
6 Developing Self-Adaptive Mobile Applications and Services with
Separation-of-Concerns

Nearchos Paspallis, Frank Eliassen, Svein Hallsteinsen, and George A. Papadopoulos

6.1 Introduction

Modern trends in mobile computing have inspired a new paradigm for the development of

adaptive applications and services. Because of the variability which characterizes the con-

text of such environments, it is important that the software used is developed so that its

extrafunctional behavior is adapted at runtime with the aim of dynamically optimizing

the end user’s experience. This chapter proposes a novel approach for the development of

adaptive, mobile applications and services using the separation-of-concerns paradigm

(Parnas 1972), as it was studied and designed by the Mobility and Adaptation Enabling

Middleware (MADAM) project (MADAM Consortium). The proposed approach speci-

fies a set of steps for developing adaptive applications which can be automatically man-

aged and dynamically adapted by an underlying middleware layer. Most notably, this

approach treats the adaptive behavior of the corresponding application or service as a

crosscutting concern in which the specification can be separated from the implementation

of its functional logic.

In this approach, the applications are assumed to be composed of components and ser-

vices which are systematically configured (and reconfigured) to o¤er the highest utility pos-

sible to the intended users. In this context, the utility refers to a broad term including both

quality-of-service (QoS) metrics and nonquantifiable parameters which generally reflect the

extent to which the provided service meets the user needs. The components and services

are composed into alternative architectures by means of varying port and service bindings

which, as a result, provide di¤erent levels of utility to the end users, depending on the con-

text conditions.

In the literature, the separation-of-concerns approach is frequently described as one of

three main technologies supporting compositional adaptation (the other two being compu-

tational reflection [Maes 1987] and component-based design [Szyperski 1997]). Addition-

ally, the widespread use of middleware technology is typically considered as one of the

major catalysts for enabling compositional adaptations (McKinley et al. 2004a). The pro-

posed approach builds on top of these technologies and, furthermore, utilizes a middleware



infrastructure which provides support services. These services include automatic detection

and management of context changes, evaluation of the context conditions and user needs,

and implementation of runtime service adaptation. The adaptation service relies on the

dynamic publication and discovery of components and services, as well as the dynamic dis-

covery of distributed services available in the context of the middleware-managed applica-

tions and services.

The developed applications are designed as per the component-oriented paradigm,

where a component is understood to provide a service to its clients (i.e., other components

and eventually the end users). In addition to this, the components are annotated with a set

of metadata describing the relationship between their provided extrafunctional service

properties and the required extrafunctional properties from collaborating services. Based

on these metadata, and with the support of architectural reflection (Floch et al. 2006), the

middleware is capable of dynamically selecting service implementations and applying

adaptations as a response to context changes in a way which maximizes the benefit (i.e.,

utility) to the end users. Ubiquitous services are considered to be reusable and composable

entities that can be exploited to improve the utility of a mobile application. In this way, the

middleware seamlessly supports configurations based on both components and ubiquitous

services.

Besides a middleware system, a development methodology is provided, comprising a set

of models and tools which enable systematic and simplified development of adaptive appli-

cations and services. The latter is achieved by enabling the developers to concentrate on

one aspect at a time, as per the separation-of-concerns paradigm. The relevant aspects in

this case include the development of the functional parts of the system, and then the defi-

nition of its extrafunctional behavior. The actual aspect of defining the extrafunctional

properties of a system is further refined into more granular concerns, such as the applica-

tion of the where, when, and how adaptations.

The SeCSE model (discussed in chapter 1) provides a loose and flexible definition of

services. For the purposes of this chapter, the definition of services is adapted to better re-

flect the use of services from the perspective of the proposed approach. In particular, soft-

ware components are considered as entities which o¤er and require services (also referred

to as roles). Dynamic composition of components implies the binding of such services at

either a local or a distributed (over-the-network) level. Support is also provided for lever-

aging common service technologies, such as Web Services, in parallel with the component-

based applications. Concerning the taxonomy, presented in chapter 1, this work lies in the

layer of service integration, and in particular it proposes development approaches for self-

adapted, context-aware applications with emphasis on systems which aim for mobile and

pervasive computing environments.

The rest of this chapter is organized as follows. Section 6.2 introduces the concepts of

context awareness and adaptivity in the domain of mobile computing. Section 6.3 provides

the first contribution of this work, which is the modeling of the context-awareness and

130 Paspallis and colleagues



adaptivity aspects as individual concerns. This provides the foundation for an elaborate

development methodology and the required supporting tools which are thoroughly

described in section 6.4. A case study scenario is then presented in section 6.5, with the

purpose of better illustrating the use of the proposed methodology. Section 6.6 discusses

related work and compares it with the proposed approach. Finally, section 6.7 concludes

the chapter.

6.2 Context-Awareness and Adaptivity for Mobile Computing

Mobile computing is typically defined as ‘‘the use of distributed systems, comprising a

mixed set of static and mobile clients’’ (Satyanarayanan 2001). As the popularity of mobile

computing constantly increases, the study and adoption of relevant technologies, such as

those studied in the ubiquitous (Weiser 1993), autonomic (Horn 2001), and proactive

(Tennenhouse 2000) computing paradigms, is a necessity. Altogether, these paradigms

suggest the need for a new generation of distributed and adaptive mobile systems, as a

means for improving the quality of the services delivered to the end users.

Naturally, the development of software applications featuring such a sophisticated be-

havior is not easy. It has been suggested that although researchers have made tremendous

progress in almost every aspect of mobile computing, major challenges still remain related

to the increased complexity which characterizes the development of adaptive software

(Horn 2001), and the necessary development methods and environments are still an area

of ongoing research (McKinley et al. 2004a). It is also argued that the development

complexity grows even further as the boundary between cyberspace and the real world

becomes increasingly obscured. These arguments prompt the need for new development

approaches and tools, with the goal of containing the development complexity and, conse-

quently, its cost.

Any system which is designed to dynamically modify its implementation and behavior

with the aim of optimizing the utility o¤ered to the end users in environments of varying

user needs and computing resources must possess two important properties: the ability to

sense the environment and the ability to shape it. This is more apparent in applications fol-

lowing the pervasive computing paradigm, where computers are expected to be seamlessly

embedded in the fabric of our everyday activities and automatically adapt their behavior

(and as a result the environment) as a response to sensed context. In this respect, the

following two subsections define and describe the scope of the proposed approach with re-

spect to its context-awareness (environment-sensing) and adaptive behavior (environment-

shaping) requirements.

6.2.1 Context Awareness

Context-awareness related mechanisms provide the primary means by which systems sense

their environment. Context is commonly defined as ‘‘any information that can be used to

Developing Self-Adaptive Mobile Applications 131



characterize the situation of an entity; [where] an entity is a person, place, or object that is

considered relevant to the interaction between a user and an application, including the user

and the application themselves’’ (Dey 2000, 2001). This definition is followed by another

definition that classifies context into three basic categories, based on the type of informa-

tion it abstracts: user, computing, and environmental context types (Chen and Kotz 2000).

The first group includes all types of information describing the physical and mental state of

the users, such as whether they are driving, attending a lecture, sleeping, being anxious, or

angry. The second group includes the information which can describe the computing infra-

structure. This includes the memory and CPU usage of a computing node, the available

networks and their characteristics, and the availability of software and hardware compo-

nents. Finally, the environmental context describes the information which is related to the

environment of the entity of interest (typically a user or a set of users), such as the location,

the weather, the light and noise conditions, and even the time of the year (e.g., spring or

autumn).

In pervasive computing applications, the context information is very important because

it provides the primary means for enabling systems to intelligently adapt themselves (and

consequently their o¤ered services) to a changing environment. In the original description

of ubiquitous computing (Weiser 1993), it was argued that the increasing ratio of com-

puters to users leads to a situation where the users are simply overwhelmed by the demand

for interaction. The Aura project (Sousa and Garlan 2002) reiterates this by stating how

the increasing numbers of mobile and embedded computers render human attention as

the scarcest resource of all, while at the same time resulting in a situation where many

devices compete for a share of it. These ideas highlight the need for new channels of com-

munication and interaction between users and computers. For example, the users could

trigger appropriate actions in an implicit manner, simply by having the computers sense

the context of interest to their domain without requiring explicit interaction with the users.

In this approach, the context information is primarily used with the aim of adapting the

extrafunctional behavior of the applications. This is in agreement with the paradigm of

developing context-unaware applications, and, as explained in the next section, it facili-

tates the development of self-adaptive software using the separation-of-concerns paradigm.

Explicit use of context information in the functional logic of the applications (such as the

use of location information for locating our position in a map tool) is also possible, al-

though not the focus of this work.

6.2.2 Adaptive Behavior

Although context awareness enables sensing the environment, adaptations provide the

main mechanisms to shape it. The adaptive behavior of the software refers to its ability to

dynamically alter its behavior, using parameter and compositional adaptation. In the first

case, a set of variables is defined so that they can be dynamically modified at runtime with

132 Paspallis and colleagues



the aim of changing the system behavior. A typical example of this is the Transmission

Control Protocol (TCP). In TCP, some parameters can be dynamically adjusted to control

the transmission window management as a response to the detected network congestion.

By contrast, compositional adaptation enables the structural and algorithmic modification

of a system, thus enabling, for example, the introduction of new behavior after deploy-

ment, or the correction of software without having to bring the system to a halt and then

start it up again. For instance, a video teleconferencing tool could be designed to use alter-

native encoders and decoders, switching them at runtime without having to halt the system

(and very likely terminate the active conferences).

Software adaptation is a well-studied field, and many experts have explored the aspects

related to how, when, and where adaptations can be applied. For instance, McKinley et al.

(2004a) discuss the most common answers to these questions and also provide an extensive

taxonomy of related technologies for each of these questions, in which the where, when,

and how are treated as orthogonal dimensions of the taxonomy.

In the approach proposed in this chapter, the adaptations are dynamic, triggered by con-

text changes and enabled by architectural reflection, which allows the complete reconfigu-

ration of service-oriented, component-based applications. Furthermore, the adaptations

are enabled by allowing the restructuring of the application, and possibly the replacement

of some of its components, or by rebinding to alternative service providers discovered in

the environment of the application. Support for dynamic adaptation is an evident need,

as mobile environments are naturally characterized by continuous context changes, which

in turn require immediate corrective actions. In this way, the overall user experience can be

optimized throughout time.

Finally, we examine adaptations at two levels: the application and the middleware. The

applications are adapted as a means of changing their composition and/or rebinding to al-

ternative service instances in the environment of the application, which is the primary goal

of the system. The middleware itself can also be adaptive, in the sense that it can be recon-

figured when necessary. For example, specific context sensors can be dynamically added to

or removed from the middleware, depending on the runtime needs of the deployed appli-

cations for context information. Furthermore, protocols such as SOAP and RMI, and

even proprietary protocols, can be dynamically used in order to bind to newly and dynami-

cally discovered service instances.

In general, compositional adaptations are restricted to the middleware and the applica-

tion layers, whereas parameter tuning also extends to the lower layers, such as the operat-

ing system, the communication protocols, and the hardware (McKinley et al. 2004a).

Typical examples of hardware adaptations include the domains of ergonomics (e.g.,

adjusting the display brightness based on the ambient light conditions) and of power

management (e.g., switching o¤ unused or unnecessary network adapters to conserve the

battery).

Developing Self-Adaptive Mobile Applications 133



6.3 Crosscutting Concerns for Context-Aware, Adaptive Systems

This section studies di¤erent aspects of the services o¤ered by mobile and distributed sys-

tems. Furthermore, it describes how mobile users perceive the interaction with a service as

the combination of both its functional and its extrafunctional behavior (Paspallis and

Papadopoulos 2006). This is followed by a discussion on how, when, and where the adap-

tations are applied. The results of this section are used to establish the foundation on

which the proposed development approach is built.

We view an application as a system providing a service to an end user. Furthermore,

applications may depend on the availability of other services which may have further ser-

vice dependencies. Required services may be provided by bound components or by remote

service instances. For example, consider a worker using a PDA to access information

about her dynamically updated agenda. In this case the provided service could be imple-

mented as a distributed system, where a local component on the PDA accesses a remote

service on a corporate server to fetch task assignments. In addition to the functional prop-

erties of the service o¤ered by the application, the user perceives the properties which char-

acterize its extrafunctional behavior. For example, the user perceives the richness of the

data (for instance, whether high- or low-resolution images are attached to her task assign-

ments) and the service’s responsiveness (for instance, how long it took for the PDA to get

synchronized with the server, which is a function of the network latency and bandwidth).

Whether the e¤ectiveness of a service is measured by the existence of some perceived

results or the lack of such, as per the ubiquitous computing paradigm (Weiser 1993), a ser-

vice can typically be analyzed into two parts. The first refers to the functional logic of the

service, or simply delivering what the service was originally designed for. This behavior is

also commonly referred to as the business logic of the application or service. In this exam-

ple, the functional requirements include the functioning of the agenda application, which

allows the user to dynamically access and update her task assignments.

As it has been already argued, though, real-world applications and services are also

characterized by what is perceived by users as their extrafunctional behavior. This behav-

ior is generally highly dynamic and is a¤ected by numerous exogenous factors, such as the

occupation or state of the users, the availability of resources such as memory and net-

works, and environmental properties such as location and light and noise status. In the

worker example, the quality of the attached picture and the network latency or bandwidth

are examples of how the user’s perception is a¤ected by the extrafunctional properties of

the service.

As illustrated in figure 6.1, the user perceives the service as the combined result of both

the service logic and its extrafunctional behavior. The main contribution of this chapter is

the proposal of a software development methodology which enables the separation of the

two concerns: developing the application logic and defining its adaptive behavior. With

this approach, the application developers would be allowed to concentrate on the func-

134 Paspallis and colleagues



tional requirements of their project only, rather than mixing the two concerns in the same

development phase. The specification of the adaptive behavior would then be an additional

aspect of the application or service, which could be developed independently and applied

in a di¤erent layer (such as in the middleware) by the exploitation of reusable adaptation

techniques. A detailed description of how this is achieved is in section 6.4.

6.3.1 Where, When, and How the Adaptations Are Enabled

In this chapter, ‘‘adaptations’’ refers to the runtime adjustment of the extrafunctional

properties of an application or service by compositional or parameter adaptation, with the

purpose of optimizing the utility delivered to the end users. Thus, it is important to study

where, when, and how the di¤erent adaptations are applied.

Where Adaptations Are Enabled Compositional adaptations are typically applied at either

of the middleware layers or at the application (or service) itself. In McKinley et al.

(2004a), it is argued that adaptations can be applied in any of the four possible middleware

layers, ranked based on the type of services they o¤er: domain-specific middleware ser-

vices, common middleware services, distribution middleware, and host-infrastructure mid-

dleware. Nevertheless, adaptations (mostly in the form of parameter adaptations) can also

be applied in additional layers of a typical computing node. For example, modern operat-

ing systems employ several adaptation techniques, mostly to accommodate power e‰-

ciency (for example, in the form of spinning a hard disk down, or adjusting the display

Figure 6.1
The user perceives the service as the combined result of both the application logic and its extra-functional
behavior

Developing Self-Adaptive Mobile Applications 135



brightness when a laptop is unplugged from the power outlet). Also, additional hardware

devices can be adapted, usually as a result of an operating system module (for instance,

some network cards can be switched o¤ when not needed, whereas others adjust their

transmission power based on their proximity to the base station).

When Adaptations Are Enabled Having detected where to apply the adaptations, the next

step is to detect the events that trigger them. In the literature, adaptations are usually clas-

sified based on the phase of the system’s lifetime: development time, compile (or link) time,

load time, and runtime (McKinley et al. 2004a). Clearly, the first three imply static compo-

sitions, and runtime adaptations imply dynamic ones. The same classification is also used

in Aspect-Oriented Software Development (AOSD) (Kiczales et al. 1997), where di¤erent

aspects of a software system can be weaved during any of these phases. At development

time, the adaptations are apparently hardwired into the code, and thus provide limited

flexibility. At compile (or link) time, the main enabling technology involves customization

of the components, which also provides limited flexibility. Finally, the load time adapta-

tion is typically provided by editing configuration files before loading the software, which

implies a slightly more flexible form of adaptivity. In the case of mobile and pervasive

computing environments, however, the context changes rapidly, and consequently adapta-

tions are primarily required to be applied at runtime. In the case of context-aware and self-

adaptive applications, the decision of when the adaptations should take place is primarily

a function on a set of predefined context data types. For example, an adaptation can be

triggered by the level of remaining battery power, or by the availability of wireless net-

working, or, more commonly, by a combination of changes in several context types.

How Adaptations Are Enabled The last step in enabling adaptations concerns the decision

on how the adaptations should be enabled. Although many techniques have been pro-

posed, all of them are based on a fundamental approach: the creation of a level of indirec-

tion in the interaction between software entities (McKinley et al. 2004a). A large number

of enabling technologies is described and evaluated in McKinley et al. (2004a), such as

using specific software design patterns (Gamma et al. 1995), Aspects (Kiczales et al.

1997), reflection (both programmatic and architectural), and middleware-based adapta-

tions. In the case of self-adaptive systems, the how question also applies to the approach

used to take the decision on which adaptation must be selected. Actually, one of the prom-

ises of autonomic computing (Horn 2001) is that the composition of adaptive systems will

be controlled by autonomous and completely automated software components. The current

state of the art includes three types of adaptation approaches: action-based, goal-based,

and utility-function-based (Walsh et al. 2004). Action policies dictate the adaptation

action that the system should take whenever a context change occurs (condition for

action). Action policies require policy makers to be familiar with the low-level details of

the system such that the action policies cover the complete context and application state

136 Paspallis and colleagues



space, something that in practice is very challenging (especially as it requires handling of

overlaps and conflicts). This is also incompatible with the long-term goal of elevating

human administrators to a higher level of behavioral specification, as in our approach.

Goal-based approaches define higher levels of behavioral specifications which set objec-

tives (goals) for the state of the system, such as an upper bound for response time, while

at the same time leaving the system to autonomously determine the actions required to

achieve them. Conflicts arise when the system cannot satisfy all the goals simultaneously

(e.g., which goals should be dropped?) or when multiple adaptation alternatives satisfy

the goals (e.g., which one to select?). Finally, utility-function-based approaches assign

values (utilities) to adaptation alternatives and provide even higher levels of abstraction

by enabling on-the-fly determination of the optimal adaptation alternative (typically the

one with the highest utility).

6.3.2 Developing Adaptive Applications with Separation-of-Concerns

This section proposes a development approach which consists of two steps, handling each

of the two crosscutting concerns. In the first step, the developers break down the function-

ality of their applications or services into an abstract composition of roles. A role is the

abstraction of a part of the application in terms of services provided and dependencies on

services provided by other parts, or by the environment. In this phase, the developers need

not worry about the potential adaptive behavior of their applications; rather, they simply

concentrate on designing the basic components and services required for providing the

main functionality (i.e., business logic). In the next phase the developers specify the adap-

tive behavior of their software. They do so by specifying the compositional and parameter-

based reconfigurations which can be dynamically applied as a means of optimizing the

utility as that is perceived by the end users. These adaptations are further refined into

the more elementary steps of defining where, when, and how the adaptations take place.

The development of the basic functionality logic is the first and primary crosscutting

concern to be handled when developing adaptive applications and services. In this respect,

our methodology simply implies that the developers use the component-oriented paradigm

for architecting and designing their applications and services, as is illustrated in figure 6.2

(part A). In this phase each component is specified by the role it has in the architecture,

where a role refers to a service type (i.e., the type of service this role must provide in the

composition).

Once the functional design phase is completed, the developers proceed to enable the

adaptive behavior of their system by locating the variation points where adaptations are

to be enabled. Potential variation points include the roles defined in the previous phase.

These variation points are selected so that the users benefit from the resulting variability

by being able to optimally exploit di¤erent functionality profiles, depending on the chang-

ing context. For example, if the service involves video streaming, then an apparent varia-

tion point corresponds to the selection of implementation for the compression code

Developing Self-Adaptive Mobile Applications 137



Fi
g
u
re

6
.2

D
ev
el
o
p
in
g
w
it
h
S
ep
a
ra
ti
o
n
-o
f-
C
o
n
ce
rn
s:
sp
ec
if
y
in
g
w
h
er
e,

w
h
en

a
n
d
h
o
w

a
d
a
p
ta
ti
o
n
s
ta
k
e
p
la
ce

138 Paspallis and colleagues



component to fill the corresponding role. This selection is naturally based on relevant con-

text data, such as the networking conditions and the user status. Assuming that the users

might be required to interact with the developed service in situations which require hands-

free operation, the original design might then be extended with additional implementation

alternatives to provide the GUI role in order to accommodate such a possibility. Con-

sequently, the variation points might involve di¤erent implementation alternatives of

existing roles only, or they might involve the introduction of additional composition alter-

natives which were not present in the original design.

This is illustrated in figure 6.2, where the transition from A to B indicates the specifica-

tion of the variation points in the basic architecture (functional logic) of the basic applica-

tion. For instance, in this example two implementation alternatives are specified for

component 3: one atomic and one composite. At the same time, the role component 1-1

also has two implementation alternatives which are both atomic components.

In the MADAM approach, the variability is defined by means of three modeling arti-

facts: blueprint, composite, and service instance plans. The first one enables the use of

atomic component realizations as building blocks for the applications. The composite

plans are the main modeling artifact for enabling variation at the component level. Fi-

nally, the service instance plan enables the use of services for providing specific roles (i.e.,

subsets of the required functionality).

Following the determination of the application’s variability, the developers proceed by

specifying when the adaptations take place. This is accomplished by specifying the context

and resource dependencies that a¤ect the extrafunctional behavior of the application.

Changes in these context and resource values are the triggers for adaptation. This knowl-

edge of dependencies is encoded as metadata associated to individual components. The

metadata can be used to characterize the o¤ered extrafunctional properties of the service

implemented by each component, as well as the corresponding extrafunctional properties

of required collaborating services. They can, for example, be used to characterize some

expected properties of the running environment (such as networking bandwidth of at least

10Kbps). Because sometimes the properties cannot be expressed by constant values, addi-

tional support for property predictors is also made available, which enables the expression

of a property as a function of other properties and possibly context values. For instance,

the responsiveness of a service o¤ered by a component can be described as a function of

the latency and the bandwidth of the network connection which is used to bind it to the

remote service provider. This is illustrated in figure 6.2 as well, where the transition from

B to C is achieved with the annotation of the di¤erent variation options with appropriate

property metadata.

Finally, once the functional design and the specification of the variation points, context

dependencies, and extrafunctional properties are completed, the developers need to describe

how their applications and services must be adapted once an adaptation is triggered.

As already discussed in section 6.3.1, autonomic systems typically employ action-based,

Developing Self-Adaptive Mobile Applications 139



goal-based, and utility-function-based approaches. In this approach, we opt for the last

one, where the property predictors and the utility functions are designed so that they rea-

son on the context situation by means of computing the utility of potential component

compositions as numerical values. The task of planning the set of feasible compositions

and computing the utility of each one is left to the composer, which in our approach is

the adaptation manager described in document D2.3 of MADAM Consortium. Though

the utility function provided by the developer determines the optimal configuration for a

given context, the adaptation manager determines the detailed reconfiguration steps

needed to bring the application into the selected configuration. Figure 6.2 (transition

from C to D) illustrates the addition of the metadata required for the specification of the

utility functions and the property predictors.

6.4 Development Methodology and Supporting Tools

This section describes a development methodology which is based on the approach out-

lined above and which addresses the di¤erent concerns in separate development steps.

One of the main contributions of this proposal is a conceptual framework and modeling

notation for adaptive applications meant to operate in mobile environments. The method-

ology applies this notation to gradually analyze and model the application in steps, tack-

ling a di¤erent concern at each step. In the first step, the initial component architecture is

developed based primarily on the functional requirements. Then, in the following steps, the

three adaptation concerns (where, when, and how) are addressed. This section describes

these steps by covering both the analysis and the modeling approaches.

6.4.1 Defining the Initial Architecture

Just as in traditional software engineering, the first step when designing a new adaptive

system is the analysis of the problem domain, aiming to elaborate the understanding of

the problem to be solved and to define the core functionality of the system and its interac-

tion with its environment. This is followed by the derivation of the initial component archi-

tecture. The recommended notation for this step is UML composite structures, which

allows defining the system and its environment as a set of entities along with the roles

they should implement. In this case, the entities refer to anything that can a¤ect the inter-

action of the user with the application, including the application and the user themselves

(Dey 2000). The roles are simply used to denote the interaction between entities, and they

can correspond to the binding between ports of interacting software components, or artifi-

cial ports representing the interaction between a user and an application (i.e., a user inter-

face component).

For example, if the application requires vocal interaction with the user, then a compo-

nent must be defined to transform text-based messages to speech. Additionally, a basic ar-

chitecture for connecting these components must be provided so that the application is

140 Paspallis and colleagues



operational. This architecture specifies the structure of the application as a realization of a

composite component, which itself can be recursively decomposed into further, possibly

composite, components as well.

As the study of general techniques for the analysis and the design of the functional part

of component-based applications is beyond the scope of this chapter, it is assumed that

the developers exploit existing approaches for identifying their applications’ functional

and QoS requirements. This process is su‰cient for the completion of the functional

specification of the application, which is the first crosscutting concern of the proposed

methodology.

6.4.2 Defining Where the Adaptations Take Place

The next step focuses on the adaptation concern: what requirements and constraints are

likely to vary and where we have to insert variation points in the implementations in order

to be able to adapt it. Typical factors that vary for mobile applications include the com-

puting infrastructure, the environmental conditions, and the user. The anticipated varia-

tion is modeled by annotating the appropriate entities of the model developed in the

previous step with varying properties, expressed as a property name and an associated set

of possible values. In e¤ect, this can be considered as an interaction-centered approach, as

the two principal actors of the interaction are considered first (the user and the computing

infrastructure) and the environmental context (i.e., surrounding the interaction) is consid-

ered next.

Having identified the adaptations, the next step includes the specification of a set of vari-

ation points to enable the adaptations of the application in order to suit the current

requirements and constraints. In this step, the developers consider the implementation

and realization of the components which are required to fulfill the roles defined in the ini-

tial architecture. Furthermore, they recursively abstract components by high-level roles,

which in practice can be faced as generic (possibly composite) components or services

exporting the same functionality (through the same role) and implementing the exact

same logic. This abstraction enables the developers to provide di¤erent realizations for

each role: either a component type, which can be realized by either a composite or an

atomic component, or a service description type, which realizes an equivalent role. The

atomic components provide a realization which cannot be decomposed any further,

whereas the composite components can be further refined into additional component

frameworks of more elementary components, in a recursive manner. Finally, the service

description provides appropriate metadata describing alternative service instances that

can be used to provide the corresponding role. The described variability model builds on

original results from Geihs et al. (2006) and is depicted in figure 6.3.

In addition to local compositions, the composite component o¤ers the possibility for

defining distributed deployments for the application. This can be done by specifying where

each component type of a composite composition is deployed (i.e., on the mobile device or

Developing Self-Adaptive Mobile Applications 141



Fi
g
u
re

6
.3

V
a
ri
a
b
il
it
y
m
o
d
el

142 Paspallis and colleagues



on a server). As discussed in section 6.4.5, this approach supports a limited form of distri-

bution in which some components are allowed to be deployed remotely, with the aim of

optimizing the resource usage on the mobile device as well as the quality of service o¤ered

to the end user. In this respect, the developers should specify in this phase which compo-

nents are subject to distribution, by modeling them with the corresponding composite

composition. Further distribution is also achieved through the use of services (e.g., Web

Services), but the di¤erence in this case is that the actual implementation and management

of the service is beyond the explicit control of the corresponding application.

Naturally, there are dependencies between variation points, in the sense that a choice at

one variation point restricts the possible choices at others. To reflect such dependencies,

the developers specify a set of variability constraints that determine which variants are fea-

sible and which are not. For example, an application which provides the possibility for

selecting alternative atomic realizations at two points can ensure that in no case is a com-

position chosen in which the two selected atomic components are contradicting (e.g., one

instance requiring networking and the other compromising the user utility by avoiding net-

work use to achieve lower power consumption). The details of this mechanism are outside

the scope of this chapter; interested readers are referred to document D3.3 of MADAM

Consortium.

From a practical point of view, this step results in the definition of the application’s vari-

ability model, through the provision of a set of possible compositions. As is illustrated in

figure 6.3, an application is defined as a component framework which specifies one or more

roles. The roles are simple abstractions of a particular service, as it can be provided by a

component type or a service, and provides a well-defined interface to enable this abstrac-

tion. On the component type side, multiple alternatives for atomic and composite compo-

nents are enabled through their modeling as blueprint and composition plans, respectively.

On the other hand, a role can also be provided by an instance of a service as it is modeled

by a service instance plan. Given this variability model, the underlying middleware can dy-

namically generate the complete set of all possible variations. Furthermore, this model

allows the consideration of components and component types which are dynamically

added (or removed) at runtime, even after the initial application deployment.

Finally, the actual service instance plans can be provided either statically at develop-

ment time or dynamically at runtime. In the first case, the developers specify a number of

predefined service instance plans that correspond to actual, well-defined services (i.e., as

they are specified by a URL). In the second case, the service instance plans provide just

the specifications of the actual service instances, and an appropriate module in the under-

lying middleware actively searches for potential providers of the corresponding service. In

both cases, the services are abstracted by a role which in practice can also be provided by

a component type. This implies that alternative composition plans can be dynamically

generated in parallel, so that some of them involve the use of services, and some others

do not.

Developing Self-Adaptive Mobile Applications 143



6.4.3 Defining When the Adaptations Take Place

By expressing the variability possibilities for an application, the developers implicitly de-

fine a number of possible variants, each one of which is better suited for a particular con-

text. For example, one variant of a video code component can be optimized for power

e‰ciency but provide lower video quality, whereas another can be less power-e‰cient but

provide better video quality. In this way, di¤erent variants o¤er varying levels of QoS (and

thus utility) to the end users, and at the same time exhibit di¤erent patterns of resource

consumption.

In order to support automatic adaptation, we need to model how the various choices at

the variation points a¤ect the properties of the system. This is done by defining property

predictors associated with the components and the application. The property predictors

are functions computing the varying properties of the component to which they are

associated.

The analysis on the computing infrastructure includes reasoning on the context require-

ments (e.g., the selection of an appropriate variant might be a¤ected by whether there is

networking available, or whether there is su‰cient free memory available). However, as

the software components themselves are part of the computing context, the developers

should also provide an analysis on the characterization of the components (e.g., the mem-

ory footprint of a component is 10kB or the minimum networking requirement for another

component is bandwidth of 20Kbps). Additionally, the developers must reason about their

applications’ dependency on environmental and user properties, such as the ambient light

and noise conditions, or the users’ need for hands-free operation (e.g., while driving).

In conclusion, the result of this phase includes a set of context properties and related

property predictor functions that allow the estimation of the properties of the application

variants. This information abstracts o¤ered and needed properties of the entities, whose

values can be expressed either as constants or as functions on other properties.

6.4.4 Defining How the Adaptations Are Decided

The last step in the problem analysis includes the determination of how the application

adaptations are decided (in other words, which variant should be selected for each possible

combination of context conditions). In practice, this is the step where the developers are

expected to specify the autonomous, self-adaptive behavior of their applications.

In this approach, a utility-function-based approach is used which is considered to be the

most suitable for the proposed development approach and middleware design. In this

approach, the developers are expected to specify a utility function that is used to rank the

potential variants based on their fitness for a particular context. Ultimately, this utility

function is used to select the most beneficial application variant. In practice, the utility func-

tions are generally expressed as polynomials summing the weighted di¤erences between the

o¤ered and needed properties of the examined variant. Eventually, a single utility function

is associated to one application and is reused when evaluating the possible variants.

144 Paspallis and colleagues



Currently, there are not many well-defined and structured methods for specifying such

utility functions. Rather, this is an open problem in research areas such as autonomic sys-

tems and artificial intelligence. Concerning the approach proposed here, the developers are

expected to collect as much information as possible about the desired behavior of the

developed application and to use their personal experience and intuition in order to form

good utility functions. Once this is complete, the resulting utility functions can be partly

validated by testing them with the use of a simulation environment. Such a simulation

can, for instance, benchmark the utility of all potential application variants, given a large

set of context states.

6.4.5 Dealing with Distribution

An additional crosscutting concern which is automatically handled by the middleware is

the support for distribution. Besides distribution at the context level (Paspallis et al.

2007), the proposed approach supports distributed application configurations. This is

achieved through the formation of distributed adaptation domains (Alia et al. 2007a).

Each adaptation domain corresponds to a collection of computing nodes along with their

own resources and the communication networks they are connected to. It is assumed that

within an adaptation domain, all computing nodes run an instance of the middleware, or

at least a subset of it allowing the formation of distributed configurations. Each domain is

associated with exactly one client node and zero or more server nodes. Additionally, the

domains are formed dynamically through the use of a discovery protocol where the partic-

ipating nodes periodically advertise their presence and form loosely coupled group mem-

berships (Paspallis et al. 2007). Unlike clients, servers may be shared, which implies that

they can participate in multiple adaptation domains.

The adaptation reasoning is centralized and is always performed under the control of the

client node, whereas the adaptation reasoning can be performed at either the client node or

the server node to save client node resources. The client node is typically a mobile device

carried by the end user. In this case, the client side is granted complete control of the allo-

cated resources on the server nodes (Alia et al. 2007b), and is fully responsible for making

the adaptation decisions. Besides its local context information, the client node is provided

with access to the available resources of other nodes, and thus it is rendered capable of

making centralized decisions which include elements from the wider context of the distrib-

uted application. The resulting adaptation can involve the deployment of components on

individual, remotely connected nodes, thus resulting in a distributed configuration.

Finally, the applications running inside a domain may depend on services provided out-

side the domain. These may include both Web Services and shared peripherals. Discover-

ing, selecting, and binding to suitable service instances is also part of the responsibility of

the adaptation management component. Naturally, this responsibility extends to replacing

or removing the need for services that disappear or otherwise break the service-level agree-

ment (SLA).

Developing Self-Adaptive Mobile Applications 145



The general middleware functionality, as well as the behavior of the system in the case

of distributed adaptations, is illustrated in section 6.5, where a case study example is

described by providing information about both the development methodology and the

deployment process.

6.4.6 Implementation and Testing

Just as in general software engineering, the completion of the problem analysis is followed

by the implementation and the testing of the application. This facilitates the process for

readying the application for deployment. Although the described approach is not depen-

dent on any specific platform or programming language, it is assumed that an object-

oriented language and an underlying virtual machine environment are used. The latter

provides support for interfaces, computational reflection, and the creation of software

components. In the MADAM project, the middleware and the applications were imple-

mented using the Java language (Arnold et al. 2000) and were evaluated on mobile devices

such as Windows Mobile-based iPAQ 6340 PDAs.

In practice, the proposed methodology is not dependent on any specific component tech-

nologies, as long as they support architectural reflection and dynamic reconfigurations.

For example, in the MADAM prototype implementation, a simple and custom component

framework was defined. In this case, the developers were simply expected to define the

functional aspects of their applications by developing the required components and the

basic architecture. Both the basic component functionality and the application’s extrafunc-

tional features are expressed programmatically by reusing and extending custom-made

APIs. For instance, a utility function is expressed by implementing a specific interface

and by programmatically defining how the utility is computed as a function of other

parameters, including the context.

Besides this programmatic approach, a Model Driven Development (MDD)-based

methodology was proposed by MADAM Consortium. This approach includes a set of

required models which are based on and extend the Unified Modeling Language (UML)

2.0 standard. The provided modeling artifacts enable the software developers to visually

design their applications and express their extrafunctional properties. For this purpose, a

number of UML extensions (also denoted as UML profiles) are provided, including the

Context, the Resource and Deployment, the Property, the Utility, and the Variability pro-

files. These profiles are used to incrementally model the di¤erent aspects of the functional

and extrafunctional parts of an application. As per the MDD approach, a complete set of

tools is provided, which not only enables the design of the Platform Independent Model

(PIM) of the application, but also allows for the automatic generation of Platform Specific

Model (PSM) implementations.

As a proof of concept, a tool chain was implemented for generating application code

targeting the Java Virtual Machine (JVM) (Lindholm and Yellin 1999). Although these

tools produce code which is complete with respect to their adaptation functionality, in

146 Paspallis and colleagues



some cases the developers are still expected to fill in some gaps and provide code snippets

which cannot be automatically generated. For instance, utility functions and property pre-

dictors are generally defined manually. A detailed description of the corresponding MDD-

based methodology is presented in document D3.3 of the MADAM Consortium.

Concerning the testing phase, there is currently limited automated support. Most nota-

bly, all context parameters can be simulated at runtime, and thus allow a developer to

more easily evaluate the behavior of the application. However, a missing part of the testing

framework is a suite which could automatically build the set of possible variants while o¤-

line, and dynamically evaluate the utility of each of them for di¤erent context values. Such

a tool would be of great assistance to developers during the specification of the utility func-

tions and the property evaluators, as it would provide instantaneous feedback concerning

the adaptive behavior of the designed application. Although not available yet, there are

plans for providing such functionality as part of the MADAM project’s successor, MUSIC

(MUSIC Consortium).

6.5 A Case Study Example

To illustrate the proposed methodology, this section explains the development of an exam-

ple application following the steps described above. The case study also illustrates how

self-adaptation is important to mobile users for retaining both the usefulness and the QoS

of the provided service. The purpose of the example application is to assist a satellite an-

tenna installer with aligning the antenna to the appropriate satellite. This task requires the

use of hands and eyes to manipulate the antenna equipment, and therefore the installer in

some periods prefers an audio-based interface, whereas a traditional interface using the

keyboard and display is preferred in other periods.

The application includes signal analysis, which is quite heavy for a handheld device in

terms of both memory and processing requirements, and consequently there is a concern

about battery lifetime. Also there is a need to coexist with other applications, for example,

a chatting program to be able to communicate with the company’s headquarters. There-

fore the application should provide the possibility to o¿oad some of the computation to

a server available over the network. However, the network connection available varies as

the user moves about. Some places feature WLAN coverage, and some others feature

weak GSM signals only. Furthermore, the precision required for the signal analysis varies

during the alignment operation. The initial steps require lower precision, as opposed to the

final fine-tuning steps. To further illustrate the adaptation aspect of this example applica-

tion, let us consider a typical usage scenario.

First the worker is still in the o‰ce, using the PDA to prepare for the day, with several

onsite visits scheduled. In this situation, the application has the full attention of the user,

and consequently the visual interaction mode is preferred, as it is more responsive and

more resource e‰cient (it requires less memory, less CPU use, and no networking, which

Developing Self-Adaptive Mobile Applications 147



results in lower power consumption). Then the worker moves onsite and starts working on

the alignment of an antenna, and the application switches to the audio interaction mode to

allow the worker to use her hands and eyes to manipulate the antenna. Later in the day,

the worker moves to a site where the network is su‰ciently fast and cheap but the memory

and CPU resources are running low (e.g., because the PDA starts other applications as

well). At that point, the application switches to the audio mode, where the speech-to-text

component is either hosted by a remote server or the equivalent role is provided by a ser-

vice provider.

As is illustrated by this scenario, the self-adaptation mechanism has to monitor the con-

text (i.e., the status of the hosting device, the user, and the surrounding environment) and

dynamically respond to context changes by selecting and applying the most suitable appli-

cation variant at any time. To keep things simple, the further elaboration of this scenario

considers two variation points only: the selection of a UI modality (i.e., visual or audio)

and the choice between high- and low-precision calculations. For the audio UI case we

also consider alternative implementations with di¤erent quality and resource needs.

6.5.1 Designing the Example’s Initial Architecture

In this phase, the developers detect the primary requirements for the development of the

application and break it down into a composition of abstract components or roles.

The resulting component architecture for the example includes five abstract components,

as is illustrated in figure 6.4.

These abstract components are the UI, the Main Logic, the Analyzer, the Satellite

Adapter and the Math Processor. The UI component implements the user interface. The

Main Logic component provides the basic business logic of the application, which primar-

ily gathers information from the Analyzer and communicates it to the UI in a human-

understandable way. The Analyzer is responsible for reading the received satellite signal

Figure 6.4
Specifying the functional architecture of the case study example

148 Paspallis and colleagues



and extracting the information which is required by the user in order to fulfill her assign-

ment. The Analyzer interacts with the Satellite Adapter, which transforms satellite data to

an appropriate, computer-usable form, and with the Math Processor, which provides

mathematical methods needed for signal analysis. The architecture diagram also specifies

how the components are connected in terms of ports and connectors.

Figure 6.5 specifies the relation to the user and the environment. The user is depicted as

the corresponding actor using the application, and the Satellite Adapter is shown to inter-

act with the satellite equipment.

6.5.2 Design of Where the Adaptations Take Place

From the description of the requirements for the example application and the scenario, we

conclude that the properties relevant to adaptation for this application are audio or visual

interaction, the precision of the signal analysis, the need for memory, the need for network

capacity, and the power consumption.

Apparently, the selection of where to enable adaptations is driven by the need for adap-

tation on individual components, as well as on the compositions of the components. For

instance, in this case a developer would consult the scenario analysis, which hints at two

variation points: the first one involves the selection of an appropriate UI mode, and the

second one involves the selection of a realization of the Math Processor type. It is worth

noting that although the scenario analysis is the primary input available to the developers,

additional input might also be considered, such as whether alternative realizations of rele-

vant component types are available, and whether their properties make them better suited

for varying context situations. Additional factors a¤ecting this creative process include

considerations on the distribution of components, and whether the distribution of selected

component types is desired in certain contexts (or even inevitable in some others).

Though numerous adaptations could be possible in this scenario, for the sake of simplic-

ity it is assumed that the Main Logic, the Analyzer, and the Satellite Adapter are provided

by concrete atomic realizations (not shown). The UI, on the other hand, is assumed to be

adaptable, and thus abstracted by a composite realization. The Math Processor is also

assumed to be adaptable, by providing alternative atomic realizations to fill in the corre-

sponding component type.

The basic variation in the UI consists of the choice between a visual-based and an

audio-based interface for the user. In the first case, the user interacts by pressing buttons

in the application’s display window and by reading the displayed messages. In the case of

audio-based interaction, the user makes selections in the application using voice-activation

technology, and the application notifies him or her with messages played on the device’s

speakers. The visual interaction component can be easily implemented by an atomic real-

ization, whereas in the case of audio-based interaction, the implementation is further

decomposed into three additional components: the audio controller, the player, and the

text-to-speech (TTS), as shown in figure 6.5. Again, for the sake of simplicity, we consider

Developing Self-Adaptive Mobile Applications 149



Fi
g
u
re

6
.5

S
p
ec
if
y
in
g
th
e
v
a
ri
a
b
il
it
y
m
o
d
el
o
f
th
e
ca
se

st
u
d
y
ex
a
m
p
le

150 Paspallis and colleagues



only the speech output part of the audio UI. The player plays a given audio stream on the

device’s speakers. The TTS implements speech-synthesis functionality, and the audio con-

troller interacts with the rest of the application and coordinates the TTS and the player.

The player and the audio controller are constrained roles that can be bound only by a

component instance deployed on the client device. The TTS role, on the other hand, is an

open role that can be filled either by a component instance deployed in the client device or

by a remote service providing the same functionality. In our case, we assume that the TTS

component takes text as input and returns that text as synthesized speech encoded in the

output byte stream. Evidently, the speech synthesis is a very demanding process, requiring

significant resources in terms of CPU and memory. For this reason, using a remote service

to provide this functionality will in many situations be more suitable.

Figure 6.5 (part B) depicts the two possibilities for realizing the Math Processor compo-

nent type. In this case, the variability is simply denoted by the availability of the two

atomic realizations of the matching component type. Since the selection of the UI compo-

nent type is orthogonal to the selection of the Math Processor type, the two Math Pro-

cessor realizations double the number of possible variants to six. Furthermore, assuming

that the TTS functionality can also be available as a service, then additional variations

are also possible: two for each TTS service provider available. For example, assuming

that there is one well-known service type o¤ering the TTS service, then a well-defined

TTS proxy can replace the TTS component in the audio UI composition, thus adding an

additional composition for the UI component, and two additional compositions to the

overall application (corresponding to the two combinations possible with each of the two

Math Processor components). Note that in figure 6.5 the visual UI and the two Math Pro-

cessor components are underlined to indicate their status as atomic realizations rather than

composite plans. In the case of the audio UI composition plan, the player, audio control-

ler, and TTS are all abstracted as roles, to indicate that di¤erent realizations of each one of

them might be plugged in their role.

6.5.3 Design of When Adaptations Take Place

Having specified the variation points, the developers next need to specify when the adapta-

tions are triggered. More specifically, the types of events that can potentially cause the se-

lection of a di¤erent variant must be detected. This type of analysis is partly dependent on

the previous step, since the developers need to evaluate which types of context changes can

potentially trigger the adaptation at any variation point.

With regard to the UI variation point, a developer can detect numerous factors a¤ecting

the ultimate selection of interaction with the user. Such factors include the resources of the

mobile device (for example, its memory and CPU), the network availability (along with

properties such as bandwidth, latency, etc.), and of course the user’s needs, such as the

need for hands-free operation. Also, the availability of suitable TTS service providers is a

significant factor a¤ecting the adaptation decisions. Concerning the second variation

Developing Self-Adaptive Mobile Applications 151



point, the selection of the Math Processor realization can be influenced by factors such as

the available resources (memory and CPU), the user need for short response times, and the

user need for precision.

Besides the contextual factors that a¤ect the QoS o¤ered to the end user, an additional

concern is the actual requirements of the component realizations with regard to resources.

Evidently, before the developers can even start thinking about optimizations through

adaptation, the possible variants must be compared against the available resources in

order to reason whether they can be realized at all. For example, variations which include

component realizations that require networking when that is not available should not be

considered at all.

The result of this phase is a matrix with the o¤ered and the needed properties of the

involved component types and their corresponding component realizations. Table 6.1 illus-

trates an example of resource requirements of the individual component types and their

realizations. Furthermore, this table depicts the o¤ered utility of the relevant component

types (as constants or property predictors), as well as the o¤ered utility of the whole appli-

cation, as a utility function. For simplicity, it is assumed that all values in this table are in

the range of 1 to 100.

As illustrated in this table, both component types specify needed and o¤ered properties

as functions on the chosen component realizations. This is compatible with the general

approach of both dynamically generating the possible variants (using the variability

model) and computing their required and o¤ered properties. Furthermore, the component

realizations also specify some of their context dependencies as functions (possibly includ-

ing conditional expressions) on other context entities, although most of their values are

Table 6.1
Resources required by the application and by component realizations

Memory CPU Net bandwidth Net latency

Minimum resources required by compositions

Application UI.mþMP.memþ 100 UI.cpuþMP.cpuþ 30 UI.net
bandwidth

UI.net
latency

Audi UI PL.memþAC.memþ
TTS.mem

PL.cpuþAC.cpuþ
TTS.cpu

TTS.net
bandwidth

TTS.net
bandwidth

Minimum resources required by atomic component realizations

Visual UI 40 20 0 0

TTS component 80 40 0 0

TTS service 5 5 20 40

Player 30 30

Audio controller 10 10

High-precision MP 70 50

Low-precision MP 50 30

152 Paspallis and colleagues



specified as constants. In the case of functionally specified properties, the context prefix is

used to denote a value read from the context system.

6.5.4 Design of How Adaptations Are Decided

The last step in the specification of the application’s adaptive behavior concerns the defini-

tion of an appropriate decision mechanism. Although it would be possible to consider any

of the three classes of solutions that were discussed in section ‘‘Where, When, and How the

Adaptations Are Made,’’ in this approach we focus on the use utility functions, which

match the concepts of properties and property predictors perfectly, and thus provide an

ideal candidate for the proposed methodology.

In this methodology, the users specify only a single utility function which can be inter-

changeably applied to any possible variant. In table 6.2, the utility function is defined as

the weighted sum of a fitness metric for the three main properties needed: the hands-free,

the response time, and the precision. This is expressed in the Utility function cell by com-

paring the required properties (e.g., hands-free) with the provided properties as specified in

the context (e.g., ctxt.hands-free). The results of these comparisons are then accumulated

and weighted to derive the final utility value which is used to compare the di¤erent

variants.

For instance, when the hands-free property is evaluated to match (i.e., it is both o¤ered

and required), then the first section of the utility function evaluates to 1 and is multiplied

by its corresponding weight (i.e., CH). Furthermore, as also shown in table 6.2, the required

properties are computed as constants (e.g., the response property o¤ered by the visual UI

is 70), or they are dynamically computed through property predictors (e.g., the response of

Table 6.2
O¤ered properties of compositions and component realizations and utility of the application

Hands-free Response Precision

Properties o¤ered by the component realizations

Visual UI 0 70

TTS component 100 50

TTS service 100 if(ctxt.bandwidth>50) then 70
else 20þctxt.bandwidth

High-precision MP 75 80

Low-precision MP 90 60

Properties (utility) o¤ered by abstract component types

Application UI.hands-free c1 �UI.responseþ c2 �MP.response MP.precision

AudioUI 100 TTS service.response

Utility function

Application utility ¼ cH � (hands-free¼ctxt.hands-free) þ cR � (if (response>ctxt.response) then 1
else (ctxt.response-response)/100)

þ cP � (if (precision>ctxt.precision) then 1 else (ctxt.precision-precision)/100)

Developing Self-Adaptive Mobile Applications 153



the audio UI remote variant is computed as a function of the available bandwidth, and the

application’s hands-free property is computed as a delegate of the UI type’s hands-free

property).

The computed values are finally summed up based on their assigned weights. The three

weights cH, cR, and cP encode the importance of each of the three properties to the final

variant selection. Typically, these weights are directly related to the user preferences. For

example, someone might rank support for hands-free higher than that for precision,

whereas someone else might value precision as the most desired property.

Though the weights should generally be defined so that adaptations would match the

preferences of the most typical users, it should be possible to let the users adjust these

values if they need to. In the prototype implementation of MADAM, this was possible

through a GUI that enabled users to edit their preferences in the same way they edited

the values of the simulated context types. Though more sophisticated techniques could be

applied to allow for automated adjustment of these parameters, at this point simplicity was

chosen over complexity. In the future, we will endeavor to investigate the application of

known algorithms, such as from machine learning (Alpaydin 2004), with the purpose

of enabling automated adjustment of the adaptation weights as a self-learning system.

6.6 Related Work

There is a substantial amount of literature on adaptive mobile systems. The Reconfigura-

ble Ubiquitous Networked Embedded Systems (RUNES) middleware (Costa et al. 2005)

targets embedded environments and aims at enabling advanced scenarios in which devices

leverage o¤ each other and exhibit autonomous and coordinated behavior. Similar to the

MADAM middleware, RUNES specifies components which interact with each other

exclusively via interfaces (i.e., o¤ered services) and receptacles (i.e., dependencies). Addi-

tionally, the RUNES middleware specifies a reconfiguration metamodel based on logical

mobility, as described in Zachariadis and Mascolo (2003).

The Odyssey project (Noble 2000; Noble and Satyanarayanan 1999) consists of a set of

extensions to the NetBSD operating system which aim at supporting adaptation for a

broad set of applications. These applications run on mobile devices but access data on

servers. Odyssey supports fast detection and response to resource availability (i.e., agility),

but the applications are still expected to independently decide how to adapt to the notified

changes.

The Aura project (Sousa and Garlan 2002) primarily targets pervasive applications, and

for this reason it introduces auras (which correspond to user tasks) as first-class entities. To

this direction, the same project categorizes the techniques which support user mobility into

use of mobile devices, remote access, standard applications (ported and installed at multi-

ple locations), and use of standard virtual platforms to enable mobile code to follow the

user as needed.

154 Paspallis and colleagues



A communication-oriented approach is proposed by LIME (Picco et al. 1999), in which

the mobile hosts are assumed to communicate exclusively via transiently shared tuple

spaces. The model used o¤ers both spatial and temporal decoupling and allows adapta-

tions through reactive programming (i.e., by supporting the ability to react to events). Al-

though this middleware architecture supports seamless support for distribution, it does not

go far with regard to providing support for generic context-aware adaptations.

The Quality of Service Aware Component Architecture (QuA) project investigates how

component architectures can preserve the safe-deployment property for QoS-sensitive

applications (Amundsen et al. 2004). Similar to the MADAM approach, the QuA project

envisages platform-managed QoS, where the platform is able to reason about how end-to-

end QoS depends on the quality of component services.

In another work (Lundesgaard et al. 2006), a service model is proposed which classifies

services in three levels: service, subservice, and atomic service. This classification is similar

to what is used in service-oriented computing (SOC), where applications can be seen in

terms of service levels of abstraction (Huhns and Singh 2005). This model is also similar

to the one we described, although in our case the basic abstraction is provided by roles

which can be provided by both components and services, whereas in this case the abstrac-

tion is provided on the basis of services only. In the latter, atomic services are used at the

lowest level for forming subservices at the intermediate level, which are eventually used to

compose high-level services.

Additional projects also aim to address the complete life cycle of QoS-aware applica-

tions. Similar to the MADAM approach, 2KQþ (Duangdao et al. 2001) provides a QoS

software engineering environment for specifying alternative component compositions and

their QoS properties, which are then appropriately compiled for deployment on a special-

ized middleware. A platform-dependent compiler is provided, which produces executable

code for reconfiguring the application at runtime by probing the QoS and resource

availability.

The Quality Objects (QuO) framework (Loyall et al. 1998) relies on a suite of descrip-

tion languages for specifying QoS requirements. These specifications are compiled into

executable code which is used for monitoring QoS and for controlling the interaction be-

tween distributed objects running on top of a CORBA-based middleware. This approach

has the limitation that the specifications are platform-specific, as opposed to the composi-

tion and service plans we have described.

With concern to the SOC approach, many similarities are found in relation to our

approach. For instance, SOC utilizes services as fundamental elements for developing

applications and systems (Papazoglou and Georgakopoulos 2003). However, the area of

adding context awareness to services is a new and promising one (Maamar et al. 2006).

The proposed approach adds context awareness to some extent, although the entire deci-

sion making is centralized on the client side. However, more general approaches are cur-

rently under investigation.

Developing Self-Adaptive Mobile Applications 155



Unlike the existing literature, the proposed approach o¤ers a well-defined methodology

for developing context-aware, adaptive applications. The underlying middleware supports

automatic and autonomous reasoning on the possible adaptations for the selection of the

most beneficial one. To the best of our knowledge, no related work proposes such a struc-

tured methodology for developing context-aware, adaptive applications. Additionally, a

novel approach is proposed for the support of dynamically considering and exploiting

services in the composition of component-based applications. Although in its infancy, this

approach appears very promising and is one of the major points of focus of the MUSIC

project (MUSIC Consortium).

6.7 Conclusions

This chapter described a novel methodology which utilizes an underlying middleware layer

to ease the task of developing adaptive mobile applications. This methodology was partly

studied and developed in the context of the MADAM project.

The proposed development methodology enables the design and implementation of

adaptive applications for the mobile user, using the Separation-of-Concerns paradigm. In

this approach, the developers are enabled to design the functional aspects of their applica-

tions independently of the specification of their extrafunctional behavior. An underlying

middleware system is assumed to provide runtime support for the automatic self-

adaptation of the deployed applications. It is argued that the proposed methodology, in

combination with the provided middleware support, can significantly ease the e¤ort

required for the development of adaptive, mobile applications.

Additionally, it is important to state that although the MADAM results are novel and

impact several software practitioners, more work is under way as part of a follow-up proj-

ect: the Self-Adapting Applications for Mobile Users in Ubiquitous Computing Environ-

ments (MUSIC Consortium). Besides improving the existing results, MUSIC aims at

providing additional support for ubiquitous computing environments, and also at provid-

ing better integration with SOA-based systems.

Acknowledgments

The work published in this chapter was partly funded by the European Community under

the Sixth Framework Program, contracts FP6–4169 (IST-MADAM) and FP6–35166

(IST-MUSIC). Some of the ideas expressed in this chapter are the result of extensive col-

laboration among the partners of these projects. The authors would like to thank these

partners and acknowledge the impact of their ideas on this work. The work reflects only

the authors’ views. The Community is not liable for any use that may be made of the in-

formation contained therein.

156 Paspallis and colleagues



References

Alia, M., V. S. W. Eide, N. Paspallis, F. Eliassen, S. O. Hallsteinsen, and G. A. Papadopoulos. 2007a. A utility-
based adaptivity model for mobile applications. In Proceedings of the IEEE International Symposium on Ubisafe
Computing (UbiSafe), pp. 104–118. Niagara Falls, Canada.

Alia, M., S. Hallsteinsen, N. Paspallis, and F. Eliassen. 2007b. Managing distributed adaptation of mobile appli-
cations. In Proceedings of the 7th IFIP International Conference on Distributed Applications and Interoperable Sys-
tems (DAIS), pp. 556–563. Paphos, Cyprus.

Alpaydin, E. 2004. Introduction to Machine Learning. Cambridge, Mass.: MIT Press.

Amundsen, S., K. Lund, F. Eliassen, and R. Staehli. 2004. QuA: Platform-managed QoS for component architec-
tures. Paper presented at the Norwegian Informatics Conference (NIK).

Arnold, K., J. Gosling, and D. Holmes. 2000. The JavaTM Programming Language, 3rd ed. Upper Saddle River,
N.J.: Prentice Hall.

Chen, G., and D. Kotz. 2000. A Survey of Context-Aware Mobile Computing Research. Technical Report
TR2000–381. Department of Computer Science, Dartmouth College.

Costa, P., G. Coulson, C. Mascolo, G. P. Picco, and S. Zachariadis. 2005. The RUNES middleware: A reconfig-
urable component-based approach to networked embedded systems. In Proceedings of the 16th International Sym-
posium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 806–810. Berlin.

Dey, A. K. 2000. Providing Architectural Support for Building Context-Aware Applications. Ph.D. thesis, Col-
lege of Computing, Georgia Institute of Technology.

Dey, A. K. 2001. Understanding and using context. Personal and Ubiquitous Computing 5, no. 1: 4–7.

Duangdao, W., K. Nehrstadt, X. Gu, and D. Xu. 2001. ‘‘2KQþ: An integrated approach of QoS compilation and
reconfigurable, component-based run-time middleware for the unified QoS management framework. In Middlesex
2001: Proceedings of the IFIP/ACM International Conference on Distributed Systems Platforms, pp. 373–394. Hei-
delberg, Germany.

Floch, J., S. Hallsteinsen, F. Eliassen, E. Stav, K. Lund, and E. Gjørven. 2006. Using architecture models for
runtime adaptability. IEEE Software 23, no. 2: 62–70.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns: Elements of Reusable Object-Oriented
Software. Boston: Addison-Wesley.

Geihs, K., M. U. Khan, R. Reichle, A. Solberg, S. Hallsteinsen, and S. Merral. 2006. Modeling of component-
based adaptive distributed applications. In Dependable and Adaptive Distributed Systems (DADS Track): Pro-
ceedings of the 21st ACM Symposium on Applied Computing (SAC), pp. 718–722. Dijon, France.

Horn, P. 2001. Autonomic Computing: IBM’s Perspective on the State of Information Technology. http://
www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf. (Accessed November 30, 2007.)

Huhns, M. N., and M. P. Singh. 2005. Service-oriented computing: Key concepts and principles. IEEE Internet
Computing 9, no. 1: 75–81.

Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin. 1997. Aspect-
oriented programming. In Proceedings of the European Conference on Object-Oriented Programming, LNCS
1241, pp. 220–242.

Lindholm, T., and F. Yellin. 1999. The JavaTM Virtual Machine Specification, 2nd ed. Upper Saddle River, N.J.:
Prentice Hall.

Lundesgaard, S. A., K. Lund, and F. Eliassen. 2006. Utilizing alternative application configurations in context-
and QoS-aware mobile middleware. In Proceedings of the 6th IFIP International Conference on Distributed Appli-
cations and Interoperable Systems (DAIS). LNCS 4025, pp. 228–241. Bologna, Italy. Springer Verlag.

Loyall, J. P., D. E. Bakken, R. E. Schantz, J. A. Zinky, D. A. Karr, R. Vanegas, and K. R. Anderson. 1998. QoS
aspect languages and their runtime integration. In Proceedings of the 4th Workshop on Languages, Compilers, and
Run-time Systems for Scalable Computers (LCR), pp. 303–310. Pittsburgh, Penn.

Maamar, Z., D. Benslimane, and N. Narendra. 2006. What can context do for Web Services? Communications of
the ACM 49, no. 12: 98–103.

Developing Self-Adaptive Mobile Applications 157



MADAM Consortium. Mobility and Adaptation Enabling Middleware (MADAM). http://www.ist-madam.org.

Maes, P. 1987. Concepts and experiments in computational reflection. ACM SIGPLAN Notices 22, no. 12: 147–
155.

McKinley, P. K., S. Masoud Sadjadi, E. P. Kasten, and B. H. C. Cheng. 2004a. Composing adaptive software.
IEEE Computer 37, no. 7: 56–64.

McKinley, P. K., S. Masoud Sadjadi, E. P. Kasten, and B. H. C. Cheng. 2004b. A Taxonomy of Compositional
Adaptation. Technical Report MSU-CSE-04–17. Department of Computer Science and Engineering, Michigan
State University.

MUSIC Consortium. Self-Adapting Applications for Mobile Users in Ubiquitous Computing Environments
(MUSIC). http://www.ist-music.eu.

Noble, B. 2000. System support for mobile, adaptive applications. IEEE Personal Communications 7, no. 1: 44–
49.

Noble, B., and M. Satyanarayanan. 1999. Experiences with adaptive mobile applications in Odyssey. Mobile Net-
works and Applications 4, no. 4: 245–254.

Papazoglou, M. P., and D. Georgakopoulos. 2003. Service oriented computing: Introduction. Communications of
the ACM 46, no. 10: 24–28.

Parnas, D. L. 1972. On the criteria to be used in decomposing systems into modules. Communications of the ACM
15, no. 12: 1053–1058.

Paspallis, N., A. Chimaris, and G. A. Papadopoulos. 2007. Experiences from developing a distributed context
management system for enabling adaptivity. In Proceedings of the 7th IFIP International Conference on Distrib-
uted Applications and Interoperable Systems (DAIS), pp. 225–238. Paphos, Cyprus.

Paspallis, N., and G. A. Papadopoulos. 2006. An approach for developing adaptive, mobile applications with sep-
aration of concerns. In Proceedings of the 30th Annual International Computer Software and Applications Confer-
ence (COMPSAC), pp. 299–306. Chicago.

Picco, G. P., A. L. Murphy, and G.-C. Roman. 1999. LIME: Linda meets mobility. In Proceedings of the 21st
International Conference on Software Engineering (ICSE), pp. 368–377. Los Angeles.

Satyanarayanan, M. 2001. Pervasive computing: Vision and challenges. IEEE Personal Communications 8, no. 4:
10–17.

Sousa, J. P., and D. Garlan. 2002. Aura: An architectural framework for user mobility in ubiquitous computing
environments. In Proceedings of the 3rd Working IEEE/IFIP Conference on Software Architecture, pp. 29–43.
Montreal.

Szyperski, C. 1997. Component Software: Beyond Object-Oriented Programming, 2nd ed. Essex, England:
Addison-Wesley.

Tennenhouse, D. L. 2000. Proactive computing. Communications of the ACM 43, no. 5: 43–50.

Walsh, W. E., G. Tesauro, J. O. Kephart, and R. Das. 2004. Utility functions in autonomic systems. In Proceed-
ings of the International Conference on Autonomic Computing (ICAC), pp. 70–77. New York.

Weiser, M. 1993. Hot topics: Ubiquitous computing. IEEE Computer 26, no. 10: 71–72.

Zachariadis, S., and C. Mascolo. 2003. Adaptable mobile applications through SATIN: Exploiting logical mobil-
ity in mobile computing middleware. Paper presented at the 1st UK-UbiNet Workshop. London.

158 Paspallis and colleagues


