
Automatic Code Generation: A Practical Approach

George A. Papadopoulos
Department of Computer Science, University of Cyprus

75 Kallipoleos Street, POB 20537, CY-1678, Nicosia, Cyprus
george@cs.ucy.ac.cy

Abstract. This work contributes in bridging the
gap between software design and implementation
of component-based systems using software
architectures at the modelling/design level and
the coordination paradigm at the implementation
level. Exploiting the improvements realized by
the latest version of UML, we present a
methodology for automating the transition from
software architecture design of component-based
systems described in UML 2.0 to coordination
code. The presented methodology is further
enhanced with a code generation tool that fully
automates the production of the complete code
implementing the coordination-communication
part of software systems modelled with UML 2.0.

Keywords: Software Architectures,
Coordination Models and Languages, UML 2.0,
Code Generation.

1. Introduction

Our effort is focused on bridging the gap
between software design and implementation of
component-based systems using software
architectures at the modelling/design level and
the coordination paradigm at the implementation
level. Our choice was based on the clear support
of both software architectures and event-driven
coordination models for Component Based
Software Engineering and the similarities we
have identified between the fundamental
concepts of software architectures and the event-
driven coordination model.

In [6] we have presented a methodology for
mapping ACME ([2]), a generic language for
describing software architectures, down to event-
driven coordination code in the Manifold ([1, 7])
language. The reason for using ACME was
precisely in order to show the generality of our
approach: since ACME embodies the core
features that any state-of-the-art Architecture
Description Language (ADL) would support, by
mapping ACME to Manifold we effectively
provide the core of an implementation route for

any other ADL Based on the results and
experience of our first work and exploiting the
improvements realized by the latest version of
UML towards the support of software
architecture descriptions, we propose a new
methodology for modelling the software
architecture of a component based system in
UML 2.0 ([9]) and the automatic transition of
this model to event-driven coordination code in
Manifold. Our latest work targets an improved
support for the dynamic aspects of the software
architecture exploiting the powerful tools of
UML for dynamic behaviour. Furthermore, we
use the standards (UML2.0, XMI) and approach
proposed by the new software development
discipline, namely the Model Driven
Architectures ([5]).

The presented methodology is further
supported by a code generation tool that fully
automates the production of the complete code
implementing the coordination-communication
part of software systems modelled with UML
2.0. The fact that our approach integrates
software architectures and coordination models
enables us to derive the advantages that both
models provide in reducing the costs of software
development. The modelling of the system
architecture enables developers to define the
more important properties and constraints of the
system, but also to detect errors early at the
design time. The generated code, which is
consistent with the previously modelled
architecture, clearly separates the communication
from coordination parts of the system, making
the system maintenance easier

1.1. Event-driven coordination

In general, coordination models and
languages adhere in two main approaches, the
“data-driven” or shared dataspace approach and
“control” or “event-driven” approach. The main
characteristic of the first approach is the use of a
notionally shared medium via which the
processes forming a computation communicate.

861
Proceedings of the ITI 2008 30th Int. Conf. on Information Technology Interfaces, June 23-26, 2008, Cavtat, Croatia

The most notable realization of this approach is
Linda. In contrast to data-driven approach, in
event-driven approach processes communicate in
a point-to-point manner by means of well-
defined interfaces. Such a system evolves
dynamically by means of raising and receiving
control events. Manifold is a typical member of
this family, and is a realization of the Ideal
Worker Ideal Manager (IWIM) coordination
model ([1]). In Manifold, there exist two
different types of processes: managers (or
coordinators) and workers. A manager is
responsible for setting up and taking care of the
communication needs of the group of worker
processes it controls (non-exclusively). A worker
on the other hand is completely unaware of who
(if anyone) needs the results it computes or from
where it itself receives the data to process.
Manager processes are written in Manifold
whereas worker processes may be written also in
Manifold or in some computational language
(typically C, Fortran). In this latest case, these
worker processes are called atomics. In
particular, Manifold possesses the following
characteristics:
• Processes. A process is a black box with well-

defined ports of connection through which it
exchanges units of information with the rest
of the world. A process can be either a
manager (coordinator) process or a worker. A
manager process is responsible for setting up
and managing the computation performed by
a group of workers. Note that worker
processes can themselves be managers of
subgroups of other processes and that more
than one manager can coordinate a worker’s
activities as a member of different subgroups.
The bottom line in this hierarchy is atomic
processes, which may in fact be written, in
any programming language.

• Ports. These are named openings in the
boundary walls of a process through which
units of information are exchanged using
standard I/O type primitives analogous to
read and write. Without loss of generality, we
assume that each port is used for the exchange
of information in only one direction: either
into (input port) or out of (output port) a
process. We use the notation p.i to refer to
the port i of a process p.

• Streams or channels. These are the means by
which interconnections between the ports of
processes are realised. A stream connects a
producer process to a consumer process. We
write p.o -> q.i to denote a stream

connecting the port o of a producer process p
to the port i of a consumer process q.

• Events. Independent of channels, there is also
an event mechanism for information
exchange. Events are broadcast by their
sources in the environment, yielding event
occurrences. In principle, any process in the
environment can pick up a broadcast event; in
practice though, usually only a subset of the
potential receivers is interested in an event
occurrence. We write e.p to refer to the
event e raised by a source p.
Activity in a Manifold configuration is event

driven. A coordinator process waits to observe an
occurrence of some specific event (usually raised
by a worker process it coordinates) which
triggers it to enter a certain state and perform
some actions. These actions typically consist of
setting up or breaking off connections of ports
and channels. It then remains in that state until it
observes the occurrence of some other event,
which causes the preemption of the current state
in favour of a new one corresponding to that
event. Once an event has been raised, its source
generally continues with its activities, while the
event occurrence propagates through the
environment independently and is observed (if at
all) by the other processes according to each
observer’s own sense of priorities. The figure
below shows diagrammatically the infrastructure
of a Manifold process.

Figure 1. A Manifold process

2. The basic rules of code generation

The general steps for the construction of the
diagrams are the following ones:
1. Identify the top-level components of the
system architecture. Create a top level diagram
and add a special Main component. (This will
represent the special manifold process that every
system in manifold should include). Add the top-
level components of the system as sub-
components of the Main Component.

862

2. For each component identify the different
operations that are provided by this component.
3. For each operation identify the different
parameters that the component needs to execute
this operation and the possible values returned by
this operation. Create an interface for each
operation and add the specific operation with its
parameters and return values.
4. Identify the possible signals sent by the
component providing this operation to its
environment in response to a call on this
function. Add the signals to the created interface.
5. Identify possible main variables related to the
operation that can be identified at this stage and
may affect the setup of the architecture. Add
these attributes to the created interface.
6. Identify the required operations and create an
interface for each of them in a similar way as
above. For each required interface add a signal
sent by the component requesting the call of the
related operation to its parent component that
coordinates it in order to create the needed setups
(connections).
7. For each component add a port for each
provided or required operation of the component
and attach it to the corresponding required or
provided interface.
8. Identify all possible connections between the
sub-components of a first level component.
9. Identify all possible connections from the top
level component to its parts (sub-components,
classes).
10. Decompose each of the sub-components to
another diagram. Add in the new diagram the
specific sub-component as the top level
component and add all sub-components and
classes that this component is composed of.

Figure 2 presents the top level architecture
model of a small part of a bank system where an
ATM component sends the requests accepted
from users to the central bank server, realized by
the BankServer component, for displaying the
balance of its account.

2.1. From architecture to Manifold code

A Component can be exactly mapped to a
Manifold coordinator process. An Active Class is
mapped to a Manifold atomic process. Passive
Classes will be used in our architecture
modelling to represent the different data types
supported by Manifold such as string, integer,
tuple, etc.

Figure 2. ATM Example – Top level
architecture diagram

An interface is not directly mapped to a
specific Manifold construct but the set of
operations, attributes and signals defined for the
specific interface are separately mapped. For
every operation that is defined in a provided or
required interface attached to a port, we create an
input port for each input parameter and an output
port if the specific operation returns a value. A
special input control port is also created for each
operation and a guard is installed on this port to
notify the owning manifold process for requests
received for the specific operation. The set of
signals defined in provided and required
interfaces attached to the ports of a component or
class are defined to be the events that can be
raised by the corresponding manifold or atomic
process. Attributes of an interface attached to a
component or class are mapped to local variables
of the corresponding Manifold coordinator or
atomic processes.

Figure 3. Mapping components and classes

863

Figure 4. Mapping ports and interfaces

Figure 5. Mapping assembly connectors

2.2. Creating the scenario model

Scenario modelling is realized by a number of
sequence diagrams describing the dynamic
aspects of a component-based system’s
architecture, i.e. the:
• interactions taking place between

components, realized by message exchanges,
• activation/deactivation of component and

class instances,
• conditions under which the above actions

take place,
• sequence within which the above actions

take place.
As soon as the different scenarios are

identified, the software architect can create in a
hierarchical top-down approach the sequence
diagrams of each scenario as follows:
1. Create a top level sequence diagram and
include a lifeline for the “Main” component and
a lifeline for each instance of the first level
components/classes that are involved in the
execution of the first execution scenario.

2. Use the constructs for scenario modelling
described above to define the interactions –
messages taken place during the execution of the
first execution scenario.
3. Decompose every decomposable lifeline to
another sequence diagram, describing the
message exchanges taking place for the current
scenario at a lower lever (i.e. between the
specific component and its part’s instances).
4. Add all “signal” and incoming “operation” call
messages of the higher level sequence diagram
that are attached to the lifeline currently being
decomposed.
5. Between the already created messages, add all
message exchanges taking place between the
decomposed lifeline (i.e. the parent component)
and the other lifelines.
6. For each component, create a new sequence
diagram with a special name “Component name -
Init” in order to describe the initialization
process of the component such as the creation of
process instances.

For our example, the “getBalance” and
“transfer” scenario can be identified. The
sequence diagrams for the “transfer” scenario as
well as the special “init” diagram for the “Main”
component are presented below:

Figure 6. First level sequence diagrams

Figure 7. Special “init” sequence diagram for
the “Main” component

864

3. Code generation

We have developed a tool that automatically
generates the Manifold code implementing the
coordination-communication part of software
architectures modelled with UML 2.0. Our code
generation tool takes as input an XMI document
describing the architecture model of a system
and outputs the full Manifold code implementing
the coordination part of the system. The full
route of creating and transforming a software
architecture model to Manifold code is shown
below:

Figure 8. Code generation tool –
Transformation/code generation route.
Following the MDA approach, we first create
a Platform Independent Model (PIM) in
UML2.0, then we apply our mapping rules to
create a Platform Specific Model (PSM) and
finally we create the coordination code by
applying our code generation rules on PSM.
In our case “platform” is the specific event-
driven coordination language, e.g. Manifold.

The creation of the software architecture of
the system forms the first step. For the modelling
of the software architecture, we use the Sparx
Enterprise Architect modelling tool ([8]). Using
the “export” function of Enterprise Architect, we
then export the modelled software architecture to
an XMI (v.1.1) document.

Since the latest version of XMI (v.2.1) that
corresponds to UML 2.0 has recently been
released, the few tools that provided support of
UML 2.0 after its official release on 2003 have
used previous versions of XMI format to export
the models and added custom extensions to cover
the needs not supported by these versions.
Additionally, since XMI has to be general

enough to represent not only UML models but
every kind of model, there are specific needs of
UML tools that may not be supported. As it is
stated in [4] "the XMI standard itself doesn't
support all that is needed, and vendors
unfortunately implement it differently". In order
to make our code generation tool more
independent from specific UML modelling tools
we first parse XMI generated by Enterprise
Architect and create an intermediate, tool
independent, representation of the model. The
intermediate representation consists of generic
UML 2.0 Java classes that represent the elements
of our software architecture model.

For parsing the XMI document and creating
the UML 2.0 object model, we use Apache
Commons Digester ([3]). Having an intermediate
representation of the software architecture
enables the support for additional modelling
tools in the future with minimum effort. If we
wanted to add support for a modelling tool other
than Enterprise Architect that has a different
implementation of XMI format, then we would
only have to add another set of digester rules for
parsing the XMI document exported by this tool
(or just the rules for parsing the XMI parts that
are implemented differently in this tool) and
transform it to the common UML2.0 object
model.

The next step is the transformation of the
UML2.0 object model to the equivalent Manifold
object model by applying the mapping rules of
our methodology. The Manifold object instances
are finally processed to generate the Manifold
code by applying the syntax rules of Manifold.
Part of the code generated by our tool for the
“Main” manifold (Main.m file) is presented
below:
manifold ATM(event
getBalance_req,
event transfer_req) import.

manifold BankServer(
 event getBalance_success,
 port in getBalance. import.

manifold Main(){
 begin:
(activate(atm),activate(server)
).
atmError.atm:

 "An error occurred on ATM" ->
out, deactivate(atm).

serverError.server:
 "An error occurred on Server"
-> out; halt.

865

//transfer scenario
transfer_req: "transfer"-
>server.transfer,
 atm.sourceAccount_out ->

server.sourceAccount_in,
 atm.targetAccount_out ->

server.targetAccount_in.
 atm.amount_out
server.amount_in.

 "An error occurred on Server"
out;
 halt. }

4. Discussion and further work

Some advantages of this work are the
following ones:
• The use of a standard, broadly accepted and

established modelling language for
describing software architectures.

• The two types of diagrams that are used in
our methodology can be perfectly
interrelated, thanks to the new feature of
UML 2.0 for structure and behaviour gross
integration.

• By virtue of XMI, the software architecture
descriptions can be exchanged and
used/edited by many modelling tools.

• Adhering to the main principles of the MDA
approach, we tried to keep the software
architecture model constructed by our
methodology “platform” independent.

The software developer that will use our
methodology and the associated code generation
tool will face a common, in the field of automatic
code generation, problem: the maintenance of the
generated code. Although in our latest
methodology the coordination code that can be
generated is more complete limiting the need for
the programmer to manually add missing bits of
coordination code, if the software architecture of
the system changes in a subsequent stage (e.g.
the system is extended with new functionality
and subsequently new components) the code has
to be generated again. However, the problem is
limited to the atomics files that the tool generates
for the coordination-related code and where the
programmer manually adds the computational
code.

Our future work involves the enhancement of
our code generation tool by:
• addressing the problem of code maintenance;

we are currently in the process of
considering code-block recognition methods
used in other code generation tools,

• supporting additional modelling tools apart
from Sparx Enterprise Architect,

• adding enhanced mechanisms for
consistency checking and validation of the
imported software architecture model.

5. References

[1] F. Arbab, I. Herman and P. Spilling, “An
Overview of Manifold and its
Implementation”, Concurrency: Practice
and Experience 5 (1), 1993, pp. 23-70.

[2] D. Garlan, R. T. Monroe and D. Wile,
“ACME: An Architectural Description of
Component Based Systems”, Foundations of
Component-Based Systems, Cambridge
University Press, pp. 47-68, 2000.

[3] Jakarta Commons Digester Website,
http://jakarta.apache.org/commons/digester,
accessed Feb 2006.

[4] C. Laird , XMI and UML combine to drive
product development, IBM Whitepapers,
available at http://www-
128.ibm.com/developerworks/xml/library/x-
xmi/, October 2001.

[5] OMG Model Driven Architecture Website,
http://www.omg.org/mda/, accessed Feb
2006.

[6] G. A. Papadopoulos, A. Stavrou, and O.
Papapetrou, "An implementation framework
for Software Architectures based on the
coordination paradigm”, Science of
Computer Programming 60(1): 27-67
(2006).

[7] G. A. Papadopoulos and F. Arbab,
“Configuration and dynamic reconfiguration
of components using the coordination
paradigm”, Future Generation Computer
Systems 17 (8) (2001) 1023-1038.

[8] Sparx Systems Website, available at
http://www.sparxsystems.com.au/, accessed
Feb 2006.

[9] OMG, Unified Modeling Language:
Superstructure version2.0, August 2003.

866

