

An Evaluation of the State of the Art in Context-aware
Architectures

Pyrros Bratskas and Nearchos Paspallis and George A. Papadopoulos

University of Cyprus, Department of Computer Science {bratskas, nearchos,
george}@cs.ucy.ac.cy

Abstract. Mobile computing is an innovative field gaining increasing attention as many new
systems are designed towards that direction. Among these systems, many are desired to be
context-aware, with the aim of optimizing and automating their offered services. Such systems
provide components whose main feature is to manage the context information which is com-
municated between sensors, actuators and applications. In these systems the use of middleware
is a solution to the need for detecting and adapting to the changing context. In mobile comput-
ing, factors such as scalability, support for distribution, self-adaptivity, support for mobility,
modularity/plug-ability, etc are of particular interest. Many attempts have been documented in
the literature concerning systems aiming to address some or all of these requirements and
which are used for the implementation of context-aware systems. The scope of this paper is to
study and present the current state of the art in context-aware system architectures. These are
evaluated and compared, based on a set of characteristics such as support for distribution,
privacy, mobility or fault tolerance. Finally, we document our current results and initial deci-
sions concerning the design of a context management middleware system enabling the design
and deployment of adaptive applications in mobile and ubiquitous computing environments.

1 Introduction

Mobile computing is an innovative field gaining increasing attention as many
new systems are designed towards that direction. Among these systems, many are
desired to be context-aware with the aim of optimizing and automating their offered
services. Such systems provide components whose main functionality is to manage
the context data which is communicated between sensors, actuators and applications.
Furthermore, mobile computing environments include a huge spectrum of computa-
tion and communication devices that seamlessly aim to augment peoples’ thoughts
and activities with information, processing and analysis. Devices such as Personal
Digital Assistants (PDAs) and mobile phones have gained a lot of popularity and are
increasingly being networked. On the other hand, people use different software de-
velopment platforms to create applications for this type of devices. These applica-

2 Pyrros Bratskas and Nearchos Paspallis and George A. Papadopoulos

tions must be context-aware to meet the requirements of the highly distributed envi-
ronment. These kind of context-aware systems adapt not only to changes in the envi-
ronment, but also to user requirements. But even though the devices’ capabilities are
becoming more and more powerful, the design of context-aware applications is con-
strained not only by physical limitations, but also by the need to support a plethora of
features such as distribution, scalability, modularity, mobility, privacy, fault toler-
ance etc. Indeed, mobile devices will continue to be battery-dependent and operate in
an environment where more and more devices will be present and will need to com-
municate or share resources. Wide-area networking capabilities will continue to be
based on communication with base stations and with fluctuations in bandwidth de-
pending on physical location and on mobility.

In order to provide a fair quality of service to the users, applications must be con-
text-aware and able to adapt to context changes, something that renders the devel-
opment of context-aware applications an increasingly complex task. A solution to
managing this complexity is the use of a middleware layer which is now becoming a
common requirement. Many middleware solutions are proposed in the literature with
the aim of addressing requirements which are normally addressed by middleware for
distributed systems. They include support for sensing, gathering and managing con-
text information in order to simplify application development through sharing this
information among middleware components. However, as stated by (Henricksen,
Indulska, McFadden, and Balasubramaniam 2005) many additional requirements are
not met. In this paper, we evaluate and compare a set of popular approaches for im-
plementing context-aware architectures. This is done with respect to a set of charac-
teristics that were detected.

The rest of this paper is structured as follows. Section 2 briefly introduces an
overview of the architecture of the examined systems. Then, Section 3 evaluates and
compares the examined architectures based on a predefined set of desired features
and characteristics. Following that evaluation, Section 4 describes the current state of
our work, which aims at designing and implementing a context management system
targeting adaptive applications in mobile and ubiquitous computing environments.
Finally, Section 5 closes with our conclusions.

2 Context-aware Systems

Context-aware computing is an area which studies methods and tools for discov-
ering, modeling and utilizing contextual information. Such information may include
any information affecting the interaction of a user with a system, such as user loca-
tion, time of day, nearby people and devices, user activity, light or noise conditions,
etc. A more formal and widely used definition by (Dey 2000; Dey 2001) specifies
context as “any information that can be used to characterize the situation of an en-
tity; an entity is a person, place, or object that is considered relevant to the interac-

An Evaluation of the State of the Art in Context-aware Architectures 3

tion between a user and an application, including the user and application them-
selves”.

Context can also be classified in more fine-grained categories: physical, comput-
ing and user context information types, as it is described by (Chen and Kotz 2000).
The physical context type is related to environmental factors which can be usually
evaluated by specialized hardware mechanisms. The light, noise, and temperature are
examples of physical context data types. The computing context refers to the infor-
mation which describes the resources available by the computing infrastructure. This
includes information such as the network connectivity and its characteristics (e.g.
bandwidth, latency, etc), nearby resources (such as printers, video projectors, etc),
and details concerning its own memory availability, processor use, etc. Finally, the
user context refers to the user’s profile by focusing on the user needs, preferences,
mood, etc. For instance, these can include information concerning the user’s occupa-
tion (e.g. driving or studying) or the user’s choice for preferring, say, to use a desk-
top computer rather than a PDA while at work.
Furthermore, as it is argued by (Satyanarayanan 2001), any system that aims to be
minimally intrusive must be context aware, in the sense that it should be conscious of
its user’s state and environment. In other words, context-aware mobile systems are
expected to utilize such information in order to adapt their behavior, based on a pre-
defined set of adaptation rules. These rules are usually monitored by a system which
dynamically adapts the system’s operation based on the contextual information
sensed.

In this section we present and review popular, middleware-based solutions which
are used for enabling context-aware systems. This review is primarily aiming to
evaluate a number of desired features for context-aware systems, as they are dis-
cussed in the next section.

2.1 The Context Toolkit

The Context Toolkit, introduced by (Dey, Salber, and Abowd 2001), assists
software developers by providing them with a set of abstractions which enable them
to build context-aware applications. These abstractions include: widgets, aggrega-
tors, interpreters, services and discoverers.

A widget is a component that is responsible for acquiring context information di-
rectly from a sensor. The aggregators can be thought of as meta-widgets, taking on
all capabilities of widgets. They also provide the ability to aggregate context infor-
mation of real world entities such as users or places and act as a gateway between
applications and widgets. Interpreters transform low-level information into higher-
level information that is more useful to applications. Services are used by context-
aware applications to invoke actions using actuators, and discoverers can be used by
applications to locate suitable widgets, interpreters, aggregators and services.

The toolkit is implemented as a set of Java APIs that represent its abstractions
and use the HTTP protocol for communication and XML as the language model.

4 Pyrros Bratskas and Nearchos Paspallis and George A. Papadopoulos

Components implemented in other languages can also interoperate through the use of
Web standards. An extension to the Context Toolkit was proposed by (Newberger
and Dey 2003) for providing user control of context-aware systems using an ap-
proach called end-user programming,

2.2 The Context Fusion Networks

The Context Fusion Networks (CFN) approach was proposed by (Chen and Kotz
2004). It allows context-aware applications to select distributed data sources and
compose them with customized data-fusion operators into a directed acyclic informa-
tion fusion graph. Such a graph represents how an application computes high-level
understandings of its execution context from low-level sensory data. The CFN aims
to address four challenges: flexibility, scalability, mobility and self-management.

CFN was implemented by a prototype named Solar, a flexible, scalable, mobility-
aware, and self-managed system for heterogeneous and volatile ubiquitous comput-
ing environments. Solar consists of a set of functionally equivalent nodes, coded
Planets, which peer together to form a service overlay using a distributed hash table
(DHT) based P2P routing protocol such as Pastry. This approach is described by
(Rowstron and Druschel 2001). A Planet has two kinds of message transports: nor-
mal TCP/IP based and DHT based services. Solar does not restrict the syntax of its
events, as long as it follows a hierarchical attribute structure. Thus it is easy to incor-
porate XML events into the Solar system. Sensors and applications may connect to
any Planet. Planets are execution environments for operators and they cooperatively
provide several operator-management functionalities, such as naming and discovery,
routing the sensory data through operators to applications, operator monitoring and
recovery in face of host failures, and garbage collecting operators that are no longer
in use. Each one of the Planet functionalities is considered a service. Thus, mobility
service tracks clients (sensors or applications), which may detach from a Planet and
reattach to another one.

2.3 The Context Fabric

The Context Fabric (Confab), a toolkit for facilitating the development of pri-
vacy-sensitive, ubiquitous computing applications was proposed by (Hong and Lan-
day 2004). Confab focuses on privacy rather than on context sensing and processing.
From a software architecture view, Confab provides a framework of privacy mecha-
nisms that allow developers and end-users to support a spectrum of trust levels and
privacy needs. Privacy and security are supported by the fact that personal informa-
tion is captured, stored, and processed on the end-user’s computer as much as possi-
ble.

Context information is modeled as Infospaces which can contain both context
data and sources of the context data, such as for example sensors. Infospaces contain
tuples that describe individual pieces of contextual data. These tuples are imple-

An Evaluation of the State of the Art in Context-aware Architectures 5

mented as data-centric XML documents that is, context tuples consist only of XML
tags and XML attributes, with no text between tags. XPath is used as the query lan-
guage for matching and retrieving XML tuples. Confab is implemented in Java and
uses HTTP for network communication. It does not address traditional distributed
system requirements such as mobility, scalability, component failures and deploy-
ment/configuration.

The core services include the Context Event Service which provides a universal
event system for context events, the Context Query Service which provides a univer-
sal interface by which applications can synchronously check context state, the
Automatic Path Creation Service which takes a directive in the Context Specification
Language (CSL) and then processes it to the best of its abilities, and the Sensor
Management Service which registers all local sensors and provides a uniform data
format for sensors for the Context Event Service and the Context Query Service. The
Context Specification Language is a simple XML-based language which provides a
flexible way of specifying context needs.

2.4 Gaia

Roman et al (Roman et al 2002) have proposed Gaia which is designed to support
the development and execution of portable applications for active spaces, which are
programmable ubiquitous environments in which users interact with several devices
and services simultaneously. Gaia manages the resources and services of an active
space and has three components: the kernel, the application framework and the ap-
plication. It offers five basic services: the event manager which distributes events in
the active space and uses the CORBA event service as the default event factory, the
context service through which applications query and register for context information
(several components named context providers offer information about context), the
presence service which detects and maintains information about software compo-
nents and devices, the space repositories which store information about the entities
in the space and lets applications browse and retrieve them based on specific attrib-
utes, and the context file system which is a context-aware file system and uses prop-
erties and environmental context information to simplify many of the tasks that are
traditionally performed manually or require additional programming

Gaia uses XML to describe the resources of active spaces and LuaOrb, a high-
level scripting language, to program and configure them. Corba services are widely
used, however active spaces require extensions to handle fault tolerance and dynamic
resource detection. Gaia supports direct communication similar to synchronous low-
level operating system (OS) communication, and indirect communication similar to
asynchronous low-level OS inter-process communication.

Gaia does not address scalability and privacy is not addressed by any of the basic
services, but can potentially be provided by additional services. Heterogeneity, mo-
bility and component configuration can all be supported by Gaia, but in limited
forms.

6 Pyrros Bratskas and Nearchos Paspallis and George A. Papadopoulos

2.5 Reconfigurable context-sensitive middleware

The Reconfigurable Context-Sensitive Middleware (RCSM) is a middleware pro-
posed in (Yau et al 2002) and designed to provide two properties to applications:
context-awareness and ad-hoc communication. This is done not in an independent
way but in a way that allows RCSM to provide another property named context-
sensitive ad-hoc communication. RCSM provides an object-based framework for
supporting context-sensitive applications similar to middleware standards and proto-
types such as CORBA, COM, and TAO for fixed networks.

Thus, RCSM provides application developers with a context-aware Interface
Definition Language (CA-IDL) that can be used to specify context requirements,
including the types of context that are relevant to the application, the actions to be
triggered, and the timing of these actions. Ad hoc communication support is pro-
vided by a context-sensitive object request broker (R-ORB). This communicates at
runtime with the skeletons produced by the compilation of the IDL interfaces, pro-
vides device and service discovery and use a symmetric communication model to
allow ad hoc and application-transparent information exchange between a pair of
remote objects.

The prototype described by Yau et al. does not satisfy the heterogeneity require-
ment, as it supports C++ applications only, for the Windows CE platform. However,
the IDL compiler could potentially be modified to produce skeletons for a variety of
platforms and communication protocols. In addition, the context discovery protocol
is not flexible enough to support mobility or component failures, the RCSM authors
do not attempt to address scalability, privacy, traceability, or control.

2.6 The PACE middleware

The PACE middleware consist on a set of components and tools that have been
developed according to three design principles: First, the model of context informa-
tion used in a context-aware system should be explicitly represented within the sys-
tem. Second, the context-aware behavior of applications should be determined, at
least in part, by external specifications that can be customized by users and evolved
along with the context. Finally, the communication between application components
and between the components and middleware services should not be tightly bound to
the application logic. The components and tools that are part of the middleware in-
clude: a context management system which provides aggregation and storage of
context information and performs query evaluation, a preference management system
that provides decision-support for context-aware applications, a programming toolkit
implemented in Java and using RMI for communication, that facilitates interaction
between application components and the context and preference management sys-
tems, tools that assist with generating components and with developing and deploy-
ing context-aware systems, starting from context models specified in the context
management system and finally a messaging framework for remote components to

An Evaluation of the State of the Art in Context-aware Architectures 7

communicate. The PACE middleware provides support for heterogeneity, mobility,
traceability, control, deployment, configuration and decision-support. Requirements
like scalable deployment, configuration and management of sensors have not been
addressed.

Hardian (Hardian 2006) has enriched the middleware developed by (Henricksen
et al 2005) by providing traceability and control to facilitate user understanding and
feedback. This includes selectively exposing various components (context informa-
tion, preferences, and adaptation rules and logic) to users. The new functionality can
be viewed conceptually as an additional layer above the context and preference man-
agement components, providing logging and generation of explanations/feedback for
users.

2.7 The MADAM context system

The main concept of the MADAM context system’s architecture is the separation
of concerns between context clients and context providers, as it is hinted by
(Satyanarayanan 2001) and discussed by (Mikalsen et al 2006). In this respect, all
nodes act as both context providers and context consumers, as part of a membership
group which is formed using a loosely coupled protocol. Furthermore, while individ-
ual nodes are free to access context information from any possible provider it is
nevertheless assumed that in most cases context sharing is limited to a local area
only. In this respect, the locality refers to groups formed by nodes which can directly
communicate with each other, e.g. over a wireless link by forming an ad-hoc WiFi or
Bluetooth networks.

The MADAM context system architecture is built around a centralized context
repository, where the context information is modeled and stored. Special entities are
then used to populate the repository with context information (i.e. context sensors)
and for registering and receiving notifications when certain context elements change
(i.e. context listeners). Additionally, specially designed components (i.e. membership
managers) are designed and implemented with the aim of enabling distribution of
context information between different computing models.

This approach has the important advantage of assigning higher importance to lo-
cal context and consequently enabling localized scalability. The first one refers to the
fact that it is more likely that two neighboring nodes will share a common interest on
the same context as opposed to nodes at different geographical locations. This is true
for example in most pervasive computing applications where applications aim to
utilize the infrastructure which is embedded in the surrounding environment. Second,
localized scalability is achieved by preferring local sources (and respectively con-
sumers) for sharing context information with. In this approach, the use of backbone
links is avoided as most of the communication is carried out over local (i.e. direct)
network links. The following paragraphs describe the basic ideas of this approach,
along with the algorithms required to support it.

8 Pyrros Bratskas and Nearchos Paspallis and George A. Papadopoulos

3 Evaluating and Comparing the State of the Art

In this section we compare and analyze the context-aware systems presented in
the previous section in terms of their architecture. When designing a middleware
system, many of the requirements of the classic distributed systems must also be
taken into consideration: mobility, scalability, fault tolerance or/and heterogeneity.
But additional requirements are also needed when designing context-aware systems.

Support for distribution. When dealing with context, the devices used to sense
context most likely are not attached to the same computer running the application.
The sensors may be physically distributed and cannot all be directly connected to a
single machine. In addition, multiple applications may require use of that location
information and these applications may run on multiple computing devices.
 Modularity/Plug-ability. Modularity makes the system easy to extend through
the introduction of new sensors, new devices, and new services. This feature is cru-
cial due to the dynamic nature of context and in particular of user preferences. On
the other hand, plug-ability concerns the feature of the system to support the ability
to develop and/or easily install new context and sensor components like plug-ins, and
eventually to combine them in complex hierarchies to support new context features,
and offer new services as well.
 Support for privacy/security. The use of distributed resources provides a huge
potential for expanding the way that people communicate and share data, provide
services to clients and process information to increase their efficiency. This broad
access has also brought with it new security and privacy vulnerabilities.
 Technology used for context modeling. Context modeling is about providing a
high level abstraction of context information. Context information can be originated
from a wide variety of sources, leading to extreme heterogeneity in terms of quality.
In our analysis of the systems we focus on the technology they use e.g. XML as the
interface description and encoding language or simple textual key-value pairs, to
model the context information.
 Technology used for communication. We refer to this requirement in our re-
view to define which protocols are used for communication between components.
 Support for mobility. All components (especially sensors and applications) can
be mobile, and the communication protocols that underpin the system must therefore
support appropriately flexible forms of routing. Context information may need to
migrate with context-aware components.
 Tolerance to failures. Sensors and other components are likely to fail in the
ordinary for operation of a context-aware system. Disconnections may also occur.
The system must continue operation, without requiring excessive resources to detect
and handle failures.
 Support for decision-making. This requirement refers to tools that help applica-
tions to select appropriate actions and adaptations based on the available context
information.

An Evaluation of the State of the Art in Context-aware Architectures 9

The Context Toolkit defines a distributed architecture supporting context fusion
and delivery with three notions of widget, aggregator and interpreter based on an
object-oriented architecture. These are implemented as Java objects which commu-
nicate using a protocol based on HTTP and XML. However, there are a set of limita-
tions of the context toolkit architecture. The main ones are the non-support for con-
tinuous context, unreliable data and context privacy, scalability or tolerance to
failures and decision support.

The Context Fusion Networks was implemented as a prototype infrastructure
named Solar. This infrastructure supports scalability and mobility and uses a P2P
routing protocol for communication. Solar provides an XML-based composition
language for application, identifying context-fusion operators and name queries that
select sources. The language allows components to be connected using pull or push
channels. However, Solar does not address privacy and decision support.

The Context Fabric has a decentralized architecture which primary concern is
privacy. This is done with several customizable privacy mechanisms. Context fabric
also comes with extensions for managing location privacy. Combined, these features
allow application developers and end-users to support a spectrum of trust levels and
privacy needs. While mobility, scalability, tolerance to failures and decision support
are not addressed. Context fabric provides a framework and an extendable suite of
mechanisms that application developers and end-users can use for managing privacy.
From this point of view, there is a kind of modularity supported by the Context Fab-
ric.

Gaia is a system built as a distributed middleware infrastructure that coordinates
software entities and heterogeneous networked devices contained in a physical space.
Gaia provides a framework to develop user-centric, resource-aware, multi-device,
context-sensitive, and mobile applications. It supports mobility, but does not address
scalability, privacy and decision support.

RCSM tries to provide a balance between awareness and transparency and sup-
port for ad hoc communications. RCSM allows addition or deletion of individual
active object containers (ADCs) during runtime (to manage new or existing context-
sensitive application objects) without affecting other runtime operations inside it.
RCSM does not address scalability, privacy and decision support.

PACE Middleware offers support for mobility through the use of Elvin by (Se-
gall, Arnold, Boot, Henderson, and Phelps 2000) a content-based message routing
scheme, which facilitates component mobility. Privacy is addressed by providing
access control to sensitive information. PACE, unlike the others solutions presented
above, provides also decision support. On the other hand there is no support for
scalability and tolerance to failures is not fully supported.

The evaluation results are summarized in Table 1. Although there are no definite
answers as per the optimal solution to specific requirements (e.g. we cannot argue for
sure whether XML-based modeling is preferable to Object-based modeling), how-
ever it is possible to argue that some approaches are more complete as per the prede-
fined requirements as compared to others. For example, the Context Fabric approach

10 Pyrros Bratskas and Nearchos Paspallis and George A. Papadopoulos

appears to satisfy only a few of the requirements that we have predefined, which is
natural observing that the main direction of its designers was to achieve privacy and
security related characteristics. On the other hand, approaches such as the PACE and
the MADAM projects appear to be more promising with respect to the prospects they
offer for inspiring a new approach for which these requirements are important.

Table 1: Comparing the studied context management systems

Requirement

C
on

te
xt

To

ol
ki

t

C
FN

C
on

te
xt

Fa

br
ic

G
ai

a

R
C

SM

PA
C

E

M
A

D
A

M

Support for
distribution

Yes Yes No Yes Yes Yes Yes

Modular-
ity/Plug-ability

No No No No No No Yes

Privacy
/Security

No No Yes No No Yes Low

Mobility Low Yes No Low No Yes Yes
Tolerance to

failures
No Yes No Low No Low Yes

Scalability No Yes No No No No Low
Decision sup-

port
No No No No No Yes No

Technology for
Context modeling

XML XML
based

CSL
(XML
based)

XML,
Lua
ORB

CA-
IDL

CML
(XML
based)

Object-
based

Technology for
Communication

HTTP TCP/
IP

HTTP CORB
A

R-
ORB

HTTP Java
RMI

4 Towards a new Context Management System

The review of context architectures in this paper was undertaken as part of our effort
to define the architecture of the MUSIC middleware system. This system aims at
providing software engineers with appropriate methods and tools for the efficient
development of context-aware, adaptive applications. Because MUSIC primarily
targets at applications that are deployed in mobile and ubiquitous computing envi-
ronments, we started quite early by trying to detect the most important requirements
which are critical for these environments.

For example, the fact that some of the involved applications and devices are ex-
pected to be embedded in the infrastructure, as per the ubiquitous computing para-
digm, imposes the requirement for efficient, small-footprint context management
systems. Additionally, as other devices might be expected to require more function-

An Evaluation of the State of the Art in Context-aware Architectures 11

alities, and consequently more complex systems, the designed architecture should be
as modular as possible. For instance, target devices include smart-phones, PDAs, and
laptops. The first are small and require efficient, small-footprint applications. The
latter are typically very powerful devices and thus should not limit their functionali-
ties simply for efficiency reasons. This validates our decision to set scalability and
plug-ability as a high priority in our approach.

For the future, we have started working on three primary directions. The first one
is the design of an appropriate context model, which can be expressed by program-
matic Objects (at runtime), by XML artifacts (during communication and while
stored on disk) and by UML artifacts (during design time). Furthermore, we are
working on studying different approaches for distribution of context information on
top of several existing technologies such as WiFi, Bluetooth, JXTA (i.e. peer-to-
peer), Jini, UPnP, etc. Finally, we are working on defining special languages for
enabling context querying and context accessing. These languages are significant as
we are aiming to provide a complete methodology for enabling developers to design
the context-awareness aspect of their applications in an automated way, as per the
MDA approach.

5 Conclusions

The main goal of this paper was to research and evaluate existing context-
management architectures, as they were proposed and presented in the literature with
the aim of assisting and directing the design and implementation of a novel context
management system. The newly designed system aims at providing support for de-
signing and engineering adaptive applications targeting mobile and ubiquitous com-
puting environments. For this reason, we extracted a set of important features that we
wanted to compare these projects on, and we extracted results that are currently used
while we are designing the MUSIC context system.

Although a number of existing approaches appear to be quite suitable and effi-
cient, none of them appears to be a perfect match for the detected requirements.
Nevertheless, we have scheduled a design and implementation process which lever-
ages on the knowledge extracted by these systems so that we avoid solving problems
that have already been tackled. Finally, we have presented our current work and
described our plans for future work, in the frame of the MUSIC project. These plans
include research in the areas of modeling, managing and distributing context infor-
mation, which was also partly faced by the studied approaches.

References

Chen, G., Kotz, D. (2000) A Survey of Context-Aware Mobile Computing Research, Techni-
cal Report: TR2000-381 Dartmouth College, Hanover, NH, USA.

12 Pyrros Bratskas and Nearchos Paspallis and George A. Papadopoulos

Chen, G., Li, M., Kotz, D. (2004) Design and implementation of a large-scale context fusion
network. 1st Annual International Conference on Mobile and Ubiquitous Systems (Mo-
biQuitous), IEEE Computer Society, pp. 246–255.

Dey, A. (2000) Providing Architectural Support for Building Context-Aware Applications,
PhD Thesis, College of Computing, Georgia Institute of Technology, pp. 170.

Dey, A. K., Salber, D., and Abowd, G. D. (2001) A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications, Human-Computer Interac-
tion, 16, pp, 1-67.

Dey, A. (2001) Understanding and Using Context, Personal Ubiquitous Computing, 5(1), pp.
4-7.

Hardian, B. (2006) Middleware support for transparency and user control in context-aware
systems. 3rd international Middleware Doctoral Symposium, Melbourne, Australia, Nov.
27 – Dec. 1, 2006. MDS '06, vol. 185. ACM Press, New York, NY, 4.

Henricksen, K., Indulska, J., McFadden, T., Balasubramaniam, S. (2005) Middleware for
Distributed Context-Aware Systems, International Symposium on Distributed Objects and
Applications (DOA), Ayia Napa, Cyprus, Oct 31st-Nov 4th, 2005, pp. 846-863.

Hong, J.I., Landay, J.A. (2004) An Architecture for Privacy-sensitive Ubiquitous Computing,
2nd International Conference on Mobile Systems, Applications, and Services (MobiSys),
Boston.

Mikalsen, M., Paspallis, N., Floch, J., Stav, E., Papadopoulos G. A., Ruiz, P. A. (2006) Putting
Context in Context: The Role and Design of Context Management in a Mobility and Ad-
aptation Enabling Middleware, International Workshop on Managing Context Information
and Semantics in Mobile Environments (MCISME’06), Nara, Japan, May 9-12, 2006,
IEEE Computer Society Press, pp. 76-83.

Newberger, A., Dey, A. (2003) Designer Support for Context Monitoring and Control, Intel
Research Berkeley.

Paspallis N., Papadopoulos, G. A. (2006) An Approach for Developing Adaptive, Mobile
Applications with Separation of Concerns, 30th International Computer Software and Ap-
plications Conference (COMPSAC 2006), Chicago, IL, USA, Sept. 17-21, 2006, IEEE
Computer Society Press, pp. 299-306.

Rowstron, A., Druschel., P. (2001) Pastry: Scalable, Decentralized Object Location, and Rout-
ing for Large-Scale Peer-to-Peer Systems, International Middleware Conference, Heidel-
berg, Germany, pp. 329–350.

Roman, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R.H., Nahrstedt, K. (2002)
Gaia: A middleware infrastructure for active spaces. IEEE Pervasive Computing, Special
Issue on Wearable Computing 1, pp. 74–83.

Satyanarayanan, M. (2001) Pervasive Computing: Vision and Challenges, IEEE Personal
Communications Magazine, pp. 10-17.

Segall, B., Arnold, D., Boot, J., Henderson, M., Phelps, T. (2000) Content based routing with
Elvin4, AUUG2K Conference, Canberra.

Yau, S. S., Karim, F., Wang, Y., Wang, B., and Gupta, S. (2002) Reconfigurable Context-
Sensitive Middleware for Pervasive Computing, IEEE Pervasive Computing, pp. 33-40.

