Term Graph Rewriting as a Specification and Implementation Framework for
Concurrent Object-Oriented Programming Languages

Richard Banach

Department of Computer Science
University of Manchester
Manchester M13 9PL, U.K.

banach@cs.man.ac.uk

Abstract

The usefulness of the generalised computational model
of Term Graph Rewriting Systems (TGRS) for designing
and implementing concurrent object-oriented languages,
and also for specifying and reasoning about the interaction
between concurrency and object-orientation (such as
concurrent synchronisation of methods or interference
problems between concurrency and inheritance), is
examined in this paper by mapping a state-of-the-art
functional object-oriented language onto the MONSTR
computational model, a restricted form of TGRS
specifically designed to act as a point of reference in the
design and implementation of declarative and semi-
declarative programming languages especially suited for
distributed architectures.

1. Introduction

Lately there seems to be an agreement between
designers and implementors of concurrent or parallel
languages that object-oriented programming should be the
major programming discipline enforced by a language
model. In particular, a programmer should design his
program components and the associated interaction
between them, by means of objects communicating by
sending and receiving messages, and exploiting all the
features of OOP which are seen as assisting him in writing
programs which “behave properly” in a parallel
environment.

The above mentioned approach is advocated in nearly
the whole programming language spectrum, ranging from
functional languages, to concurrent constraint languages
and of course also imperative languages ([6,7,8]). Thus, a
number of issues related to reasoning about the correct and
efficient execution of a program are now transposed from

* Current attachment: Department of Interactive Systems, CWI,
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands. Email:
george@cwi.nl

This work was done during the stay of the second author at GMD
and CWI supported by an 1994 ERCIM fellowship.

0-8186-7177-7/95 $04.00 © 1995 IEEE

George A. Papadopoulos*

Department of Computer Science
University of Cyprus
Nicosia CY-1678, Cyprus

george@turing.cs.ucy.ac.cy

the level of, say, accessing single variables (as in the case of
concurrent constraint or imperative languages), to the more
abstract level of accessing an object by means of invoking
associated methods. These issues are still of paramount
importance since “pure” OOP remains essentially an
imperative concept even for the case of object-oriented
declarative languages where “non monotonic” behaviour
such as destructive assignment is used to model objects
with state ([6,8]). Thus, although such imperative behaviour
may be well hidden within the functionality of an object,
unintended object access can still cause problems, such as
deadlock, at the level of (concurrent) method invocations.

The purpose of the current work is to exploit the
generalised computational model of Term Graph Rewriting
([10]) and in particular the MONSTR model and associated
compiler target language ([1]), in mapping the behaviour of
programs written in UFO ([8,9]), a state-of-the-art object-
oriented functional language, onto equivalent sets of
MONSTR rewrite rules. MONSTR is a computational
model designed specifically for the needs of parallel
machines and indeed it has played the role of a “machine
language” for at least one such architecture ([11]). More to
the point, in this work we provide a set of TGR-based
abstractions related to the fundamental operations with
objects (object creation, method invocation, delegation and
inheritance mechanisms, etc.) the aim being: (i), to provide
an implementation route by means of mapping such
abstractions onto the intermediate MONSTR formalism;
and most importantly perhaps (ii), to reason about the
behaviour of a program using these abstractions by
revealing its run-time properties through an examination of
the respective properties of the equivalent MONSTR rule
system. In addition, a variety of prototype MONSTR based
implementations of object methods can be examined, the
aim being to study issues related to correctness and
efficiency of execution, deadlock prevention, compiler
optimisations, etc.

The rest of the paper is organised as follows: the next
two sections introduce MONSTR and UFO and provide

some more incentives for this work; the following few
describe mapping techniques from UFO to MONSTR and
discuss a number of issues related to the understanding of
the behaviour of the code; the paper ends with some
conclusions and pointers to related and further work.

2. MONSTR

One of the main advantages in using a rule based
rewriting model of computation for specifying properties of
systems is that one important issue, namely the atomicity of
primitive actions, is made precise automatically; i.e. each
rule must execute as an atomic action. When this approach
is used for distributed systems, sufficient thought must go
into the design of the permitted rules, in order that the
synchronisation capabilities of a distributed system are not
unduly taxed. MONSTR is a rule based language that was
designed with distributed systems in mind.

2.1 The MONSTR Language

The fundamental objects of MONSTR are term graphs.
A term graph, is a directed graph where the nodes are
labelled with symbols, assumed of fixed arity, and each
node has a sequence of out-arcs to its child nodes. The
nodes and arcs of term graphs are marked to control
rewriting strategy as we will see below. The term graph that
represents the instantaneous state of the computation is
modified by the application of some rule. Let us look at a
rule in action, to see what happens during a rewrite.

F[Cons[a b] s:Var]
=> #G[a "*b], s:=*SUCCEED;

First the LHS (the part before =>) is matched. F is the
root node and has two children, the Cons node, and the
Var node. The Cons node has two unlabeled children;
such undefined nodes may match anything. Note that the
pattern is shallow; this is fundamental to MONSTR as large
patterns demand large scale locking to ensure atomicity.

Once a match is located, which must be at an active (*-
marked) node of the graph, the nodes on the RHS are built
into the redex area. Thus a once-suspended (#-marked) G
node is constructed, with arcs to the existing LHS nodes
referred to by a and b (so these nodes become shared even
if they weren’t previously). Also the arc to b is a notification
arc ("~-marked). The other new node is the active SUCCEED
node.

The notation => indicates that the root is to be redirected
to the node immediately following the => i.e. G. Also the
Var node is to be redirected to SUCCEED by the notation
s : =SUCCEED. During redirection, all in-arcs to the
respective redirection subjects (i.e. F and Var) are replaced
by in-arcs to the respective targets (i.e. G and SUCCEED).
Redirection is the fundamental notion of update in term
graph rewriting, being a graph-oriented version of
substitution.

152

The final tasks of a MONSTR rewrite are to make the
root inactive (idle); and to activate specified LHS nodes
(which causes them to be marked active if otherwise
unmarked). In the concrete syntax, this is accomplished by
mentioning the relevant nodes on the RHS of the rule, with
a * marking e.g. b above. We illustrate the action of the rule
described above in the diagram below.

\Fl #Ql[,]
/\

Data Nil

|

#yy/ h
Data *Nil

\

*SUCCEED

In the diagram, note how the in-arcs of F now point to G
after redirection, and those of Var point to SUCCEED. We
are assuming in the rewrite illustrated, that the LHS nodes
F and Cons, had no further in-arcs, and thus became
inaccessible and were garbage collected.

The above assumed that there was a rule which
matched. If not then notification occurs. This is an
alternative atomic action to rewriting, in which the root
becomes idle, and for all its all its ~-marked in-arcs
(notification arcs), the ~ marking is removed, and the
number of suspensions (#’s) in the parent node’s marking is
decremented (with #° = *). In this manner subcomputations
can signal their completion to their parents.

To make this a computational model suited to
distributed machines, a number of rules are imposed on the
syntactic structure of systems so that some useful runtime
properties hold. Rather briefly:

» Symbols are divided into functions (which have rules but
are otherwise unmatched), stateholders (which have no
rules but are non-root redirectable) and constructors (which
may just be matched).

¢ Functions have fixed matching templates, one level deep,
with at most one stateholder in a prespecified position, and
avoiding pointer equivalence testing of undefined nodes.!

¢ All nodes are balanced (i.e. have a #" marking iff they
have n notification out-arcs).

¢ All arcs are state saturated (i.e. if notification arcs, then
either the child node is a stateholder, or is non-idle).

e The root is always redirected in a rule, and LHSs of
redirections are not activated unless also the RHSs of other
redirections.

The balancedness and state saturatedness conditions are
provable runtime properties of execution graphs of systems
that adhere to some simple restrictions. Otherwise the
restrictions mainly address the requirements of pattern
matching, and of garbage collection. See [1,2] for a fuller
discussion.

2.2 Using MONSTR for Specification

MONSTR is fail-safe in that the restrictions that it
imposes, guarantee that systems are implementable on
distributed architectures. Nevertheless, when using it as a
specification medium, certain of the designer’s objectives
may make particular locality assumptions reasonable.
Under such circumstances, one may avail oneself of more
powerful pattern matching in certain rules, knowing that
overall system structure will make sure that no extreme
demands are made of the underlying hardware. We will
typically make use of this below, when we assume that the
instance data associated with an object is localised at the
object.

Furthermore, it is obviously more convenient to deal
with bigger rewrites than small ones. However when we do
this, we must always be clear whether (a): we expect the
bigger rules to be taken at face value for locality reasons,
(b): the bigger rules are being used as a readable shorthand
for a truly more finegrained implementation. In the latter
case, knowledge of rule overlaps, and of the worst possible
concurrency to be expected during pattern matching a
redex, can significantly influence the robustness needed in a
strategy for breaking down the pattern matching into true
one-level MONSTR rewrites. What must be avoided, is the
possibility that schedules of finegrained rewrites cause
unintended effects incompatible with the coarsegrained
rules, if the latter are regarded as being specificational.

When considering a concurrent object-based language,
the rule system generated by its translation to MONSTR
can be used not only as an implementation route for the
language in question, but also as a description of the
intended operational semantics. This is because MONSTR
is effectively a high-level machine language. The rule
system generated by translation, is not only a representation
of the original program but can also be quite an accurate
representation of the underlying run-time data structures
that must be set up and manipulated during the execution of

1. This explains the MONSTR acronym. It stands for: a
Maximum of One Non-root STateholder per Rewrite.

153

the program; including rules that perform operations such
as message queuing, protecting the internal state of objects
during concurrent execution of their operations,
synchronisation mechanisms, structure of objects, etc.

Thus the mapping of a concurrent OOP language to a
model such as MONSTR provides among other things the
ability to examine various ways of implementing object
behaviour, and a framework for comparing different object-
based languages. In this paper we tackle the first of these
issues by showing how the concurrent OOP functional
language UFO can be mapped onto MONSTR.

3. UFO

UFO ([8,9]) is a state-of-the-art concurrent functional
language, essentially an object-based extension to SISAL,
combining the data-flow and the actor models of
computation. As such, it is particularly suited for parallel
implementation and it is a natural candidate for being
mapped onto MONSTR. UFO features among other things:
class encapsulation, inheritance, array manipulation, strong
typing and stateful computations. Here we concentrate on
the basic principles of mapping a UFO object to a
MONSTR rule system, paying particular attention to the
interaction of state with concurrency, and leaving the
discussion of the remaining issues for a future paper.

The first example is part of a purely declarative
(stateless) object representing a complex number.

class Complex(re,im:Float)
mult (c:Complex) :Complex is
Complex (re*c.re-im*c.im,
re*c.im+im*c.re)
square:Complex is
self.mult(self)
end

The definition of the class comprises two parts, the
declaration of the instance values, and of the class’s
methods and their implementations. All expressions in the
body of a function are executed in parallel and their only
means of synchronisation is through data dependencies.
The special keyword sel £ refers to the object in question
and x. f is equivalent to £ (x) but provides a message
passing OOP style.

The next example, a counter object, will serve to
introduce UFQ’s stateful objects.

stateful class Counter (initial:Int)
{ state i=initial }
proc inc (n:Int): Int is

do new i=i+n return new i od
read: Int is i
end

The above code defines an object class whose instances
comprise an imperative hidden variable i representing the

object’s state initialised to the parameter initial, a
declarative function read and an imperative procedure
inc which updates the state accordingly. Note the UFO
semantic feature that demands that updates to state are only
allowed on a single-assignment basis, and the new values
are referred to by using the new keyword. As a result,
evaluation of the returned expression above, is delayed
until a reference to the new value is available. If stronger
sequentialisation than that is needed, UFO provides the
finally keyword, which forces all lexically preceding
expressions to return a value, before any following
evaluations can commence.

The final example shows how UFO supports conditional
messages.

stateful class MyCounter
inherits Counter
** inherits initial and i
accept read when 1i>0
proc dec is do new i=i-n return new i od
end

Note that the message read will only be served as long
as the counter has a positive value; otherwise, it will be
queued until the condition is satisfied.

4. Mapping UFO to MONSTR

To map a UFO program to a MONSTR rule system, a
fresh instance of a class is created by a rule of the form:

NewClassName [params]

=> *gelf:Channel Empty,
#ClassName[self “state],
state: *InitValClassName[params] ;

where the italicised parts represent parametric information
that varies from class to class. self is a stateholder
representing a communication channel between the object
and the rest of the world, params denotes the parameters
for computing the object’s initial instance values via the
function InitvalClassName, and state is one or
more nodes corresponding directly to the object’s state
variables. MONSTR stateholders are used to capture the
various possible communication patterns between the
object and its environment, encompassing conditional
message acceptance, etc. Ironically, we will see shortly that
because of the clean way that the OO paradigm handles
state when combined with single assignment, representing
an object’s state does not actually require stateholders!

Method invocation is modelled by sending an
appropriate message to the object’s channel, and inheritance
is modelled by delegation and copy semantics. Thus the
function symbol C1assName has a number of rules which
handle: message input, spawning of subcomputations for
the method invoked, and any channel locking required.

So, a possible translation of the class Complex to

154

MONSTR (allowing two level matching because of the
localisation of the method data at the object’s input channel)
is as follows:

NewComplex[r 1]
=> *self:Channel_Empty,
*Complex[self r i];

Complex[self:Channel]
Mult[re im ans]] r 1i]
*Complex[self r 1],
self:=*Channel_Empty,
newself: ##NewComplex|
~##SUB["*MUL[r re]
~“##¥ADD[**MUL[r im]
#Assignf{ans “newself];

A*MUL{1 im]]
A*MULI[L relll,

Complex[self:Channel [Squarelans]] r i]
=> *Complex[self r i],
self:=*Channel_Empty,
newself: ##NewComplex [
~##SUB[*MUL[r r]
~##ADD[*MUL[r 1i]
#Assignlans “newself];

AMUL[L i]]
~*MUL[1 r]11,

Complex[self:Channel_ Empty r i]
=> #Complex([”*self r il;

where

Assign[s:STATE t] => *OK, s:=*t;

A number of issues are noteworthy regarding the above
piece of code. Firstly, the instantiation rule has been
optimised, as no non-trivial computation is needed to create
the initial state from the parameters.

Secondly, message sending to an object is implemented
asynchronously: anyone (with a reference to the object’s
input channet) can send it a message by launching a Send.
This communicates with it via the following rules:

Send([c:Channel_Empty message]
=> *OK, c:=*Channel [message];

Send[c message] => #Send["c message];

These rules say that a message arriving at an empty
object is able to wake it and get processed immediately,
while if the channel is busy, the Send has to wait until the
message currently being processed has released the
channel. Note that the rules for Send, must strictly adhere
to the MONSTR restrictions, as by definition, no locality
assumptions can be made about the business of message
sending.

Thirdly, note that the queueing mechanism for messages
is very natural. It is the suspension mechanism of the graph
rewriting system itself. For this to be acceptable, i.e. for it

to agree semantically with the UFO definition which speaks
of a concrete message queue, we need to convince ourselves
that there will be no observable differences between our
nondeterministic message processing strategy and a real
queue. This only becomes an issue in the presence of
conditional message acceptance, where processing of a
message may be deferred as a result of its failing to satisfy
some acceptance criterion; and this may happen several
times. With a concrete queue, testing is always done in the
same order, whereas with a nondeterministic strategy, this
needn’t be the case. For the two to be equivalent, we at least
need there to be no observable consequences of performing
a conditional message test. UFO aims for this by stipulating
that the conditions of the test involve only simple
expressions which are free of side effects.

Fourthly, note that computation within a method is
constrained only by data dependency, but the object will
only be able to service another message when the current
method invocation has reset the input channel, and updated
any state required (unnecessary in the example above).
Since this resetting can happen before all the method’s
computation has completed, a number of methods can in
principle be executing in parallel on the same object.

We now turn our attention to the counter example whose
MONSTR implementation is shown below. Note again that
we use more powerful pattern matching than the default
“one stateholder and one level” for matching the condition
of the object, since we know that the input channel and its
contents will be localised at the object. In fact since the non-
emptiness of the input channel locks the object for the
exclusive use of the object rules themselves, the pattern
matching itself can quite easily be broken down into several
true MONSTR pattern matching steps which visit the
various arguments in turn and collect the required
information incrementally. This is because objects are not
schizophrenic: there is only ever one function node in the
graph per channel node that is responsible for the pattern
matching on that channel node. This follows easily from the
form of the RHS of rules for class instantiation.

NewCounter [init]
=> *self:Channel_Empty,
*Counter[self init];

Counter[self:Channel [
Read[ans_chan]] state]

=> *Counter{self state],
self:=*Channel_Empty,
*Assign[ans_chan state];

Counter [self:Channel [
Inc[value ans_chanl]]
=> #Counter_Inter[self
“newstate: *ADD[value state]l],

state]

155

#Assign[ans_chan “newstate];

Counter [self:Channel_Empty statel]
=> #Counter[*self state];

Counter_Inter[self state]
=> *Counter[self state],
self:=*Channel_Empty;

Note that the above structure of rules and of execution
displays the fluidity one anticipates in a fully asynchronous
model. When one makes use of the sequencing facilities
provided by the finally keyword, extra machinery is
needed to conform to the desired semantics, as is apparent
when one considers the following contrived definition of an
add function.

sillyadd(a,b:Int):Int is

{
c=Counter(0) ;
clinc(a); clinc(b)
finally
c.read
}

This is easy to translate to MONSTR given our previous
work on the Counter object, since all of the procedures
that need to update their state before the expression
following finally can evaluate, return explicit values.
The arrival of these values can be exploited to achieve the
required synchronisation. Given this, sillyadd could be
translated to MONSTR as follows:

SillyAdd[a b]

=> #Ind["ans:STATE],
##Finally2.1["ansl:STATE

~“ans2:STATE s],

c: *NewCounter {01},
*Send[c Incla ansl]],
*Send[c Inc[b ans2]],
s:Send[c Readl[ans:STATE]];

where

Ind[a] => *a;

Finally2.1l[x y s] => *OK, *s;

If it were not the case that Inc returned a value, e.g. if
there was no return in the declaration, and thus it was
implemented as

Counter[self:Channel [Inc{value]]
=> #Counter_Inter[self
~*ADD[value state]];

state]

then the implementation would have to create an
acknowledging version in order to implement sillyadd,
viz. a version almost identical to that already given:

Counter[self:Channel [
Inc_Ack({value] ack_chan] state]
=> #Counter_Inter[self
“newstate:*ADD[value state]l],
#Finallyl.1l["newstate z],
z:Assignlack_chan OK];

A question that arose in the design of UFO is whether
stateless classes would be able to inherit from stateful ones.
If the answer were yes, then the MONSTR code for even
stateless objects like Complex might actually need explicit
acknowledging as above. A more natural answer is no,
whereupon there is no need for this to happen, and this is the
decision embodied in the UFO definition. Nevertheless note
that even for stateful objects, the extra acknowledging
mechanism is only rarely required, i.e. only when non-
value-returning procedures are the synchronisers before a
finally expression; as the normal conventions for
uniocking an object by resetting its channel only when it is
permissible to start processing a new message, ensure that
an appropriate degree of atomicity is enforced.

As a further example, let us consider the MyCounter
class, and the implementation of the conditionally accepted
read function which only reads if the value of the counter
is non-negative. The MONSTR translation yields the rules

MyCounter [self:Channel [
Read[ans_chan]] state]
=> #MyCounter_Inter[self **GE[state 0]
state ans_chan],
*Counter|[self state],
self:=*Channel_Empty;

MyCounter_Inter[self True
state ans_chan]
=> *QK, ans_chan:=state;

MyCounter_Inter[self False
state ans_chan]
=> *Send[self Read[ans_chan]];

Several things are noteworthy about this translation.
Firstly, method processing is again nondeterministic.
Secondly, as specified by the UFO definition, the object is
unlocked as soon as a copy of the state is taken, because
only read access is required in completing the method call.
This copying is implemented by just creating a reference to
the state, as the particular state value itself is an instance of
an immutable entity (a natural number), which will never be
changed. Such a strategy works because creation of a new
state value is always accompanied by the spawning of a
fresh Counter function node which is to be the new state’s
unique parent. Under the circumstances, it is not necessary
to redirect the old state to the new state as there is no parent
of the old state that is not garbaged when all method

156

processing pertaining to that particular state value
completes. The correctness of this is linked to the invariant
mentioned previously. In more detail, the following
paragraph describes the key invariant informally.

At any instant of the computation, each object is
represented by: a single input channel, one or
more state values which are constructors, and a
single object function node which is one of the
input channel’s parents and which is the unique
parent of the state values. Processing of a method
results in the creation of fresh constructor values
(if update is required) and a fresh object function
node, whose children are the input channel node
and the (new) constructors. The input channel is
redirected to a reset value, and the old function
and old state values are garbaged.

Thus the evolution of the state of an object is actually
expressed by means more reminiscent of declarative
programming, i.e. by using constructors, albeit a succession
of them, rather than stateholders. The reason we are able to
do this is because of the hiding of the state within the object,
and the success of the approach is a particularly vivid
manifestation of how elegantly state can be handled when
the OO paradigm is combined with single assignment in a
clean manner. Of course there must be some part which is
non-declarative; it is to be found in the handling of the input
channel, which does require a stateholder and non-root
redirection.

It is important to realise what the above invariant does
not say as well as what it does. It does not demand that all
object processing is sequential. Many methods can run in
parallel, working in principle on different values of the
object’s state, but methods are accepted sequentiaily, and
there is always a uniquely determined state value that each
new method call refers to. The processing of the next
method call is delayed (by not resetting the self channel)
until enough of the new state value is available; i.e. when
the data dependencies arising from the return expression
of the state update computation have been satisfied.

Thirdly, referring again to the example, it is obviously
the case that if the acceptance test were not to terminate
(something that we can safely disregard in the case of the
GE function), all further method processing by the counter
would block, and the counter object would deadlock.
Indeed it is difficult to see how one can prevent the
possibility of such deadlocks without restricting the
allowable acceptance tests to a provably terminating set of
expressions. UFO’s insistence that acceptance tests contain
only simple expressions encourages this, but does not
guarantee it. Of course similar remarks hold whenever it is
not guaranteed that a computation that ultimately updates
the state of an object will terminate, as updating also
requires the object to remain locked. The situation becomes

particularly fragile when state values and values used in
acceptance tests are non-ground.

5. Towards UFO©

Building on our previous remarks, we notice that the
UFO definition, which stresses that concurrency should be
maximised, (being at least at an abstract level limited only
by data dependency), is in a sense too conservative in this
regard, in keeping the self channel locked until the new
state value is available. For consider the following.

The discipline that a message is left intact in a channel
until explicitly cleared by the object, is enforced by the rules
for Send, which cause Sends at a busy channel to wait
patiently. On the other hand, when an object responds to a
method call, once the message has been pattern matched
and the appropriate rule selected, the object function node
takes no further interest in the self channel apart from
needing to unlock it sometime, since the structure of what
needs to be done subsequently is encoded in the structure of
the selected rule. This decouples the channel discipline
from the state update discipline. Therefore the channel can
be unlocked earlier, immediately after matching.

The authors thus introduce here a semantic variant of
UFO, which we christen UFO©, which features more
concurrency by unlocking the sel £ channel earlier. In fact
in UFO®©, channel unlocking for stateless and stateful
classes is done in exactly the same way. The MONSTR
translations of UFO programs with UFOO semantics are
different. Here are two examples. Firstly, the early release
version of the Inc proc for Counter.

Counter[self:Channel [
Inc[value ans_chan]] state]

=> #Counter[self "“x:*ADD[value state]],
self:=*Channel_Empty,
#Assignlans_chan *x];

The channel is released immediately, but the RHS
Counter node, being created suspended, will ignore any
new message that a waiting Send might install while the
updated value is being computed, until the computation
returns and wakes the Counter. Transmission of the result
to the caller is done asynchronously by the Assign which
must also wait for the new value. In line with the intuition
that minimising unnecessary dependencies creates
simplicity, we note that there is now no need for a separate
Counter_Inter function.

As another example, consider the explicitly
acknowledging version of Inc according to UFO©
semantics; again there is no intermediate function.

Counter [self:Channel [
Inc_Ack[value] ack_chan] state]

=> #Counter[self “y:*ADD[value state]l,
self:=*Channel_Empty,

157

#Finallyl.1[*y z],
z:Assign[ack_chan OK];

6. On Queues

As we remarked before, the UFO definition explicitly
speaks about the queueing of method calls. In an ideal
world, where space and time are unlimited, and all
conditional acceptance tests can be relied on to have no side
effects and to terminate, there shouldn’t be any observable
differences between non-deterministic message processing
and an explicit queue for a single execution - for the absence
of side effects and the guarantee of termination make it
impossible for an external observer to know whether any
particular message has arrived and has been unsuccessfully
tested one or more times, or whether it is still in transit.

This is related to the question of what communication
model is appropriate for UFO-like languages. Most high
level asynchronous languages specifically avoid making
assumptions about the communication model for fear of
making undesirable, expensive and constraining demands
of implementors. These may come about surreptitiously
because in the real world resources are limited, and the
above-mentioned guarantees do not apply absolutely.

In view of these remarks, and to get closer to the letter
of the law on UFO, let us examine the incorporation of an
explicit message queue in our translations. As an example
we show how conditional message acceptance can be
handled at the MONSTR level by translating part of the
MyCounter example. Note that the introduction of queues
requires new machinery, hence the Q-prefixes.

NewQMyCounter{init]
=> *gelf:QChannel [ghead],
ghead:QNil,
*QMyCounter [self ghead ghead init];

(The queue is initialised empty.)

QSend{self:QChannel [qnil:QNil] mess]
=> *QK, nqg:QNil,

self:=QChannel [nqg],

*Assignignil Channel [mess nqgl];

(The higher granularity QSend function for a queue.)

QMyCounter[self ghd curr:Channel[
mess:Read[ans] nxt] state]
=> #IF[**GT[state 0] thn els],
thn:QMyCounter_Inter[self ghd
curr state],
els:QMyCounter[self ghd nxt state];

QMyCounter[self ghd curr:QNil state]
=> *MyCounterself ghd ghd statel;

QMyCounter_Inter([self ghd curr:Channel |

mess:Read[ans] nxt] state]
=> *QMyCounter [self ghd curr state],
curr:=*nxt, *Assign[ans state];

where
IF[True t e] => *OK, *t;
IF[False t e] => *OK, *e;

(The QMyCounter function runs round the queue looking
for a message it can respond to.)

Note that the queue reduces concurrency. Until the
result of the conditional test is known, we do not know
whether to remove the current message from the queue or
not; and we dare not launch a fresh QMyCounter early in
case it runs right round the queue and processes the same
message twice, ruining:-the main invariant (our simple
queue suffers from a busy waiting overhead, though more
sophisticated code can be written to avoid this).

7. Using the Translations

Above we have seen that the finegrained rule based
approach of MONSTR is well suited to discussing precise
details of synchronisation for the primitives of higher level
languages, due to its simple yet rigorous operational
semantics. The strategy may be extended to give
translations of the whole of (programs in) a high level
language into collections of finegrained rules. This has
certainly been done in the past ([4,5]).

However this approach, when carried out uncritically,
can yield a mass of finegrained rules, which quickly become
difficult to comprehend for humans, and inefficient to
execute by machine. Our recommendation is that apart from
the use of MONSTR for clarifying finegrained details of
synchronisation etc., if appropriate justification in terms of
locality of action is provided, larger granularity primitives
may be designed to act as basic building blocks for
implementations. All could have their semantics defined via
translation into MONSTR rule collections, and their
appropriateness could be judged by the ease or otherwise of
the resulting serjalisability proofs.

8. Conclusions

Recently a number of proposals have been put forward
with the aim of combining concurrency and object-
orientation. They differ in many aspects regarding the way
they handle the issues pertaining to this combination, such
as degree of concurrency allowed not only between objects
but also within an object (and how the internal state of the
latter can be protected), synchronisation mechanisms e.g.
locks, wait queues, synchronisation counters or activation
conditions, process structures of and implementation
techniques for objects, etc. In [7] it is argued that there is a
need to develop semantic frameworks capable of allowing
reasoning about the way various features of concurrent

158

OOP languages operate and to provide a common point of
reference in comparing various such languages.

In this paper we have demonstrated the utility of
MONSTR as such a framework. Although we have
concentrated on a specific language model (UFO), we can
show MONSTR’s applicability to many “semi-declarative”
languages (languages beyond the functional world, i.e. that
support state), such as concurrent constraint ones ([6]).
Language features mapped onto equivalent sets of
MONSTR rewrite rules can be reasoned about in the same
rigorous way as has already been done for process calculi
([3]), and as has been glimpsed above in the discussion of
our object invariant. Furthermore, one is also able to reason
precisely about variants of a single language, as can be done
in our case by examining the different MONSTR code
needed to describe different versions of UFO (e.g. [8,9], and
as shown in our fleeting discussion of UFOQ), especially
wit the interaction between concurrency, state and method
invocation.

Acknowledgment: The authors would like to thank John
Sargeant for comments on an earlier version of the paper.
9. References

[1] R. Banach, “MONSTR: Term Graph Rewriting for Parallel
Machines”, in {10], pp. 243-252.

R. Banach, “MONSTR I — Fundamental Issues and the
Design of MONSTR”, submitted to the JUCS, 1995.

R. Banach, J. Balazs and G. A. Papadopoulos, “A
Translation of the Pi-Calculus into MONSTR?”, Journal of
Universal Computer Science, Springer Verlag, Vol. 1, No. 6,
1995, pp. 335-394.

R. Banach and G. A. Papadopoulos, “Parallel Term Graph
Rewriting and Concurrent Logic Programs”, WPDP ‘93,
Sofia, Bulgaria, May 4-7, 1993, pp. 303-322.

R. Banach and G. A. Papadopoulos, “Linear Behaviour of
Term Graph Rewriting Programs”, ACM SAC ‘95,
Nashville, TN, USA, Feb. 26-28, 1995, ACM Press, pp.
157-163.

M. Henz, G. Smolka and J. Wurtz, “Object-Oriented
Concurrent Constraint Programming in Oz”, PPCP ‘94,
MIT Press, Cambridge, MA, 1994, pp. 27-48.

O. Nierstrasz and M. Papathomas, “Viewing Objects as
Patterns of Communicating Agents”, OOPSLA/ECOOP
‘90, ACM Press, Ottawa, Canada, Oct. 21-25, 1990, pp. 38-
43,

J. Sargeant, “Uniting Functional and Object-Oriented
Programming”, /st JSST, Kanazawa, Japan, Nov. 4-6, 1993,
LNCS 742, Springer Verlag, pp. 1-26.

J. Sargeant, C. Kirkham and S. Hooton, “UFO 1.0 Reference
Manual” (DRAFT), UFO Group, Department of Computer
Science, University of Manchester, 1995.

M.R. Sleep, M. J. Plasmeijer and M. C. J. D. Eekelen (eds.),
Term Graph Rewriting: Theory and Practice, John Wiley,
New York, 1993,

L Watson, V. Woods, P. Watson, R. Banach, M. Greenberg
and J. Sargeant, “Flagship: A Parallel Architecture for
Declarative Programming”, 15th ISCA, ACM Press,
Hawaii, May 30 - June 2, 1988, pp. 124-130.

(2]

[3]

{4]

(3]

[6]

7

(8]

91

(101

(113

