
67

Applying Utility Functions to Adaptation Planning for
Home Automation Applications

Pyrros Bratskas, Nearchos Paspallis, Konstantinos Kakousis & George A.
Papadopoulos

Department of Computer Science, University of Cyprus, P.O.Box 20537, Nicosia, Cyprus
{bratskas, paspalli, kakousis, george}@cs.ucy.ac.cy

Abstract A pervasive computing environment typically comprises multiple
embedded devices that may interact together and with mobile users. These users
are part of the environment, and they experience it through a variety of devices
embedded in the environment. This perception involves technologies which may
be heterogeneous, pervasive and dynamic. Due to the highly dynamic properties
of such environments, the software systems running on them have to face
problems such as user mobility, service failures, or resource and goal changes
which may happen in an unpredictable manner. To cope with these problems, such
systems must be autonomous and self-managed. In this paper we deal with a
special kind of a ubiquitous environment, a smart home environment, and
introduce a user-preference based model for adaptation planning. The model,
which dynamically forms a set of configuration plans for resources, reasons
automatically and autonomously, based on utility functions, on which plan is
likely to best achieve the user’s goals with respect to resource availability and user
needs.

1. Introduction

Ubiquitous computing environments are characterized by frequent and unpredict-
able changes. To retain their usability, usefulness, and reliability in such environ-
ments, systems must adapt to the changing context conditions. Consequently,
there is a growing demand for software systems to be deployed in such environ-
ments. In this case, many constraints and requirements must be taken into consid-
eration in order to provide a fair utility to the users. Furthermore, mobile comput-
ing environments include a huge spectrum of computation and communication
devices that seamlessly aim to augment peoples’ thoughts and activities with in-
formation, processing and analysis. Devices such as Personal Digital Assistants
(PDAs) and smart-phones have gained a lot of popularity and are increasingly be-
ing networked. On the other hand, people use different software development and
deployment platforms to design and create applications for such devices. These
applications must be context-aware to meet the requirements of the highly dy-
namic and distributed environment. These types of context-aware systems adapt

68 Pyrros Bratskas, Nearchos Paspallis, Konstantinos Kakousis, George Papadopoulos

not only to changes in the environment, but also to the user requirements and
needs.

But even though the device capabilities become more and more powerful, the
de-sign of context-aware applications is constrained not only by physical
limitations, but also by the need to support a plethora of features such as
distribution, scalability, fault tolerance, etc. Indeed, mobile devices will continue
to be battery-dependent and operate in an environment where more and more
devices will be present and will need to communicate or share resources for the
foreseeable future.

A special kind of a ubiquitous environment is a smart home environment where
a large number of devices are used for a wide set of purposes. Examples include
lighting control modules, heating control panels, light sensors, temperature
sensors, gas/water leak detectors, motion detectors, video surveillance, healthcare
systems and advanced remote controls. As in ubiquitous environments, a smart
home environment faces challenges like adaptability and context-aware
reconfiguration, mobility (user mobility, device mobility and information mobility
([14], [21]), etc. However unlike them the smart home environment is very much
user-oriented and thus sensible to user preferences and needs.
In this paper we describe a self-adaptive distributed approach that automates the
configuration and reconfiguration in a ubiquitous computing environment. This
approach provides home users with the ability to set up an advanced home
environment taking into account user preferences and needs. We focus on a home
automation application and we present a model of adaptation in such an
environment. In this respect, utility functions are used to choose from a set of
dynamically constructed configuration plans. The primary aim is to choose the one
that best meets the user preferences and needs while respecting the limitations
imposed by the resources availability.

The main contributions of this work include that it makes explicit
representations of user preferences and needs with respect to quality dimensions
offered by the devices, so that the system can automatically determine what
service qualities are required for any given configuration. The system is dynamic
and performs reactive adaptation: the application defines which aspects of context
are of interest to the application itself, identify dynamically which context changes
are relevant, and choose the best configuration to execute. Some of these
configurations could be predefined and some others could be created on-demand
during execution. Furthermore, the system enables the decoupling of user
preferences from the lower level mechanisms that carry out those preferences,
which in result provides a clean separation of concerns (from an engineering
perspective) between what is needed and how it is carried out.

This paper is organized as follows: Section 2 describes a motivation scenario
that illustrates our idea. Then, in Section 3 we discuss about the architecture of the
sys-tem, how the user’s preferences are considered in our paper and how we use
utility functions to map them into numerical values. Section 4 presents a case
study scenario and Section 5 describes the related work and outlines the research

Applying Utility Functions to Adaptation Planning for Home Automation Applications 69

challenges of the preference and task-driven computing, but also the use of utility
function in some existing middleware systems in the area of ubiquitous comput-
ing. Finally we provide conclusion and outlook for future work in Section 6.

2. Motivating Scenario

In order to better illustrate the motivation for this work, this section describes an
application scenario to demonstrate the problem aspects. We have chosen a home
automation system which is composed of devices and services operated by users.
This includes the air-conditioning system, a multimedia home entertainment sys-
tem, a digital lighting system, additional electrical devices, etc. This environment
also includes user-carried devices like smart-phones, PDAs, laptops, etc. It is as-
sumed that these devices discover and communicate with each other, using tech-
nologies such as Jini [19] and UPnP [18].

When a user returns back to his home, he would like an automatic adjustment
of the heating, cooling, and lighting levels in the living room, or the control of the
home entertainment system. In this case, the devices can sense the presence of a
user, her or his identity, and thus set appropriate values to the different features of
the room based on a set of factors (e.g. the day of the week or the time of the day).
The values of the different features may also vary given the preferences of the in-
dividual user.

In the scenario we consider 4 home devices: the stereo, the TV, the air-
conditioning and the digital lighting system. Related to these systems, we also
consider the following characteristics: the volume of the stereo system, the room
temperature, the TV brightness, and the room luminosity. These devices offer in-
formation to the users about their characteristics and functionalities so that the us-
ers can configure them. This can be done using any technology such as an elec-
tronic house key, a mobile phone or a PDA.

When the user enters the room, he can activate a command to tune the lights
and the temperature in the room, and the volume of the multimedia entertainment
system. Several decisions have to be made though. For example, if there is enough
natural light, the digital light system can be switched off. Due to this decision, the
TV contrast and the room temperature have to be tuned properly during summer
or winter months. The TV volume has to be tuned considering the state of the ste-
reo for example; if the stereo is switched on the TV volume should be muted. On
the other hand, if privacy is needed, the user can shut the drapes which influences
all other device settings, i.e. the lighting systems must be adjusted again, etc. The
scenario is described by the user’s point of view and we must map all these opera-
tions into system’s services. As these environments are user-oriented, the user
preferences are of high importance, the services must satisfy them taking into ac-
count the context constraints and the QoS required by the user.

Our approach suggests the use of a user-preference management application
that adapts the home automation environment to the user. To apply adaptation, we

70 Pyrros Bratskas, Nearchos Paspallis, Konstantinos Kakousis, George Papadopoulos

need a model which takes into account the user preferences during reasoning and
decision making. For instance, there could be a situation with the user leaving
home. The system will detect if the user is leaving and pass the control from its
remote control or PDA to the home control system. When leaving, all lights
should turn-off automatically (which saves the user from having to go in each
room and switch off the lights manually), and the video surveillance system will
be enabled. In the case of detecting movements in the home, the home control sys-
tem has two choices depending on the available bandwidth: it will send a video
stream to the user’s PDA via Internet if there is enough bandwidth, otherwise it
will store the video stream to the home control computer.

The adaptation model we introduce in this paper attempts to make the best
choice among all possible ones, by applying a utility function and taking into ac-
count the preferences of the user and resource availability. In this model the user
specifies his preferences and then the system maps them onto the services offered
in the ubiquitous environment.

3. System overview

The main idea of our approach is to enable users to make requests for tasks to be
achieved, which must implicitly take into consideration the user preferences.
These preferences guide the selection of a plan capable of executing the task.

When a user enters a room, he selects his preferences based on a set of options.
This set can be predefined depending on a common set of user tasks. The selection
of preferences also depends on a set of constraints, which can be divided to logical
and context constraints. For example a logical constraint is that the TV and the
stereo can not be switched on and tuned to different inputs at the same time (i.e.
another media is played by the TV and another by the stereo system). A context
constraint is related to the resources i.e. if there is not enough bandwidth, some
internet-based TV channels might not be available.

In this section we first discuss device and service discovery protocols, as they
are a basic requirement for enabling synergies. Then, we discuss about the con-
figuration plans and how the user preferences are taken into account by the sys-
tem. We also present how the utility functions are constructed, and how the sys-
tem operates based on the selection of the best plan using the utility function.

3.1 Device and Service Discovery

In a home automation environment with devices that provide services without re-
quiring any user attention, service discovery is essential to achieving such sophis-
tication. It enables devices and services to discover, configure, and communicate
with each other. Device interaction protocols like UPnP, Bonjour [5], SLP [10],

Applying Utility Functions to Adaptation Planning for Home Automation Applications 71

Bluetooth SDP [4], and Jini allow the dynamic discovery of devices in a home en-
vironment network without any need for user interaction. These technologies al-
low interested clients to dynamically discover available services in a network and
also they supply the needed mechanisms for browsing through services, as well as
for detecting and using the desired service. Dynamic and automatic service dis-
covery is particularly challenging in ad hoc communication networks, where no
fixed infra-structure exists. Such networks are characterized by devices which
connect to each other, spontaneously offer and acquire services and then discon-
nect [3].

3.2 Configuration Plans

Our system uses configuration plans which are applied to achieve the user goals.
A configuration plan is a plan which defines how the components are connected to
each other in order to provide the functionality required by the application. Thus, a
plan can be formally thought of as being like a protocol which defines the com-
munication of the user with the environment.

The resources in the environment are subject to dynamic changes concerning
their values and/or properties. Also, new devices can be added and others can be
deactivated, the luminosity in the environment may increase or decrease, batteries
discharge, etc. Taking that into account, the choice of configuration plans can
make the adaptation process easier. In order to perform adaptations, we decouple
the preference specification from the middleware specification which provides a
separation of concerns. In this way, the “adaptation logic” is one level higher than
the middle-ware. That means that the users do not deal with the values and names
of resources, but its viewpoint over the system are the configuration plans. Some
of these plans can be predefined based on a set of user preferences. On the other
hand, other plans can be redefined if changes occur in the system, as well as new
configuration plans that can be added.
We make the following assumptions:

• Plans Vs Utility: For any particular adaptation, there may be multiple configu-
ration plans that can achieve it. The choice of a particular plan is based on the
utility it offers to the system.

• Plans Vs Resources: Each plan requires a set of resources with values defined
by user preferences in order to provide a certain QoS to the user.

• Utility Vs User goals: The utility offered by a plan may not satisfy the user at a
certain moment. For example the user in a room may want to prefer natural
light to the privacy by opening the drapes. It is up to the user to decide his pref-
erence priorities and guide the plan execution accordingly.

• User needs Vs offered utility: Each device defines its domain of the offered
value. The utility of a plan will be evaluated with respect to user needs for a

72 Pyrros Bratskas, Nearchos Paspallis, Konstantinos Kakousis, George Papadopoulos

certain utility and to the utility offered by the configuration plan. The differ-
ence between them will be weighted in order to prefer one plan to another.

• Plans Vs Distributed, dynamic planning: Plans are not predefined but rather
they are dynamically generated at run-time by discovering and coordinating
with the set of available, distributed devices. To achieve this, we assume a
component-based approach, where applications are formed as component com-
positions, and where components might become available or unavailable dy-
namically [9].

Figure 1 The system lifecycle

Based on these assumptions the system operates as follows: the user-attached de-
vice performs device discovery as the user enters the home. Then a set of variation
points is defined based on context and logical constraints. The decision on which
variation point is the best one is driven by the user preferences. As a result, the
system performs adaptation after the selection of a new variation point. This op-
eration is depicted in Figure 1.

3.3 User Preferences

The problem of modelling preferences has been widely research in others fields.
For instance, Agrawal and Wimmers in [1] present a preference model that allows
users to supply preferences and be combined, using preference functions, for deci-
sion making. Hafenrichter and Kießling in [11] represent preferences as strict par-
tial orders for the efficient integration of preference querying. Both approaches are
used in the field of database research.

In our case, we use a simplified version of the preference model introduced by
Henricksen et al. in [12]. This preference model employs a scoring mechanism,
which is loosely based on the scheme proposed by Agrawal and Wimmers. Each
preference is assigned with a score which is a numerical value in the range of [0,
1] where larger score indicates higher preference Four special scores represent
prohibition, indifference, obligation and error conditions.

Applying Utility Functions to Adaptation Planning for Home Automation Applications 73

Applying this preference model to our scenario yields the following preferences:

1
p = when Privacy (public) and Light (natural, 30)

 1w = 0.7

 2p = when Privacy (public) and Light (natural, 10)

 2w = 0.2

 3p = when Privacy (public) and Light (artificial)

 3w = 0.7

The value iw is used by the utility function in order to compute the utility of a con-

figuration. In fact, iw is a weight that reflects how much the user cares about the

user preference ip .

3.4 Utility Functions

To perform adaptation, the selected plan must meet the user’s preferences in order
to receive a good utility and also to minimize the use of shared resources. To
achieve this, we use utility functions to map the user preferences for QoS to a
function that defines how a selected plan satisfies the user preferences. The aim of
the utility functions is to express the quality of the adaptation for the user. Its input
includes the user preferences taking into account the current context and the avail-
able resources, while its output is the degree to which a variation point satisfies
the user goals. Utility functions are in general n-dimensional functions taking as
arguments values from an n-dimensional utility space [2]. In our work, we adopt a
simple approach, which defines overall utility as a weighted sum of the set of util-
ity functions.

Let { }ncpcp ,...,1=Ρ be the set of configuration plans and let iq for

ni ..1= be the corresponding utility of the adaptation when the plan pi is se-
lected. Then Q = {q1,…,qn} is the set of utility dimensions related to these plans.
This utility depends on the availability of resources and on the logical and context
constraints. To express this with a mathematical formula let R be the set of re-
sources and C the set of constraints. We assign to each resource a weight w which
expresses its availability as well as its value. As user preferences express user con-
straints and needs, they can be thought of as predicates that must be maximized.

Thus, the utility function F related to the QoS qi is expressed as:

74 Pyrros Bratskas, Nearchos Paspallis, Konstantinos Kakousis, George Papadopoulos

() ()mneeduseri xxfqF ,...,1_= where miCRxi K1∈∀∪∈

Then, the utility function associated to a configuration plan cpi is expressed as the
normalized, weighted sum of the dimensional utilities, as follows:

()
()

∑

∑

=

== n

i
i

n

i
ii

i

w

qFw
cpU

1

1 Pcpi ∈∀

The utility function []1,0: →PU is a function that maps and transforms a set

of configuration plans into a numerical values and the weight wi reflects how
much the user values the particular user preference pi. This process also takes into
account the availability of resources and context constraints.
For any particular adaptation, there may be multiple configuration plans that can
achieve it. The choice of a plan variant is based on the utility it offers to the sys-
tem. Each configuration plans requires a set of resources with values defined by
user preferences in order to provide a certain QoS to the user. On the other hand,
its utility may not satisfy the user at a certain moment. It is up to the user to decide
his preference priorities and guide the plan selection accordingly.

4. Evaluation

Existing solutions for self-adaptation consider all configurations of applications
and choose the ones that best fit the user’s preferences and needs. In a highly dy-
namic environment where the number of such configurations is quite numerous,
the task of managing them can be time consuming.

In this section we show that our approach offers some benefits as opposed to
other approaches. For example, in the comparison with the MADAM approach
[7], the main advantage is that the plans can include adaptation at the server side
(assuming a client-server model), whereas in MADAM adaptations were limited
to local only. This is important because it enables adaptations in ubiquitous com-
puting environments, which otherwise (i.e. in MADAM) it is very difficult.

Case study example
Let us revisit the application scenario of Section 2. Given the smart-home envi-
ronment, we consider three context types: temperature which corresponds to the
room temperature, luminosity which corresponds to the room light, and privacy

which express the user’s need for privacy. Let tw , lw and pw be the weights in-

dicating how the user may specify the relative importance of the quality dimen-
sions for the context types, temperature, luminosity and privacy respectively.
Table 1 illustrates the importance that the user gives to any of these dimensions
for three different configurations and Table 2 the dimensional utility function for

Applying Utility Functions to Adaptation Planning for Home Automation Applications 75

the user, defined as a set of coefficient values where each coefficient specifies the
utility value for a quality layer of a QoS-dimension.
The temperature and luminosity properties take their values in the ranges [10, 40]
and [0, 40] respectively, while the privacy property is a binary variable taking the
values true or false according to the user’s preference for privacy. If we consider
that the user goal is to illuminate the room then the first service variant will be
whether the light is natural or artificial. This is closely related with privacy since
opening the drapes will have an impact to the privacy property but also to the
temperature property because the sunny light will impact it as well.

Table 1 Dimensional weights

Configuration tw lw pw

1st 0.7 0.3 .0.5
2nd 0.3 0.8 0.5
3rd 0.2 0.2 0

Table 2 Dimensional utility functions

Configuration)(tF)(lF)(pF

1st 0.8 0.6 0.5
2nd 0.7 0.5 0.4
3rd 0.6 0.4 0.3

As can be seen from the Table 1, the first configuration perceives the temperature

dimension as the most important (tw > pw > lw) while the second configuration

gives more importance to the luminosity dimension. We assume that privacy is
needed for these two configurations which is not the case for the third one. The
utility for each configuration is shown in Table 3.

Table 3 Utility for each configuration

Configuration 1st 2nd 3rd

Utility 0.66 0.5 0.5

5. Related work

The notion of task-driven computing was first introduced by Wang and Garlan in
[20]. The approach is based on two basic concepts, tasks and sessions, and that it

76 Pyrros Bratskas, Nearchos Paspallis, Konstantinos Kakousis, George Papadopoulos

is possible to let users interact with their computing environments in terms of high
level tasks and free them from low level configuration activities.

Implementing this notion, the Aura infrastructure [16] performs automatic con-
figuration and reconfiguration in ubiquitous computing environments according to
the users’ tasks. For that, the infrastructure needs to know what the user needs
from the environment in order to carry out his tasks. It also needs mechanisms to
optimally match the user’s needs to the capabilities and resources in the environ-
ment. Aura infrastructure addresses two principles of autonomic computing as
they were introduced in [13]: self-optimization and self-healing from the point of
view of user’s task in an ubiquitous environment.

In [17], the authors describe an approach to self-configuring in computing envi-
ronments. Their adaptation architecture allows explicit representation of user’s
tasks, preferences and service qualities.
Henricksen et al. present an approach involving the use of preference information
as a basis for making flexible adaptation decisions in [12]. Their work focuses on
generic preference and programming models that can be used for arbitrary con-
text-aware applications and can facilitate preference sharing among applications.
They introduce a preference model and a programming model to support a com-
mon form of context-dependent choice problem. The authors consider preferences
as a link between the context and appropriate application behaviors placing them
in a layer of separation between the application and its context model allowing
them to evolve independently of one another.

In MADAM, utility functions were used to enable self-adaptive behavior in
mobile applications. Basic composition plans were provided by the developer and
were dynamically used to from the set of possible configurations (variants). Then,
the MADAM Middleware was used to evaluate them at runtime, based on the con-
textual and resource conditions, and automatically select the most suitable option.
Naturally, the MADAM approach is very similar to this approach, as our approach
builds on it and attempts to extend it. The main limitation that we attempt to over-
come is that of limited support for ubiquitous computing. While MADAM enabled
the adaptation of locally hosted applications, it fails to support adaptation of re-
motely hosted services (i.e. an application running on a different host). This limits
the domain of possible applications to locally deployed software only, with appar-
ent limitations concerning ubiquitous computing.

MUSIC middleware builds on the legacy of MADAM, and attempts to extend
its scope to ubiquitous computing environments. As described in [15], the MUSIC
planning framework is an extension of the MADAM planning framework, which
supports the adaptation of component-based architectures. The extension proposed
supports self-adaptation of ubiquitous applications to changes in the service pro-
vider landscape. The planning middleware evaluates discovered remote services as
alternative configurations for the functionalities required by an application. In the
case of services, the planning framework deals directly with SLA protocols sup-
ported by the service providers to negotiate the appropriate QoS for the user while
our approach deals with utility functions and uses an explicit representation of

Applying Utility Functions to Adaptation Planning for Home Automation Applications 77

user preferences allowing users to supply their own preferences and providing
flexibility and spontaneity, in response to changes in user needs and operating
conditions. As MUSIC is still work in progress, there has been no real-world
evaluation of it yet.

6. Conclusions

In this paper we address the self-adaptation in a home automation environment.
The adaptation is performed through the use of configuration plans which are se-
lected using a utility function mechanism. The choice of a plan, which best meets
the user requirements and needs, is made by taking into account the user prefer-
ences which are represented explicitly during the calculation of the utility. This
makes the system dynamic and offers transparency to the users.

A future direction of this work will be the study of issues like diagnosis and re-
covery by introducing a mechanism supporting fault-tolerance. On the other hand,
as a good starting point over the adaptation for a home automation application,
another future direction of this work could be the context and service discovery
routing in such a system. Home automation applications represent a special seg-
ment of networked wireless devices with its unique set of requirements related to
the set of home networking applications and the perceived operation of the sys-
tem.

Acknowledgments

The authors of this paper would like to thank their partners in the IST-MUSIC
project and acknowledge the partial financial support given to this research by the
European Union (6th Framework Programme, IST 035166).

References

1. Agrawal, R., Wimmers, E. L. 2000. A framework for expressing and combining preferences.
ACM SIGMOD Conference on Management of Data, Dallas, TX, 2000. ACM Press, New
York.

2. Alia, M., Eide, V. S. W. , Paspallis, N., Eliassen, F., Hallsteinsen, S., Papadopoulos, G.A.
2007. A Utility-based Adaptivity Model for Mobile Applications. 21st International Confer-
ence on Advanced Information Networking and Applications Workshops (AINAW'07), Niag-
ara Falls, Ontario, Canada, May 21-23, 2007, IEEE Computer Society Press, pp. 556-563

3. Bettstetter C., Renner C. 2000. A Comparison of Service Discovery Protocols and Imple-
menta-tion of the Service Location Protocol. EUNICE 2000, Sixth EUNICE Open European
Sum-mer School, Twente, Netherlands, September 2000.

4. Bluetooth Special Interest Group, Bluetooth Core Specification – Version 2.1. 2007
5. Bonjour Protocol Specification. http://developer.apple.com/networking/bonjour/specs.html

78 Pyrros Bratskas, Nearchos Paspallis, Konstantinos Kakousis, George Papadopoulos

6. Edwards, W. K. 2006. Discovery Systems in Ubiquitous Computing. IEEE Pervasive Comput-
ing 5, 2, 70-77, April 2006.

7. European IST-FP6 project MADAM (Mobility And aDaptation enabling Middleware)
http://www.ist-madam.org

8. European IST-FP6 project MUSIC (Self-adapting applications for Mobile Users In ubiquitous
Computing environments) http://www.ist-music.eu

9. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjorven, E. 2006. Using Architec-
ture Models for Runtime Adaptability. IEEE Software 23, 2, pp. 62-70, March 2006.

10. Guttman, E., Perkins, C., Veizades, J., and Day, M. 1999. Service Location Protocol, Version
2. RFC. RFC Editor

11. Hafenrichter, B., Kießling, W. 2005. Optimization of relational preference queries. 16th Aus-
tral-asian Database Conference - Volume 39 (Newcastle, Australia). H. E. Williams and G.
Dobbie, Eds. ACM International Conference Proceeding Series, vol. 103. Australian Com-
puter Society, Darlinghurst, Australia, 175-184.

12. Henricksen, K., Indulska, J., Rakotonirainy, A. 2006. Using context and preferences to im-
plement self-adapting pervasive computing applications. Journal of Software Practice and
Experience, Special Issue on Experiences with Auto-Adaptive and Reconfigurable Systems,
volume 36(11-12), pages 1307-1330. Wiley, 2006

13. Kephart, J., Chess, D. M. 2003. The vision of autonomic computing. IEEE Computer Maga-
zine vol. 36, no. 1, pp. 41–50, January 2003.

14. Labrinidis, A.., Stefanidis, A. 2005. Panel on Mobility in Sensor Networks. 6th International
Conference on Mobile Data Management (MDM’05), pages 333-334. Ayia Napa, Cyprus,
May 2005.

15. Rouvoy, R., Eliassen, F., Floch, J., Hallsteinsen, S., Stav, E. 2008. Composing Components
and Services using a Planning-based Adaptation Middleware. 7th International Symposium
on Software Composition (SC'08). p. 52–67 of LNCS 4954 (Springer). Budapest, Hungary.
March 29–30, 2008.

16. Sousa, J. P. and Garlan, D. 2002. Aura: an Architectural Framework for User Mobility in
Ubiquitous Computing Environments. IFIP 17th World Computer Congress - Tc2 Stream /
3rd IEEE/IFIP Conference on Software Architecture: System Design, Development and
Maintenance (August 25 - 30, 2002). J. Bosch, W. M. Gentleman, C. Hofmeister, and J.
Kuusela, Eds. IFIP Conference Proceedings, vol. 224. Kluwer B.V., Deventer, The Nether-
lands, 29-43.

17. Sousa, J. P., Poladian, V., Garlan, D., Schmerl, B., Shaw, M. 2006. Task-Based Adaptation
for Ubiquitous Computing. IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, Special Issue on Engineering Autonomic Systems, Vol. 36(3), May
2006.

18. UPnP Forum 2007. Universal Plug and Play. http://www.upnp.org
19. Waldo, J. 2000 The Jini Specifications. 2nd. Addison-Wesley Longman Publishing Co., Inc.
20. Wang, Z., Garlan, D. Task-driven computing. Technical Report CMU-CS-00-154 School of

Computer Science Carnegie Mellon University http://reports-
archive.adm.cs.cmu.edu/anon/2000/CMU-CS-00-154.pdf

21. Zachariadis, S., Mascolo, C., Emmerich, W. 2002. Exploiting Logical Mobility in Mobile
Computing Middleware. 22nd International Conference on Distributed Computing Systems -
Workshops (ICDCS 2002 Workshops). July 2002, Vienna, Austria.

