security at a
logical level; i.e., whether the involved agents are of the right type, have a valid iden-
tity, and behave in the intended way. So, although the transaction process in figure 2
will be secured as far as communication needs are concerned, the framework allows
agents A and B to do anything they wish without restricting or checking their behav-
iour in any way. This happens because we have mixed together the communication
and the behaviour protocols, with every agent being free to define completely its own
behaviour irrespective of how it may affect other agents.

However, MANIFOLD coordinators can be used in a somewhat different manner,
whereby, in addition to the security at the implementation level, we also enjoy security
at the logical level. This can be achieved by having special MANIFOLD coordinators
which are used as interfaces between the actual agents (themselves being possibly
other MANIFOLD coordinators). An agent, say a seller or a buyer, cannot arbitrarily
communicate with some other agent but instead it will have to ask permission from
a special coordinator; the latter may allow the communication to continue or it may
itself do it on behalf of the agent that requested it. Thus, these special coordinators
which interpose themselves between an agent and the rest of the world, regulate the
behaviour of the agents and provide logical security. These coordinators can be seen
as law enforcers where the law itself is defined and implemented by their MANIFOLD
code; the idea of special law enforcing agents has been introduced in [12,13] and in this
section we illustrate how the framework described in [13] can be implemented naturally
in our model. The overall setup is illustrated in figure 3 where for each e-commerce
agent (implemented in MANIFOLD and other typical programming languages such as
Java) there exists a controller or law enforcer implemented in MANIFOLD; the latter
is used to intercept all messages sent from the agent to the rest of the world (i.e., other
agents with which it cooperates) as well as messages sent to this agent from other
agents. No agent is allowed to enter and get involved in some transaction without the
presence of a MANIFOLD controller.

In particular, we show a number of regulator coordinators that enforce the fol-
lowing N -ticket law as defined in [13]. A client wishing to buy goods, first sends to a

Figure 3.



110 G.A. Papadopoulos, F. Arbab / Coordinating electronic commerce activities

ticket seller a request consisting of the value N of the ticket and an electronic certifi-
cate. If the certificate is valid, the ticket seller sends back to the client the N -ticket.
The client then can use the ticket up to N times to buy goods. In addition to the
elementary security that is needed at the implementation (or communication) level, we
also want logical security in the sense that:

(i) only a ticket seller should be allowed to provide tickets,

(ii) tickets should not be duplicated by clients, and

(iii) clients should not use an N -ticket for more than N times. The MANIFOLD code
for this scenario follows promptly.

event send ticket.

auto process agora is Mall().
auto process seller is TicketSeller().
auto process client is Client().

manifold client law(process client)
{
event get ticket, buy, req ok.
auto process ec is ElectronicCertificate().
auto process value is variable.
auto process certificate is variable.

begin: terminated(self).
get ticket.client: client -> value;

certificate=ec;
<<&self,value,certificate>> -> seller;
terminated(self).

send ticket.seller:
{ auto process id seller is variable.
auto process id client is variable.
begin: getunit(input) ->

<<id seller,id client,value>>;
if id seller==seller && id client=client
then value -> client;
{ begin: terminated(self).

buy.client: if value>=1
then auto process request is variable;
auto process valid is Validate();
client -> (->valid, -> request);
req ok.valid: request -> agora;
value=value-1
}.

}.
}

manifold ticket law (process seller)
{
event ec ok;



G.A. Papadopoulos, F. Arbab / Coordinating electronic commerce activities 111

auto process value is variable.
auto process ec is variable.
auto process id client is variable.

begin: getunit(input) -> <<id client,value,ec>>;
<<value,ec>> -> seller;
terminated(self).

ec ok.seller: (raise(send ticket),
<<&self,id client,value>> -> id client).

}

For every client wishing to get an N -ticket before starting buying goods
and every seller providing tickets, there exist respectively a client law and
a ticket law regulator, which enforce the law and intercept any communication
between a client and a seller. When a client process wants to get a ticket,
the corresponding client law process sends the tuple <<client id,N-value,
electr certificate>> to the ticket law process. The latter informs the
seller process it monitors that a ticket is being requested and seller checks
the certificate. If the certificate is valid, seller informs ticket law and the latter
uses the client id part of the tuple it received to connect to client law and send
the requested ticket. Upon receiving the ticket and checking by means of comparing
ids that the ticket has been sent by the right seller and is addressed to the intended
client, client law informs client that the ticket has arrived. It then monitors
any attempted transaction between client and agora (a group of service providers,
themselves monitored by some other regulator coordinator not shown here), making
sure that the client does not exceed the N -value limit.

Note that the above coordinators enforce security at both the logical and the
implementation level. A client process cannot copy a received ticket to some other
similar process since the ticket is being held by its regulator client law process; nor
can client exceed the ticket’s value since when N = 0 any additional transaction
between client and agora will not be allowed. Furthermore, a ticket law
process makes sure that tickets can only be issued by a valid seller process and,
once a ticket is issued, it is forwarded to the client process that requested it; this
is achieved again by making use of the ids of itself as well as the client process
that requested the ticket. Finally, as we have already discussed previously, elementary
security at the level of exchanging information is guaranteed by virtue of the IWIM
model and MANIFOLD’s implementation.

4.3. Integrating different components

In this section we show the applicability of control-based event-driven coordina-
tion models such as MANIFOLD for the development of generic interaction frame-
works, often referred to as shopping models [10], where the interaction and communi-
cation part (in other words the program logic) is separated from low level details such
as the security or payment mechanisms employed, etc. The top-level environment



112 G.A. Papadopoulos, F. Arbab / Coordinating electronic commerce activities

Figure 4.

follows the logic of [10] and consists of four main components: a merchant handler,
a customer handler, a shopping controller and a services controller. The first two are
used to intercept and handle the requests, messages and data interchanged between a
customer and a merchant, the third one coordinates the interaction between the pre-
vious two entities while the last one controls the invocation of specific services such
as payment methods. As illustrated in figure 4, customers and merchants interchange
messages indirectly via a shopping controller, which monitors their interaction, and,
if the need arises, plays the role of an objective referee. Furthermore, clients interact
with service controllers to whom they delegate the, often of lower level nature, tasks
of invoking specific services. All interactions are event-driven and the coordinators
for these four basic entities (shown in shaded rectangular boxes) are implemented in
MANIFOLD. The actual model we have in mind is quite elaborate and complicated but
for the purposes of this paper we show the most important parts of the MANIFOLD
code for the case of initiating a payment from a customer to a merchant assuming that
the order has just been completed.

event order complete, commence payment, receive order,
payment complete.

manifold CustomerHandler()
{
event proceed.
process checkpayment(proceed) is CheckPayment atomic.



G.A. Papadopoulos, F. Arbab / Coordinating electronic commerce activities 113

begin: terminated(self).
pay.*shopping controller:

(activate checkpayment, terminated(self)).
proceed.checkpayment: raise(commence payment).
...
}

manifold MerchantHandler()
{
event order ok.
auto process checkorder(order ok) is CheckOrder atomic.

begin: terminated(self).
receive order.*shopping controller:

(shopping controller -> check order, terminated(self)).
order ok.checkorder: raise(order complete).
...
}

manifold ShoppingController()
{
begin: terminated(self).
...
order complete.*merchant: raise(pay).
payment complete.*services controller: ...
...
}

manifold ServicesController()
{
event payment done.
process paymentservice(payment done) is PaymentService atomic.

begin: terminated(self).
commence payment.*customer handler:
(activate paymentservice, terminated(self)).

payment done.paymentservice: raise(payment complete).
...
}

After being alerted (by means of observing the event receive order) by the
Services controller to the arrival of a new order, the Merchant handler checks if
the order is complete. The lower level details of how this is done are immaterial to the
basic program logic and are delegated to some atomic process (typically a C program
accessing a database of information and making any necessary checks). Upon receiv-
ing by this atomic process a confirmation that the order is ok, the Merchant handler
raises the event order complete, indicating that the phase of a customer ordering
some goods has been completed. The Services controller then commences the pay-
ment phase by raising the event pay. In response to observing this event, a Customer
handler first makes sure that he agrees with the details of the payment procedure (this



114 G.A. Papadopoulos, F. Arbab / Coordinating electronic commerce activities

lower level activity is performed by the atomic process CheckPayment possibly by
contacting the Merchant handler) before raising the event commence payment;
the latter will be observed by the Services handler which will proceed to perform
the payment. Again here the lower level details of the actual payment transactions
are being delegated to some atomic process (PaymentService) which is parametric
to the top level generic shopping model and can be substituted at will (e.g., initially
DigiCash is used and later on a switching is made to First Virtual).

5. Conclusions – related and further work

In this paper we have examined the use of a control-oriented, event-driven co-
ordination mechanism (namely the IWIM model and its associated language MANI-
FOLD) in modelling electronic commerce activities. We believe an electronic com-
merce framework based on MANIFOLD enjoys a number of desirable properties such
as natural distribution, hiding of lower level details, exploitation of high-performance
computational resources and secure communication without compromising the flexibil-
ity and openness that any such environment should support. Our approach allows for
the formation of generic coordination patterns for electronic commerce transactions
which can be used for many cases irrespective of the types of potential sellers and
buyers, offered services and products, etc. Coordination languages like MANIFOLD
support complete decoupling in both time and space; i.e., agents send information
without worrying as to who (if anyone at all) receives this information, while other
agents receive information without worrying who has sent it or whether the sender is
still alive. Thus, it is possible to introduce new players to a coordination protocol for
some electronic commerce transaction, enhance or replace existing offered services,
etc. Furthermore, the use of coordination technology along the lines described in
this paper is orthogonal to many other issues relevant to the case of electronic com-
merce. More to the point, the work here can be combined with work on intelligent
agents (typically used to offer customer support in finding and selecting the most ap-
propriate service) to derive coordination protocols where each MANIFOLD process
behaves as such an agent, dedicated to perform some particular task. Furthermore,
atomic processes (i.e., processes not written in MANIFOLD due to their involvement
with aspects not directly related to the coordination protocols) can be as elaborate as
necessary without further complicating the communication protocols. For instance,
CheckDescr or CheckSpecs (and other similar processes) could actually be inter-
facing to a sophisticated knowledge base or use constraint satisfaction techniques, in
order to reach any decisions. On another front, MANIFOLD processes can be seen
as mobile agents, migrating from one place to another in order to be as efficient as
possible and also exploit the underlying hardware infrastructure. We are currently
designing an elaborate environment for electronic commerce based on the principles
described in this paper.

Our paper complements (initial) work by others in the use of coordination models
for modelling electronic commerce activities. More to the point, [8] describes such a



G.A. Papadopoulos, F. Arbab / Coordinating electronic commerce activities 115

model based on the Linda coordination framework. As we have argued in this paper
and elsewhere [14–16], the (vanilla) Linda formalism is based on the use of an open
and public shared communication medium (in the case of [8] this is the PageSpace)
where access for either placing or retrieving information is almost unrestricted. Thus,
the basic model is inherently insecure and extra devices must be built on top of it. The
same can be said about the work presented in [9] where Prolog is used to model agents
communicating via MarketSpace, a medium very similar to Linda’s tuple space. On
the other hand, our framework is based on secured (by virtue of the underlying IWIM
model) point-to-point communications with broadcasting limited only to publicizing
the most necessary information.

References

[1] S. Ahuja, N. Carriero and D. Gelernter, Linda and Friends, IEEE Computer 19(8) (1986) 26–34.
[2] J.-M. Andreoli, C. Hankin and D. Le Métayer, Coordination Programming: Mechanisms, Models

and Semantics (World Scientific, Singapore, 1996).
[3] F. Arbab, The IWIM model for coordination of concurrent activities, in: 1st Internat. Conf. on

Coordination Models, Languages and Applications (Coordination ’96), Cesena, Italy (15–17 April
1996), Lecture Notes in Computer Sciences, Vol. 1061 (Springer, Berlin) pp. 34–56.

[4] F. Arbab, I. Herman and P. Spilling, An overview of manifold and its implementation, Concurrency:
Practice and Experience 5(1) (1993) 23–70.

[5] P. Bouvry and F. Arbab, Visifold: A visual environment for a coordination language, in: 1st Internat.
Conf. on Coordination Models, Languages and Applications (Coordination ’96), Cesena, Italy (15–
17 April 1996), Lecture Notes in Computer Sciences, Vol. 1061 (Springer, Berlin) pp. 403–406.

[6] N. Carriero and D. Gelernter, Coordination languages and their significance, Commun. ACM 35(2)
(1992) 97–107.

[7] N. Carriero, D. Gelernter and S. Hupfer, Collaborative applications experience with the Bauhaus
coordination language, in: 30th Hawaii Internat. Conf. on Systems Sciences (HICSS-30), Mauni,
Hawaii (7–10 January 1997) (IEEE Press, New York) pp. 310–319.

[8] P. Ciancarini and D. Rossi, Coordinating distributed applets with Shade/Jada, in: 13th ACM Symp.
on Applied Computing (SAC ’98), Atlanta, GA (27 February–1 March 1998) (ACM Press, New
York) pp. 130–138.

[9] J. Eriksson, N. Finne and S. Janson, Surfing the market and making Sense on the Web: Interfacing
the Web to an open agent-based market infrastructure, in: Workshop on Programming the Web – a
Search for APIs, 5th Internat. WWW Conf., Paris, France (May 1996).

[10] S.P. Ketchpel, H. Garcia-Molina and A. Paepcke, Shopping models: A flexible architecture for
information commerce, in: ACM DL ’97, Philadelphia, PA (24–26 July 1997) (ACM Press, New
York).

[11] T.W. Malone and K. Crowston, The interdisciplinary study of coordination, ACM Comput. Surveys
26 (1994) 87–119.

[12] N.H. Minsky and J. Leichter, Law-governed Linda as a coordination model, in: Object-Based
Models and Languages for Concurrent Systems, Bologna, Italy (5 July 1994), Lecture Notes in
Computer Sciences, Vol. 924 (Springer, Berlin) pp. 125–145.

[13] N.H. Minsky and V. Ungureanu, A mechanism for establishing policies for electronic commerce, in:
18th Internat. Conf. on Distributed Computing Systems (ICDCS ’98), Amsterdam, The Netherlands
(26–29 May 1998) (IEEE Press, New York) pp. 322–331.

[14] G.A. Papadopoulos and F. Arbab, Control-based coordination of human and other activities in
cooperative information systems, in: 2nd Internat. Conf. on Coordination Models and Languages,



116 G.A. Papadopoulos, F. Arbab / Coordinating electronic commerce activities

Berlin, Germany (1–3 September 1997), Lecture Notes in Computer Sciences, Vol. 1282 (Springer,
Berlin) pp. 422–425.

[15] G.A. Papadopoulos and F. Arbab, Modelling activities in information systems using the coordination
language MANIFOLD, in: 13th ACM Symp. on Applied Computing (SAC ’98), Atlanta, GA (27
February–1 March 1998) (ACM Press, New York) pp. 185–193.

[16] G.A. Papadopoulos and F. Arbab, Coordination models and languages, in: Advances in Computers
46, ed. M.V. Zelkowitz (Academic Press, New York, 1998) pp. 329–400.


