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A generalized computational model based on graph rewriting is presented along with Dactl, an associated compiler
target (intermediate) language. An illustration of the capability of graph rewriting to model a variety of computational
formalisms is presented by showing how some examples written originally in a number of languages can be described
as graph rewriting transformations using Dactl notation. This is followed by a formal presentation of the Dactl model
before giving a formal definition of the syntax and semantics of the language. Some implementation issues are also
discussed.
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Modern programming languages make heavy use of complex data structures to represent lists of objects
or tree structures. A common representation of these structures is in terms of records containing pointers
to other records. In mathematical terms, such structures are ordered directed graphs, or hypergraphs
(Hoffman and Plump 1988).

These data structures are copied and modified during the course of evaluation. In mathematical terms,
evaluation may be seen as a process of transforming graphs according to rules determined by the program
text. Hence a program may be seen as specifying a graph rewriting system.

In functional languages, graphs are commonly used to represent data values. In lazy languages, closures
for unevaluated expressions will also take the form of graph structures. Graph rewriting is accepted as an
efficient technique for implementing lazy functional languages (Peyton Jones 1987).

In logic languages graph structures can be used to represent terms. Terms may contain uninstantiated
variables which are shared between terms in the program goal. The list of goals itself is naturally rep-
resented as a graph and the process of resolution becomes a process of transforming the goal graph in
search of a solution. The effectiveness of using graph rewriting in the implementation of concurrent logic
languages in particular is demonstrated in Papadopoulos (1989).

Dactl is a very general model of computation based on graph rewriting. Using an interpreter for the
notation, it has been possible to demonstrate working compilers for a surprisingly wide range of languages
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Figure 1: Rewriting of terms

including Hope, LISP, Parlog, GHC, ML and Clean (Glauert et al. 1988a, Glauert and Papadopoulos
1988, Hammond and Papadopoulos 1988, Hammond 1990, Kennaway 1990a).

The underlying technique of graph rewriting is common to all these experimental implementations,
but conventions governing the representation of data and the scheduling of computation differ. However,
more recent work is focusing on the possibility of uniting the implementations of a number of languages
at the implementation level. Such work looks at combining logic and functional styles (Papadopoulos
1997a) and integrating functional and concurrent programming (Glauert 1992, Glauert et al. 1993).

An important benefit of using a rewriting model of computation is that often the order in which rewrit-
ings take place does not affect the final result. This is theconfluenceor Church–Rosserproperty. Further,
when a number of independent rewrites may be made it is often possible for them to be performed concur-
rently. Dactl supports concurrent evaluation, and makes explicit any opportunities for parallel execution.

This paper gives some examples of how computation in a number of languages may be described as
graph rewriting, giving the Dactl notation for the examples shown. It goes on to present the Dactl model
more formally before giving a formal definition of the syntax and semantics of the language.

1 Examples of computation by graph rewriting
In this section we use the Dactl notation to give a textual representation of graph rewriting rules used
to transform some program graphs. Pictorial representations are also shown. The reader should not be
unduly concerned with details of the notation on first reading.

1.1 Evaluation of expressions
It is a familiar notion to regard the reduction of expressions as rewriting of terms or trees, which are
restricted forms of graphs (Fig. 1). The usefulness of graph representation is revealed if we have a call to
a function square which is evaluated lazily (Fig. 2).

In the Dactl representation of these computations, even primitive arithmetic operations are represented
as functions. The programs are given in Fig. 3.

The symbols *, # and^ are used to control the order of evaluation, as explained in detail below. For now
it suffices to say that the symbol * is aspark indicating the next expression to be reduced. It is necessary
to make the control of evaluation explicit in Dactl since the notation will be used to model computations
requiring a range of different evaluation strategies.
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Figure 2: Lazy evaluation

MODULE ExprEx;

IMPORTS Arithmetic;

RULE

INITIAL =) #IAdd[2 ^
� IMul [3 4]];

ENDMODULE ExprEx;

MODULE SquareEx;

IMPORTS Arithmetic;

SYMBOL REWRITABLE Square;

RULE

Square[n] =) #IMul [^�n n];

INITIAL =) �Square[IAdd[2 3]];

ENDMODULE SquareEx;

Figure 3: ExprExandSquareExmodules
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f un NFib0= 1

j NFib 1= 1

j NFib n= NFib(n�1)+NFib(n�2)+1

MODULE NFib;

IMPORTS Arithmetic;

SYMBOL REWRITABLE PUBLIC CREATABLE NFib;

RULE

NFib[(0+1)] =) �1;

NFib[n] =) ##IAdd[^#NFib[^�ISub[n 1]]^#IAdd[^#NFib[^�ISub[n 2]] 1]];

ENDMODULE NFib;

Figure 4: NFib function

The sequence of evaluation in these cases is as follows:

�INIT IAL! #IAdd[2 ^
� IMul [3 4]]! #IAdd[2^

�12]

! �IAdd[2 12]! �14

�INIT IAL! �Square[IAdd[2 3]]! #IMul [^ �n : IAdd[2 3] n]

! #IMul [^ �n : 5 n]! IMul [n : 5 n]!�25

Note the use of the identifiern to indicate the sharing of the sub-expressionIAdd[2 3].

1.2 Exploiting parallelism
Here we define the much usedNFib function which counts function calls. In Fig. 4 the function is given
first in Standard ML and then in Dactl. The translation is for a strict language (such as Standard ML) and
evaluation of the two recursive calls toNFib can proceed in parallel. In fact, to be faithful to the semantics
of SML, we must check that evaluation would have no side-effect and that no exceptions could be raised.

An interesting point here is the definition of theNFib symbol in Dactl. Itsaccess classis rewritable
within the module that contains the rules that rewriteNFib nodes, but only creatable when exported. Thus
importing modules can create activeNFib nodes, but cannot define any new rules for the symbol.

1.3 Programming with state
The rewriting shown in Fig. 4 repeatedly replaces a node representing some expression with a new ex-
pression with the same extensional value. Ultimately, a base value such as an integer is produced.

When programming with state, a more flexible style of rewriting is needed to express values which can
have mutable values. The language SML uses the concept of reference values which capture the concept
in a way which can be modelled by graph rewriting. A functionre f creates reference values with an initial
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MODULE Re f Ex;

IMPORTS Arithmetic;

SYMBOL CREATABLE Unit;

SYMBOL OVERWRITABLE Re f;

SYMBOL REWRITABLE Assign; DeRe f; Seq; LetRes;

RULE

INITIAL =) #Seq[^�Assign[r 6] LetRes[r]]; r : Re f[4];

LetRes[r] =) #IAdd[^�DeRe f[r] 2];

Assign[r : Re f[o] n] =) �Unit; r := Re f[n];

DeRe f[Re f[v]] =) �v;

Seq[Unit b] =) �b;

ENDMODULE Re f Ex;

Figure 5: Dactl code forRe f Exmodule

value; the operator := is a function which assigns a new value to a reference and returns the unit value.
The operator ! is used for de-referencing.

We model reference values as nodes whose contents can change during evaluation. Consider the ex-
pression:

let val r = re f (4)

in r := 6; !r +2

end

Sequencing of evaluation ensures thatr holds the value 6 by the time the value is de-referenced. Dactl
code for this program might be as shown in Fig. 5. The novel feature is in the rule for assignment. The
Assignnode is rewritten to a unit value, but at the same time, the first argument, aRe fnode, is overwritten
with a newRe f node with different contents. Other parts of the graph with pointers to this node will now
find a different value if they apply the de-referencing operation to the node.
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LetResrepresents the computation required after the first statement of the sequence has completed.

1.4 Logic programming
Variables in conventional languages correspond to the references of SML considered above. Variables in
logic programming languages have a very different meaning, but similar graph rewriting techniques may
be used.

In this paper we highlight the particular class of concurrent logic programming languages (Shapiro
1989). Here goals may be viewed as processes, with variables acting as synchronizing communication
channels between the goal processes. In a Dactl translation, goals become rewritable graph nodes, and
terms become graph structures including mutable nodes representing variables.

Dactl control markings are used to synchronize computation. If a goal can neither succeed nor fail until
a variable has been instantiated, the computation suspends waiting for the variable to be given a value by
output unification in some other goal. When this takes place, the original computation is reactivated and
will be able to make further progress.

The example below, theunavoidable append program, serves to illustrate some of the techniques
used in modelling a concurrent logic program as a set of graph rewriting rules (for a full treatment of the
relationship between concurrent logic programming and graph rewriting see Papadopoulos (1997a)). The
example has been written in a kernel-like form making explicit the input and output unification:

append([HjT];Y;Z) :�truejZ = [HjZ1];append(T;Y;Z1):

append([ ];Y;Z) :�true j Z =Y:

?�append(P;Q;Ans); P= [1]; Q= [2]:

Dactl code for the same example might be as in Fig. 6. Input unification is a pattern-matching process
and will not instantiate variables in the goal. Hence if the first argument toAppendis a variable, the goal
is suspended, waiting for the variable to be instantiated. This is modelled by the third rule in the Dactl
code forAppend. The process will be reactivated when unification succeeds. Note also the wayUni f y is
implemented by means of non-root overwrites.

In general, a procedure written in a concurrent logic language and comprisingn clauses is translated
into a set ofn+2 Dactl rules: one for each clause, one for modelling suspension and one for reporting
failure. In addition, if a body clause comprisesm goals (m> 1), it is translated into an equivalent set
of active Dactl nodes that execute concurrently as arguments of anm-argument monitoringAnd function
that will rewrite toFail as soon as any of its arguments reports failure and toSuccotherwise. In many
cases, however, similar input unifications at the source level can be collapsed into a single operation at the
Dactl level, thus reducing the number of generated rules, and producing more efficient code. The extra
machinery for reporting on failure is not needed for those concurrent logic languages whose semantics
do not reflect on failure. Assuming Strand or Janus semantics (see Papadopoulos (1997b)) the equivalent
Dactl code for the above program is shown in Fig. 7. Note that since Strand and Janus support assignment
rather than full output unification, a simple redirection of the overwritable nodeVar suffices to implement
the instantiation of variables without the need for a set ofUni f y rules. In these languages the state of the
computation is undefined if during the assignment the variable involved in the operation turns out to be
already instantiated to some value. This behaviour, which is reminiscent more of functional languages
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MODULE Append;

SYMBOL CREATABLE Ans; Fail ; Succ; Cons; Nil ;

SYMBOL REWRITABLE Uni f y; Append; And;

SYMBOL OVERWRITABLE Var;

RULE

INITIAL =) Ans[ans: Var];

�Append[p q ans];

�Uni f y[p : Var Cons[1 Nil ]];�Uni f y[q : Var Cons[2 Nil ]];

Append[Cons[h t] y z] =)

#And[^�Uni f y[z Cons[h z1 :Var]] ^ �Append[t y z1]];

Append[Nil y z] =) �Uni f y[z y];

Append[l : Var y z] =) #Append[^ l y z];

Append[ANY ANY ANY] =) �Fail ;

Uni f y[v : Var term] =) �Succ; v := �term;

Uni f y[Cons[h1 t1]Cons[h2 t2]] =)

#And[^�Uni f y[h1 h2] ^ �Uni f y[t1 t2]];

And[Succ Succ] =) �Succ;

r : And[p1 : (ANY�Fail) p2 : (ANY�Fail)]! #r;

And[ANY ANY] =) �Fail ;

ENDMODULE Append;

Figure 6: Unavoidable append program
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MODULE Append;

SYMBOL CREATABLE Ans; Cons; Nil ;

SYMBOL REWRITABLE Append;

SYMBOL OVERWRITABLE Var;

RULE

INITIAL =) Ans[ans: Var];

�Append[p q ans]; p : Cons[1 Nil ]; q : Cons[2 Nil ]:

Append[Cons[h t] y z: Var]! z := �Cons[h z1 :Var]; �Append[t y z1];

Append[Nil y z : Var]! z := �y;

Append[l : Var y z]! #Append[^l y z];

ENDMODULE Append;

Figure 7: Equivalent Dactl code

rather than (concurrent) logic ones, allows more efficient implementations at the expense of somewhat
compromising the languages semantics. More information on how languages like Strand and Janus would
be mapped on a CTL like Dactl can be found in Papadopoulos (1989), Papadopoulos (1997a).

1.5 Concurrent programming
In the last example, logic variables could be used for communication. Graph rewriting may be used to
model computation in concurrent programming languages where there are explicit notions of processes
and communication channels.

We give an example in a possible translation of Facile (Giacalone et al. 1989), a language which
integrates concurrent and functional programming styles in a symmetric fashion. The language has been
implemented as an extension to SML. In the following fragment a value is communicated over a channel
namedc which links two processes executing in parallel:

let val c=Chan

in : : :c!4 : : :k : : :3+c?: : :

end

The operator ! is here used to indicate the sending of a value over the channel given as the first argument.
The result is the unit value. ? indicate reception of a value which is returned as the result. Communication
is synchronous, so neither process continues until the communication has been closed (see Fig. 8). As
in the logic example, theVar nodes act as place-holders for values not yet available. If the reader of the
channel executes first, the synchronizing variable is stacked. When the writer executes, the input queue
in the channel identifies the appropriate reader; its variable is overwritten and a unit value is returned. If
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MODULE CommEx;

IMPORTS Arithmetic;

SYMBOL CREATABLE IQ; OQ; Nil ; Unit;

SYMBOL OVERWRITABLE Chan; Var;

SYMBOL REWRITABLE Get; Put;

RULE

Get[c : Chan[Nil iq]] =) r : Var; c :=Chan[Nil IQ[r iq]];

Get[c : Chan[OQ[v : INT s: Var oq] iq]] =) �v;s := �Unit;

c :=Chan[oq iq];

Put[c : Chan[oq Nil] v] =) s : Var; c :=Chan[OQ[v s oq]Nil ];

Put[c : Chan[oq IQ[r : Var iq]]v : INT] =) �Unit; r := �v;

c :=Chan[oq iq];

INITIAL =) #IAdd[3 ^
�Get[c]];�Put[c 4];c : Chan[Nil Nil ];

ENDMODULE CommEx;

Figure 8: CommExmodule
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the writer executes first, both the value and the synchronizing variable are stacked. If multiple readers
precede a writer, then all are stacked, and vice versa.

In this section we have shown that graph rewriting may be used to model the evaluation of core con-
structs of languages representing a large range of programming styles. Code in the practical graph rewrit-
ing language Dactl has been given. This code is executable using the reference interpreter written for the
language by the authors and their associates. Some more information about the implementation of Dactl
is given in section 2.1, after a detailed and formal description of the language.

2 A formal introduction to Dactl

2.1 Dactl in context

Term (ortree) rewriting systems have proven useful both as specifications and occasionally as practical
systems for symbolic computation (see Hoffman and O’Donnell (1982) for a practical system with a sound
theoretical underpinning). Klop (1990) and Dershowitz and Jouannaud (1990) provide comprehensive
treatments of term rewriting theory, which is now reasonably well understood.

The idea of studying transformation systems based ongraphs (as opposed to trees) dates back at least
to Rosenfeld and Milgram (1972), and a significant body of theory has been developed, most notably by
the Berlin school of Ehrig and others: Ehrig and L¨owe (1989) gives an authoritative overview.

Practical uses of graph rewriting date back at least to Wadsworth (1971), which develops a graph based
representation of lambda terms and an associated implementation method for normal order evaluation of
lambda calculus expressions. The relation between tree and graph rewriting has been studied in some
detail (Staples 1980a, Staples 1980b, Barendregt et al. 1987, Hoffman and Plump 1988, Farmer
et al. 1990). The main result is that sharing implementations produce the correct semantics at least for
orthogonal term rewrite systems.

Logic programming languages of the committed choice variety (for example Concurrent Prolog (Shapiro
1989) and Parlog (Gregory 1987)) may be viewed as specialized graph rewriting languages, as may ac-
tor models such as DyNe (Kennaway and Sleep 1983). More recently Lafont (1990) has proposed an
Interaction Net model of computation which again may be viewed as specialized graph rewriting, whose
constraints are inspired by Girard’s work on linear logic. The precise relationship between interaction
nets and term graph rewriting systems as expressed by languages like Dactl is studied in Banach and
Papadopoulos (1997).

In 1983 three of the present authors undertook an ambitious project aimed at designing a common
model of computation which would be general enough to support a range of more restricted computational
models such as those required for functional, logic and actor-like languages. The primary aim of the
project was to produce a common compiler target language (CTL) for a range of symbolic processing
languages, particularly functional languages and committed choice logic languages. The project chose
graph rewriting as the basis for its work.

The main success of the project was the design and implementation of a general model of computation
based on graph rewriting. The model is called Dactl (for Declarative Alvey Compiler Target Language).
The main failure of the project was that it proved difficult within the timescale to develop the compiler
technology necessary for Dactl to act as an efficient CTL: we seriously underestimated the work needed
here. For instance, we found no straightforward way to specify normal, sequential computation using
built-in operators. Furthermore, the markings and notification mechanism were over-general and made it
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difficult to understand how computation would proceed in some cases. What was actually needed was a
CTL at a level (somewhat) lower than that of its computational model (whereas Dactl was a direct realiza-
tion of the computational model it advocated) where even more precise control of evaluation order would
be possible to specify. Nevertheless, it was possible to demonstrate working compilers for a surprisingly
wide range of languages including Hope, LISP, Parlog, GHC, ML and Clean within the timescale (Ham-
mond and Papadopoulos 1988, Glauert et al. 1988a, Glauert and Papadopoulos 1988, Papadopoulos
1989, Hammond 1990, Kennaway 1990a).

The CTL motivations of the Dactl project are now mainly historical. What remains is one of the few
genuine graph rewriting language implementations in existence. There is a stable, reasonably engineered
interpreted implementation of Dactl under Unix with modular compilation facilities and a comprehensive
Unix interface, and a more recent implementation for Macintosh computers which is in regular use. An
experimental compiler has been developed for a simplified form of the language. This form, referred to
as MONSTR (Banach and Watson 1988, Banach 1993), was particularly suited for distributed machines
such as Flagship (Watson et al. 1988). MONSTR placed some mainly syntactic (and thus trivially stat-
ically checkable) restrictions on the types of programs that could be written. These restrictions (such as
enforcing a maximum of one non-root redirection per rule and disallowing deep pattern matching) reduced
significantly the amount of locking that had to be done in order to guarantee adherence to the intended
operational semantics of the computational model. However, some liveness constraints were still hard to
check. Our experience of the language design process, together with our experience in using Dactl in its
present form, suggest that others may find it useful as an experimental tool for exploring practical graph
rewriting systems.

2.2 Dactl graphs
We present the syntax for Dactl graphs using rules from the full syntax which appears in the Appendix.

A Dactl program manipulatesdirected graphs. Eachnode is labelled with asymbol which may
be interpreted as a function, predicate, or constructor according to the requirements of the computation
being implemented. The syntax allows for standard representations of values for numbers, characters, and
strings, etc. The user may introduce named symbols using identifiers starting in upper case:

Item ::= SYMBOL AccessClass[PUBLIC AccessClass] SymbolList
j : : :

AccessClass::= READABLEjCREATABLEjOVERWRITABLEj REWRITABLE.
SymbolList ::= Symbol;fSymbol;g .
Symbol ::= U pperfIdentCharg .
IdentChar ::= U pperj Lowerj Digit j : j j0j00.

Some predefined symbols are available, such asConsandNil for list construction, andTrueandFalsefor
Booleans. The concept ofaccess classdefines the role of a symbol: creatable symbols are constructors;
overwritable symbols are mutable values; and rewritable symbols generally name functions. The classes
control where symbols may appear in rule patterns and bodies. A primitive module facility, discussed
fully in Glauert et al. (1988b), restricts the usage of symbols when imported as indicated by thePUBLIC
access class.

From nodes originate anordered sequence of zero or more directedarcs leading tosuccessor nodes.
Graphs may be cyclic and need not be connected, but there is a distinguished node in the graph known
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as theroot. The successors may be indicated by a node identifier ornodeid, or by a nested node defini-
tion. The presentation below omits node and arc markings which are used to control evaluation and are
introduced later:

Graph ::= NodeDe f initionf;NodeDe f initiong .
NodeDe f inition::= [Nodeid:]Node.
Node ::= DataValuej Symbol[[TermfTermg]] .
Term ::= Nodeidj NodeDe f inition.
Nodeid ::= LowerfIdentCharg.

When considering the final form of a graph, only nodes reachable from the root are (by definition) of
interest. Hence unreachable nodes which cannot affect the final form may be removed from the graph
along with their successor arcs. Note that until the final form is computed, some nodes unreachable from
the root may influence the final form.

The following examples give the textual representation of two graphs. The first is an example of a DAG
and the second an example of a cyclic graph.

Example 1 A DAG

r : Append[s s];

s : Cons[z n];

z : 0; n : Nil

Example 2 A cyclic graph

c : Cons[o c];

o : 1

Both examples require the use of node identifiers as there is sharing of arguments. Alternative graphs
with the same meanings areAppend[s : Cons[0 Nil ] s] andc : Cons[1 c]. Terms with a tree structure can
be represented without using node identifiers.

2.3 Dactl rewriting rules
The reduction relation for a Dactl system is described by a set of rewriting rules which describegraph
transformations. A set ofcontrol markings is used to specify when the transformations may be applied.

The left-hand side of a rule consists of apattern which is a generalization of a Dactl graph. Any Dactl
graph as described above is a Dactl pattern. In addition, a pattern may contain specialpattern symbols,
which match a class of symbols, andpattern operators. The simplest special pattern symbol isANY,
which identifies a variable node. The pattern operators of Dactl are+, � and & representingunion,
difference andintersection respectively. The generalized form of node specification is given in Fig. 9.
Before rewriting can take place, it is necessary to establish amatch between a subgraph of the program
graph, called aredex, and the pattern of a rule. Formally, this means identifying a structure-preserving
mapping between the nodes of the pattern and the graph undergoing rewriting.
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NodeDe f inition:= [Nodeid:] Node.
Node := DataValuej Symbol[[TermfTermg]]

j TermfPatternOpTermg)
j SymbolClass

SymbolClass ::=DataClass
j ANY
j AccessClass.

DataClass ::=INT j LONGjREALj BOOLjCHARj
j STRINGj PTRjVECTORCjVECTORO.

PatternOp ::=+ jj &.

Figure 9: Generalized form of node specification

The right-hand side of a rule includes thecontractum graph, a number ofredirections, and a number
of activations. Rewriting involves building the contractum, a copy of the right-hand side of the rule, and
connecting it into the original graph according to theredirectionsspecified as part of the rule. The control
markings, including theactivations, are used to identify redexes for future rewrites. Very frequently only
a single redirection of the root is intended, and the syntax of Dactl provides a special connective=)
between the left- and right-hand side of a Dactl rule for this purpose:

Rule ::=Pattern =) [ContractumPartf;ContractumPartg]
j Pattern =) Termf;ContractumPartg.

ContractumPart::=NodeDe f initionj Activationj Redirection.
Activation ::=Nodeid.
Redirection ::=Nodeid:= Term.

The following example rules model the appending of lists:

Append[Cons[h t] y] =) Cons[h Append[t y]]j

Append[Nil y] =) y;

Dactl rules which do not use the connective symbol=) use the connective symbol!. This symbol
has no semantic connotations and serves merely as a delimiter for the two sides of the rule. Its use means
that all redirections have to be explicitly stated. The following example shows the append rules using the
! connective and the symbol classANY:

r : Append[Cons[h : ANY t: ANY] y : ANY]! s : Cons[h Append[t y]]; r := sj

r : Append[Nil y : ANY]! r := y;

The use of priority rewrite semantics is both common and convenient, and so Dactl supports it. Rules
separated by a semicolon are matched in order, whereas rules separated by aj may be dealt with in any
order.
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(a) Matching (b) Building

Figure 10: Stages of rewriting

Constraints are imposed on where symbols of particular access classes may appear:rewritables may
only appear as the root of patterns;creatablesandoverwritables only below the root; redirection of
nodes below the root is only permitted if they areoverwritables.

The syntax for a complete module including a set of rules is:

Module ::= MODULE Symbol;fItemgENDMODULE Symbol; .
Item ::= RULE RuleList

j : : : .
RuleList ::= RuleGroup;fRuleGroup;g .
RuleGroup::= Rulefj Ruleg.

2.4 Graph rewriting in Dactl

We will describe Dactl rewriting in more detail. The four stages of rewriting arematching, building ,
redirection andreactivation.

2.4.1 Matching
A match is a graph homomorphism from (the nodeids of) the pattern of a rule to (the nodeids of) the
program graph. Structure is preserved by this mapping, except at variable nodes (marked by a symbol
class such asANY). As an example consider the diagram in Fig. 10a. It shows the matching of the pattern
of the first append rule to a piece of graph. The horizontal arrows show the homomorphic relationship
between the two graphs. In this example, the redex is the graph rooted at theAppendnode. The matching
process also constructs a binding between nodes in the pattern and the program graph which will used in
the later phases.

Pattern nodes whose symbols are symbol class names are matched specially:ANY matches uncondi-
tionally and data classes match values of the appropriate type. More complex matching rules apply when
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Figure 11: Redirection

pattern operators are used, as explained in Glauert et al. (1988b).

2.4.2 Building

The second phase of rewriting builds a copy of the contractum of the matched rule. The contractum may
contain occurrences of identifiers from the pattern. During building, such occurrences become arcs to the
corresponding nodes matched in the first phase. The building phase is not required for selector rules, such
as the secondAppendrule, which have no contractum. Figure 10b shows our example program graph
once the contractum of the matched append rule has been constructed.

2.4.3 Redirection

The next stage of a rewrite is redirection. Its purpose is to allow references in the old graph to be changed
consistently to refer to parts of the new structure. Very general transformations are possible, as any or
all of the nodeids identified by the pattern variables may be redirected within a single atomic rewrite.
Our running example only has a single redirection and redirects references to the node which matches
the root of the pattern to theConsnode constructed during the building phase. Figure 11 shows the state
after the redirection. Note how all references have been redirected and thus the oldAppendnode has
been disconnected from the root of the program graph. This is now garbage in the Dactl sense and a
common implementation technique is to overwrite it with the contents ofs, thus avoiding the overhead of
supporting genuine physical redirection of pointers.

Certain constraints on Dactl rules are necessary to avoid inconsistent redirections (Glauert et al. 1988b).
In particular, the sources of all redirections must be distinct which means in general that they must have
explicit and disjoint symbols.

2.4.4 Activation

The final phase of rewriting is activation, which allows the alteration of the control state of pre-existing
nodes in the program graph. The control states of nodes are used to spark or suspend parts of the program
graph as described in the next section. Control markings have been omitted in our example above.
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(a) Node transitions (b) Arc transitions

Figure 12: State transitions of nodes and arcs

2.5 Control of evaluation in Dactl
Dactl is concerned with control of evaluation as well as the properties of an abstract rewriting system. It
includes fine grain control and synchronization markings as an integral part. These markings are attached
to particular nodes and arcs in the program graph. The intuitive basis of the markings is that there may be
multiple control loci each of which is a node where reduction may take place.

2.5.1 Dactl markings
The full syntax includes provision for markings on symbols and nodeids:

Node ::= [NodeMark] Symbol[[MarkedTermfMarkedTermg]]j.
NodeMark ::= � j #f#g .
MarkedTerm::= [ArcMark] Term.
ArcMark ::= ^ .
Activation ::= [NodeMark] Nodeid.

The most importantnodemarking is theactivation denoted by *. Only activated nodes are considered
as the starting points of rule matching. A node may be created active, or may become active during the
activation phase of rewriting.

The other node marking, #, indicates a suspended node, and a node may have one or more such mark-
ings enabling it to await a specified number of notification events before becoming active again. The
synchronization between suspensions and notifications involves arc markings.

The arc marking^ is used in conjunction with # for such synchronization purposes. It indicates a
notification path between the target of the arc and its source. When evaluation of the target is complete in
the sense that rule matching fails at the target the arc marking is removed along with a # marking on the
source node, if present. When the last # is removed, it is replaced by *, thus making the node active.

The possible state transitions of nodes and arcs are summarized in Fig. 12. Operations having no effect
(e.g. activation of non-idle nodes) are omitted.
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The full syntax in the Appendix specifies the places where markings may appear; however, the use of
all of these markings is illustrated by our append rules below. These are the same rules as before but now
contain the relevant markings. The first rule suspends theConsnode until the append of the rest of the list
is complete and the notification removes the suspension. The activation in the second rule fires the listy
thus starting the notification process back up the spine of any constructed list:

Append[Cons[h t] y] =) #Cons[h ^
�Append[t y]]j

Append[Nil y] =) �y

When rewriting with markings, new graph nodes are built with markings as specified in the contractum.
Before redirection, any markings on the original node are removed before arcs are redirected to the new
node. Finally, the activation phase may mark other nodes matched by the pattern.

2.5.2 Dactl rewriting with markings
We have discussed the application of a single Dactl rule. Execution of a program will involve the applica-
tion of many rules. In each case the application of a rule takes place only at an activated node.

When a node is activated it may match a rule and be rewritten. However, the node may also be a
data value such as an integer, or a user-defined constructor value. In such cases, no rules apply and the
activation is discarded. In this circumstance it is likely that some parent computation may be able to make
progress. So notification occurs for each notification path which leads to the chosen node as described in
the last section.

Each program must include a rule whose left-hand side has the patternINIT IAL. The initial Dactl
graph contains an active node which will match this rule. As a result of rewriting, new activations will be
generated. If there are several active nodes, they may be processed in any order, or even concurrently as
long as the effect is the same as could have been achieved by chosing active nodes one at a time. Once a
Dactl program graph contains no activations, execution is complete and the graph viewed from the root is
the result of computation.

The following example shows how the markings upon the append rules work in practice. Take the
following graph:

a : �Append[k : Cons[o : 1 n : Nil ] k]

The subgraph rooted at the active node matches the first rule and the reduction produces the following
graph.

m : #Cons[o : 1^b : �Append[n : Nil k : Cons[o n]]];

a : Append[k k]

It can be seen that the matching matched the nodek to two different parts of the pattern. In Dactl, it is
perfectly consistent for a tree-structures pattern to match a graph with sharing. The original nodea is now
garbage, because it is disconnected from the root nodem, and so can be removed. The new activeAppend
node now matches the second rule and the following graph is produced:

m : #Cons[o : 1 ^k : �Cons[o n : Nil ]];

b : Append[n k]
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The nodeb is now garbage and again can be removed. TheConsnode is active but is a constructor and so
does not match any rules. This is a match failure and thus the notification is removed and the suspension
marking uponm is changed into an activation marking:

m : �Cons[o : 1 k : Cons[o n : Nil ]]

Again theConsnodemsuffers match failure and so the final form is as shown below. Note that eventually
theAppendfunction causes match failure at the root of the constructed list. This allows consumers of the
append operation to suspend awaiting the termination of the function:

m : Cons[o : 1 k : Cons[o n : Nil ]]

2.6 Dactl modules
To facilitate separate compilation, a Dactl program is split into a collection of modules. This provides a
way of organizing a Dactl program into meaningful components and controlling their access to each other.
Modules may import other modules and this is the way Dactl is interfaced to the real world. A substantial
set of interface modules is defined in Glauert et al. (1988b).

Each module contains a set of symbol and rule definitions along with import statements. The symbol
definitions give the class of each symbol eitherCREATABLE, REWRITABLE, or OVERWRITABLEcorre-
sponding to constructors, functors and variables respectively. The symbol definitions also state whether a
symbol is PUBLICor not and its public class. Rules are defined as shown earlier and they are all imported
along with their module.

The following example shows a module containing the append rules. Note how the list module,
which contains the definitions ofConsand Nil , is imported and that although theAppendsymbol is
REWRITABLEwithin the module, itsPUBLIC class isCREATABLE. This means that the rules may be
used by an importing module which creates activeAppendnodes, but no new rules forAppendmay be
added:

MODULE Append;

IMPORTS Lists;

SYMBOL REWRITABLE PUBLIC CREATABLE Append;

RULE

Append[Cons[h t] y] =) #Cons[h ^
�Append[t y]] j

Append[Nil y] =) �y;

ENDMODULE Append;

3 Conclusions
3.1 Dactl implementation
The original aim was for Dactl to act as a compiler target language. This happened to some extent as part
of the UK Alvey Flagship project with which the authors were associated. However, the main value of
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Dactl has been as a practical notation for expressing and exploring implementation techniques based on
graph rewriting. To this end it has been important to have available a reliable reference implementation of
the language.

The reference interpreter was designed to be faithful to the model, and to provide extensive profiling
and tracing facilities, with efficiency considered as a secondary concern. However, the interpreter has
proven an effective tool for exploring some non-trivial programs resulting from experimental compilers
for SML (Hammond 1990) and GHC (Papadopoulos 1997a). The performance of the interpreter compared
favourably with available implementations of concurrent logic languages during exploration of graph
rewriting techniques for implementing the same languages.

In order that Dactl could be used to explore a wide range of graph rewriting techniques, it was decided
to make the notation very general. The notation allows some very complex patterns to be provided for
rules. This makes efficient pattern-matching code hard to produce. Also, Dactl does not constrain the arity
of symbols, requiring additional checks during matching. The patterns of control that can be expressed
using the Dactl marking scheme make scheduling of execution hard to predict.

Experience with use of Dactl suggests that quite simple patterns are usually sufficient and that pattern-
matching for such rules need not be costly. In particular, there is little to be gained from allowing symbols
to have variable arity. By keeping to some simple rules for expressing control of evaluation, it is possible
to take advantage of implementation techniques used by compilers for SML: continuation passing style
(Appel 1992) and Haskell (the STG machine (Peyton Jones and Salkild 1989). An experimental compiler
generating C code for Dactl (with some minor restrictions) proved that suitably constrained variants of
Dactl could still provide an effective implementation route.

Recently, we have used the interpreter as a means of exploring and exploiting the relationship between
the term graph rewriting systems framework and other models and programming paradigms. For instance,
Glauert (1992, Glauert et al. 1993) study the relationship between graph rewriting and process calculi
by mapping the process language Facile; Banach and Papadopoulos (1997) provide a mapping between
graph rewriting and interaction nets and Papadopoulos (1996, Papadopoulos 1997b) extend the basic term
graph rewriting model with object oriented capabilities.

3.2 Summary of main features of the Dactl language

Although it is clear that the design of Dactl could be improved, we believe that there is much to be
learned by studying the present design. The current definitive reference document for Dactl is Glauert
et al. (1988b), obtainable from the authors. Dactl graphs areterm graphs in the sense of Barendregt et al.
(1987). That is, every node has a symbol (or label) together with zero or more directed out-arcs to other
nodes. Thus Dactl nodes together with their symbols and out-arcs correspond to the labelledhyperedges
used to model term graph rewriting in the Jungle evaluation model developed by Hoffman and Plump
(1988).

A Dactl rewrite isatomic. This is expressed by requiring that every valid outcome of a Dactl compu-
tation must correspond to an outcome which could be reached by sequential execution. The great benefit
of atomicity is that invariance of properties across individual rules also holds for all valid executions. The
cost is that an implementation must ensure that co-existing conflicting rewrites are not executed concur-
rently. This may be done for example by locking critical nodes. For certain classes of rule systems, it is
possible to show that no locking is needed to ensure the correctness of concurrent execution of rewrites
(Kennaway 1988).
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A Dactl rewrite may contain a multiple reassignment of out-arcs (calledredirections in Dactl ter-
minology). It is this feature which gives Dactl much of its expressive power, allowing non-declarative
behaviours to be expressed.

Dactl graphs includecontrol markings on the nodes and the arcs. These allow a wide range of evalu-
ation strategies and synchronization conditions to be expressed. The control markings are an integral part
of Dactl: a graph which contains no control markings is not rewritable according to Dactl semantics, even
if the graph contains redexes in the usual TRS sense. Techniques for generating appropriate markings
automatically are reported by Kennaway (1990a), and Hammond and Papadopoulos (1988).

Dactl supports separate compilation, and a classification scheme for symbol usage which allows the
writer of a Dactl module to constrain external use of exported symbols by appropriate symbol class dec-
larations.

The implementation gathers statistics and execution traces corresponding to both sequential and parallel
execution.

We have described a practical language of graph rewriting, and given a wide range of examples of its
use. These range from graph manipulation algorithms to translations from functional and logic languages.
The semantics of an individual Dactl rewrite agrees with that obtained from the categorical constructions
of Kennaway (1990b). Both the design and implementations of Dactl are reasonably stable.
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Appendix: Dactl syntax
A.1 Symbols
The lexical syntax will be given using the following definitions:

U pper An upper-case letter.

Lower A lower-case letter.

Digit Any decimal digit.

The lexical classesIntSymbol, LongSymbol, RealSymbol, CharSymboland StringSymbolare defined
to be respectively, the integer, long integer, real, character, and string constants of the C programming
language. Dactl has in addition the classesSymbolandNodeid:

Symbol ::= U pperfIdentCharg.
Nodeid ::= LowerfIdentCharg.
IdentChar::= U pperj Lowerj Digit j : j j0j ”.

The lexical classDataValueis the union ofIntSymbol,LongSymbol, RealSymbol,CharSymbol, StringSymbol
andPointerSymbol.
f: : :g indicates zero or more repetitions;[: : : ] indicates zero or one repetitions.

A.2 Comments
Any text between an opening brace (f) and a closing brace (g) or end of line is ignored (unless the opening
brace is part of aCharSymbolor StringSymbol).

A.3 Syntax
The reserved words of Dactl areMODULE, ENDMODULE, SYMBOL, PATTERN, IMPORTS, PUBLIC
andRULE. Capitalization is significant.

Module ::= MODULE Symbol; fItemg ENDMODULE Symbol; .
Item ::= IMPORTS ImportsItemfImportsItemg

j SYMBOL AccessClass[PUBLICAccessClass] SymbolList
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j PATTERN[PUBLIC] PatDe f List
j RULE RuleList.

ImportsItem ::= Symbol[ FROM StringSymbol] ; .
SymbolList ::= Symbol; fSymbol; g.
PatDe f List ::= PatternDe f; fPatternDe f; g.
PatternDe f ::= Symbol= Pattern.
Pattern ::= NodeDe f initionf;NodeDe f initiong.
NodeDe f inition ::= [Nodeid: ] Node.
Node ::= [ NodeMark] DataValue

j [ NodeMark] Symbol[ [ MarkedTermfMarkedTermg ] ]
j ( TermfPatternOp Termg )
j SymbolClass.

SymbolClass ::= DataClass
j SpecialClass
j AccessClass.

DataClass ::= INT j LONGj REALj BOOLjCHARj
j STRINGj PTRjVECTORCjVECTORO.

SpecialClass ::= ANY j NONE.
AccessClass ::= READABLEjCREATABLEjOVERWRITABLE

j REWRITABLEjGENERAL.
NodeMark ::= � j #f#g .
MarkedTerm ::= [ ArcMark ] Term.
ArcMark ::= ^ .
Term ::= Nodeidj NodeDe f initionj Activation.
Activation ::= [ NodeMark] Nodeid.
PatternOp ::= + jj &.
RuleList ::= RuleGroup; fRuleGroup;g .
RuleGroup ::= Rulefj Ruleg .
Rule ::= Pattern> [ContractumPartf;ContractumPartg]

j Pattern =) Termf;ContractumPartg .
ContractumPart ::= NodeDe f initionj Activationj Redirection.
Redirection ::= Nodeid:= Term.
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