
An Architecture for Highly Available and
Dynamically Upgradeable Web Services

Nearchos Paspallis and George A. Papadopoulos

Department of Computer Science, University of Cyprus

75 Kallipoleos Street, P.O. Box 20537, CY-1678, Nicosia, Cyprus
{nearchos, george}@cs.ucy.ac.cy

Abstract. Developing distributed application architectures characterized by
high availability has always been a challenging and important task both for the
academic and the industrial communities. Additionally, the related requirement
for dynamic upgradeability is usually examined within the same context as it
also aims for high availability. Although a number of architectures and
techniques have been proposed and developed for improving the availability
and upgradeability of traditional distributed systems, not many of them are
directly applicable to Web service-based architectures. Recently, Web services
have become the most popular paradigm for business-to-business and enterprise
application integration architectures, which makes their availability increasingly
important. This paper builds on existing high availability and dynamic
upgradeability techniques which can be applied to Web service-based systems.
Based on them it describes an architecture which enables high availability and
dynamic upgradeability both for newly developed and for prefabricated Web
services.

Keywords: Dependable systems, Service engineering.

1 Introduction

Web services are the technology-of-choice for interoperability within non-
homogeneous systems. They are briefly defined as “self-contained, modular
applications that have open, Internet-oriented, standards-based interfaces” [3].
Although many expect that Web services will change the way enterprises interoperate
with each other in the long-term, they have already proven themselves very useful in
solving many of the interoperability problems that have troubled application
integration efforts.

Today, one can observe more and more enterprises depending on their Web
accessible services to a continuously increasing degree. Some of these services are
critical and the enterprises invest a lot of effort and resources in maintaining them as
highly available as possible. Examples of Web services requiring high levels of
availability include medical, stock market, and airline ticket reservation applications.

While a number of techniques target at maintaining the high availability of a
service in the exceptional case of a fault, additional effort is also required to maintain

the accessibility of the service when it is undergoing a scheduled update. This is why
systems designed for high availability usually provide mechanisms enabling dynamic
(also known as live) software upgrades as well. Typical reasons for upgrading
software include bug fixes, functionality enrichment and performance enhancements.
Naturally, highly available services are expected to be upgradeable in a safe and
consistent manner.

This paper studies techniques for achieving high availability of services offered
over the Web and also techniques that allow dynamic upgrades of those services.
Although some of these approaches could be applied to general distributed systems,
this work concentrates on Web services and their underlying technologies (e.g.
SOAP, WSDL, UDDI, etc).

In the next section, we examine the Web services technology from the availability
and upgradeability point of view. Then, existing techniques for high availability and
dynamic upgradeability are presented in section 3. Following that, a methodology for
improving on the availability and upgradeability of Web services is proposed in
section 4. The proposed method involves automatic generation of stubs and skeletons
using the WSDL document. Furthermore the same section argues on the advantages
and the disadvantages of this approach and, finally, section 5 summarizes the
conclusions and points to future work.

2 Web services

Web services can be described as applications accessible over the Web [3]. More
accurately the World Wide Web Consortium (W3C) describes them as: “…software
applications identified by URIs, whose interfaces and bindings are capable of being
defined, described and discovered as XML artifacts. Web services support direct
interactions with other software agents using XML-based messages exchanged via
Internet-based protocols.”

The promise of Web services is to serve as the foundation for a new generation of
business-to-business (B2B) and enterprise application integration (EAI) architectures.
Because Web services are both language and platform neutral, it is a common practice
for enterprises to expose a selected subset of their functionality (of newly developed
but also of legacy information systems) as Web services. This ability greatly
contributes to the popularity of Web services in both B2B and EAI scenarios.

2.1 Highly available web services

In this paper the availability refers to a measure of the fault tolerance of a Web
service. Consequently, high availability is defined as a goal that we try to achieve by
employing a number of methods and techniques. Literally, availability is the
percentage of time a Web service is available and functioning within its operational
requirements. Obviously, to achieve high availability a service needs to maximize its
uptime and minimize its downtime.

High availability is important for many enterprises because their system
responsiveness is directly related to their customer satisfaction and, consequently, to

their operations turnover. Also for many enterprises which are highly depended on
Web services, their downtime is usually proportional to significant revenue losses. In
many other applications such as medical information systems, high availability is
inherently critical and extremely important.

The availability can be affected by factors such as connectivity (i.e. network
availability) and server failures (i.e. hardware and software faults). Thus any solution
aiming to provide reasonable protection against failures should cope with both
factors.

Based on their definition, Web services need to be discoverable and also facilitate
interactions with other systems by continuously allowing binding and interaction.
Therefore, to ensure that Web services maintain high availability, their discovery and
binding functionality need to be enhanced with appropriate mechanisms. The
discovery of Web services is generally performed using service directories based on
the UDDI standard, which are Web services themselves. Thus, improving on the
availability of general services offered over the web, consequently benefits the
discovery of Web services as well.

2.2 Dynamically upgradeable web services

With dynamic upgrades, we refer to the replacement of software components at
runtime, with minimal (preferably zero) service interruption.

In the client-server paradigm, the upgrade can take place at either of the two sides,
or at both. In most cases, client-side upgrades are more straightforward compared to
server-side upgrades because they can take place in a controlled manner (i.e. the client
can be instructed to suspend or drop any connections to the server or even completely
shut an application down if necessary.) This eases the task of replacing some
components or the whole application.

Contrary to this, upgrading server side components is significantly more
challenging. Because no pre-determined downtime is known, clients initiate
transactions with the service in an arbitrary way. In [9] Kramer et al. introduced the
notion of quiescence, i.e. a period within which the component can be safely
upgraded (e.g. replaced.) A component is said to be quiescent when the component
itself and all components linked to it are in a passive state, i.e. seize initiating but
continue serving transactions.

Dynamic upgrades are required for a number of reasons. These are classified as
corrective, perfective and adaptive [11]. Corrective upgrades are used for fixing bugs
(e.g. discovered after deploying the service). Perfective upgrades are used to enhance
the product functionality and performance and, finally, adaptive changes are needed
for adjusting services to a changing environment.

Dynamic upgradeability is important because it enables continuous service
operation in the event of scheduled upgrades. Thus mechanisms for dynamic
upgradeability are important (and quite often required) supplements to high
availability architectures.

3 Related work

This section reviews existing high availability and dynamic upgradeability techniques
with emphasis on those targeting server-side faults. While complex upgrade
mechanisms have been proposed, a common approach employed by high availability
architectures includes temporary redirection of the traffic before upgrading the server,
and then redirection of the traffic back to the original server once that is completed.

It is worthwhile mentioning that different techniques operate at different layers of
the system architecture. At the lowest layer some techniques use hardware replication,
while at the highest layer other techniques simply embed the mechanisms required for
high availability into the applications themselves.

There are a number of criteria that can be considered while evaluating
architectures. Here, we concentrate on the transparency of the investigated techniques
and their applicability to prefabricated Web services. By transparent we refer to those
techniques which can be applied without requiring any major changes to existing
infrastructures, i.e. those that can be directly applied to existing Web services.

3.1 Existing techniques

In [4] Birman et al. discuss methods for adding high availability to Web services. In
addition, they also discuss how to enable autonomic behavior i.e. how to enable
servers to automatically discover and configure themselves and then operate securely
and reliably in an automated manner.

Their work uses extensions to the Web services model which aim to support
standard services for monitoring the health of the system, self-diagnosis of faults,
self-repair of applications and event reporting. The solution builds on existing
technologies, such as WS-Transactions [6] and WS-Reliability [8] but it eliminates
their need to save data to persistent memory or wait for failed components to restart.

This solution can act as a router component of a Web service platform, making it
suitable for providing transparent high availability to existing applications. However
this approach does not define explicit methods to enable dynamic upgrades.

In [7] Cotroneo et al. propose an architecture which improves the availability of
web-based services, such as Web servers, FTP servers, and video-on-demand servers.
Their work examines the problem from a Quality of Service (QoS) perspective and
specifically targets real-time systems. Their architecture provides application
developers with an alternative API which can be used to access the network instead of
the typical communication libraries.

Clearly, this approach is not transparent to the developers as the provided API is
used instead of the standard UNIX network socket libraries. This solution operates at
the network and the operating system layers and thus cannot be applied to other
platforms.

In [12] Vilas et al. present a work where high availability is achieved at the Web
service layer. Their proposed technique introduces the notion of Virtualization. This
technique creates new virtual Web services and exposes them to the clients instead of
the actual ones. At the back-end, the real Web services are invoked while they are
internally managed in a cluster.

The authors of this work define three requirements: detecting faulty servers,
providing maintenance mechanisms for the cluster and providing mechanisms for
adding and removing servers in the cluster as needed.

Virtualization is a common technique with existing and popular applications in
related fields such as in web servers. The way it works in the case of Web services is
by grouping one or more services inside a unique wrapper which is then published as
a single, standard Web service. The clients then use this virtual Web service as if they
were contacting the real one.

This approach requires that the developer defines a Virtual Web Service (VWS,)
and a VWSDL document. Also a VWS engine is required to enable clustering and
high availability. Depending on the complexity of the application, the VWS engine
can be as simple as some specialized code in the stub or as complex as a dedicated
server. Furthermore, additional techniques are needed for forming and managing the
cluster.

In addition to the other works presented in this section, this work does also not
provide explicit mechanisms facilitating dynamic software upgrades. In [1] Ajmani
provides a thorough and comprehensive list of software upgrade techniques for
distributed systems. He starts his review from Bloom’s work on reconfiguration in
Argus [5] and continues with recent technologies used in modern systems (such as the
Red Hat OS) and also by popular services (such as in Google’s infrastructure).

3.2 Evaluating existing techniques

Although all the techniques presented in this section can directly or indirectly,
improve the availability of Web services, no two of them are equal with respect to
their development requirements. In principle, we are interested in techniques that can
be applied in general situations without any specific requirements regarding the
programming languages, infrastructures, or hardware.

Ideally, a solution would allow automatic deployment and management of Web
services and transparently improve on their availability. Apparently, such a solution
should be applicable to prefabricated Web services. Furthermore, it should allow
dynamic upgrades of the deployed software, preferably with minimal, if not zero,
interference to the service. To the best of our knowledge, none of the presented or
existing techniques fully satisfies all these requirements. In the next section we
propose an architecture that can provide the basis for delivering a solution which
meets all these criteria.

4 An architecture for high availability and dynamic upgradeability

This section studies the requirements for a system offering both high availability and
dynamic upgradeability. Then, it proposes an architecture which is designed to meet
these requirements and transparently improve on both the availability and
upgradeability characteristics of prefabricated Web services. Finally, this section
concludes with a discussion on the drawbacks and the benefits of the proposed design.

4.1 Requirements for high availability and dynamic upgradeability

First, the high level requirements for architectures targeting high availability are
detected and enumerated. These requirements are then further complemented with
additional ones targeting dynamic upgradeability, as the latter is argued to be a key
requirement for improving availability.

Mathematically, availability is simply defined as the ratio of time during which the
service is considered to be satisfying to the service consumer. Of course, defining
when a service is satisfying is not trivial and it requires further clarification. For
example, in some cases a service response of a few minutes might be acceptable,
while in others sub-second responses are essential.

Detect when the service responsiveness becomes unsatisfactory. The first
requirement is to detect when the service responsiveness becomes unsatisfactory to
the clients. A detection mechanism must be used to detect these events and inform the
appropriate components. Once deviation outside the accepted operation range is
detected, a procedure is initiated which aims to resume the service. Consequently, the
second requirement is to carry out the necessary actions required to restore the service
normal operation within the predefined boundaries.

Manage the availability infrastructure. The second requirement is the ability to
manage the availability infrastructure. For example specific architectures might need
to define the order of the servers in the failover list, modify the set of servers in the
cluster, or change the monitoring attributes and characteristics. In this paper we focus
on the first two requirements. More management requirements are expected to be
considered in future work.

The high availability technologies can be classified into those that failover on the
server side, and those that failover on the client side. In the first case the classic
cluster-based solution is the obvious approach, herein referred to as intra-enterprise
availability. In this case a cluster of servers appears as a single server, continuously
offering the service at a predefined IP address, even in the event of single server
failures. This is the common case, where the clients are completely unaware of any
failures or possible actions that were taken to recover the system back to fully
operational mode. Naturally, in this case the clients will not be able to recover from
any network outages, regardless of the cluster health.

In the second case, the client is designed to be more adaptive with regards to
availability. More specifically, if a service failure is detected (and not recovered
within some predefined time) the client initiates a failover procedure to another
service, possibly provided by a different enterprise. We refer to this technique as
inter-enterprise availability.

The mechanism for discovering and selecting a Web service in this case can be
similar to that of a typical UDDI registry. More than one UDDI registries can be
contacted for better fault tolerance and for a richer options pool. Additionally, this
method requires specialized mechanisms embedded in the client stub and additional
logic might also be necessary to ensure that the failover involves a semantically and
functionally equivalent Web service. The latter is a challenging issue because

additional meta-information with regards to the service provider (e.g. pricing) might
be needed when deciding on a suitable alternative service to failover to.

In the first case where the service usually runs on top of a server cluster, it is
necessary to use a mechanism that continuously monitors the health of the individual
servers of the cluster. In this way, any possible failures are detected before they get
noticed by the clients. The failover can be performed using any of the existing
methods proposed so far.

In the case of inter-enterprise availability, the detection and failover mechanisms
must be embedded into the client-side. This method adds significant complexity into
the clients, but has the advantage of surviving long-running network outages that
prevent communication with the server side.

Support for dynamic upgrades. The last requirement we consider is the support for
dynamic upgrades. By dynamic we refer to upgrades that take place at runtime,
preferably without any service interruption. The upgrades can take place at any of the
client, the server, or both sides. The following paragraphs examine the dynamic
upgrade-related requirements in detail, building on results described in [2].

First a management mechanism that instructs the nodes when to upgrade must be
defined. Consider for example the case where the upgrade of a service running on a
cluster (i.e. for increased availability) is required. Apparently, not all the servers can
be upgraded simultaneously because that would compromise the service’s
availability. A management mechanism can control how the servers are upgraded, so
that a set of servers is consistently operational with an acceptable level of availability.

The second requirement is to provide a way to control when the servers are
upgraded. Although the most straightforward solution would be to arbitrarily remove
the node from the cluster and upgrade it (letting the availability infrastructure take
care of the interrupted transactions) it is not an optimal one. A more appropriate
solution would be one detecting an appropriate time-frame within which the upgrade
would be possible without any service interruption and without breaking the
consistency of the system.

The third requirement is to provide mechanisms that guarantee the normal
operation of the system when nodes are running different versions of software. If, for
example, the server is upgraded to support a different set of operations (e.g. specified
by a different WSDL document), appropriate adaptation of the invocations is needed
until the clients are also upgraded to the latest version.

The last requirement mandates a way to preserve the persistent state of servers
from one version to another. If, for example, the client is in the middle of executing a
long process consisting of multiple operations, it is important that the upgraded
software preserves its state and continues with the next operation in the process after
the upgrade is completed (rather than having to restart a large computation task). This
applies to both the client and the server sides.

4.2. Smart-stubs and smart-skeletons

In order to satisfy all the requirements we have specified, we propose a skeleton
architecture where components can be added and existing techniques be reused. This

architecture supports prefabricated Web services and it builds on a minimal model
described in [3] and depicted by Figure 1.

In this architecture the WSDL document is used as input to specialized compilers
which generate client-side and server-side proxies, typically referred to as stubs and
skeletons. A different compiler is required for each of the client and the server side.
The application objects can then bind to the proxies and invoke the operation defined
in the WSDL documents. These proxies enable distributed communication with the
use of SOAP-based messages.

Fig. 1. Typical Web Service interaction: Based on the given WSDL document, appropriate
proxy objects (i.e. the stub and the skeleton) are generated which are then used to facilitate the
communication between the distributed objects by abstracting the remote objects as local.

This approach extends the idea expressed in [10], where the authors argue that the
reliance on machine readable metadata is probably one of the key defining aspects of
Service Oriented Architectures (SOA). In this approach, the middleware exploits the
additional metadata (in the form of availability directives and preferences) to enable
seamless enhancements to the overall service availability.

The presented architecture requires the dynamic generation of intelligent proxies,
namely smart-stubs and smart-skeletons. These proxy components directly accept
invocations from the application objects in a fashion similar to the standard Web
service paradigm. The proposed architecture is depicted by Figure 2. The grayed-out
areas illustrate deviations from the original architecture.

In Figure 2, the HA-related properties are used to provide information describing
different aspects of the high availability-related functionality such as connection time-
out, preferred failover list, etc. These properties are then encoded into the generated
smart-proxies.

Special compilers (i.e. HA-aware WSDL compilers) are used for the generation of
smart-stubs and smart-skeletons. In addition to providing the functionality for SOAP–
based communication these proxies contain additional functionality for dealing with
rerouting, blocking and adapting SOAP messages.

Fig. 2: Web Service interaction using smart-stubs and smart-skeletons: Based on a given set of
properties describing the high availability requirements (or strategy), specialized WSDL
compilers generate the smart-proxies (i.e. the smart-stub and the smart-skeleton). These objects
act in a manner similar to that of the normal proxies, but additionally they incorporate
specialized code which allows them to improve on the availability of the service, i.e. by
enabling automatic failover and load-balancing.

The smart-stubs and the smart-skeletons are thin, automatically generated proxy
components. Their role is to implement the logic required to allow automatic and
seamless rerouting of SOAP messages in order to ensure high availability in the event
of faults. Additionally, their role includes blocking and adapting SOAP messages in
order to enable seamless dynamic upgrades of software.

To make the processing and handling of the SOAP messages transparent to the
end-users, these proxies intercept the communication on both the client and the server
sides and appropriately reroute, block and adapt the communicated messages.

In addition to encoding the invocations to SOAP messages and marshalling or un-
marshalling the data arguments, the smart-stubs provide additional logic for handling
failures on the server side (e.g. by failing over to another server). Similarly, the smart-
skeletons provide functionality for blocking messages while upgrading a Web service
and also for adapting messages targeting a different version of the deployed object.

4.3 Satisfaction of the requirements by the architecture.

The following paragraphs discuss how the general architecture, described here,
satisfies the requirements that were detected in the previous section. First, in order to
be able to discover when the service responsiveness becomes unsatisfactory, special
client-side code is embedded in the smart-stub. This code allows the detection of
faults and enables the failover to different service providers. Typically, this code is
based on existing techniques which have a proven and trusted track in the area of
fault-detection. In their simplest form these techniques usually depend on preset
response-deadlines or on health monitoring systems which actively and periodically
contact the servers (i.e. poke) to detect if they are responsive (i.e. healthy).

To manage the availability infrastructure the smart-proxies embed specialized
functionality. Their management can be based either on static, predefined strategies
encoded in the input data (i.e. in the HA-related properties), or it can based on a more
dynamic and interactive scheme. The latter implies that the smart-proxies, which can
serve as interception points, could be exploited to block, reroute and generally
manage the operation of the Web-service from an availability point-of-view.

Additional logic might also be required to ensure the correctness of protocols such
as the WS-Transaction. In particular, if the client decides to failover to another service
provider while processing a business activity, specialized actions are required to
ensure that suitable compensation operations are issued on the original service
provider when it returns back online.

Last, dynamic upgradeability requires support by both the smart-stub and the
smart-skeleton components. In particular they should both include code to address the
additional, refined requirements that have been detected for enabling dynamic
upgradeability.

For the management mechanism either an external, centralized coordination server
should be used or special code should be embedded into the smart-stubs (or
equivalently into the smart-skeletons.) Clearly, the first approach is more straight-
forward from an implementation point-of-view. Embedding the code in the smart-
proxies has the apparent advantage of making the system more self-reliant (but also
more complicated). Finally, in simple scenarios where only a single client (or server)
is upgraded, the management mechanism could be unnecessary.

For detecting when it is appropriate to perform an upgrade, specialized code should
again be embedded in the implementation of the smart-stubs (or smart-skeletons).
This requirement is usually related to the persistent state requirement. Suitable
solutions exist which simultaneously address both. The latter usually requires that the
upgraded applications provide mechanisms for enabling state persistence across
different versions as well.

Finally, the concurrent support of different versions is addressed. If both the new
and old versions of Web services define the same operations (i.e. they are described
by the same WSDL document) then there is no need for any adaptation. If the two
versions define different operations though, adaptors are required in the smart-proxies
to map the old-version invocations to the corresponding operations of the new
version. This is something that can be directly reused from existing solutions (i.e.
designed to enable dynamic upgrades) and embedded into the smart-proxies.

Of course, this architecture is a high level overview of a skeleton system,
purposely designed to intercept Web service communication at the point where
invocations are applied. In this way the provided mechanisms have maximum control
on the invocations and block the communication of SOAP-messages when necessary
(e.g. when upgrading the Web service). Still, some issues remain to be addressed
before this architecture fulfils the detected requirements.

5 Conclusions and future work

Custom solutions enabling high availability and dynamic upgradeability can be
prohibitively complex and costly. In addition, they also require a combination of
technologies and services such as disaster recovery, consulting, assessment and
management. This paper concentrates on technical aspects of high availability and in
particular on scenarios where Web service failover is used to maximize their
availability. Additionally, it describes reusable techniques aiming at continuous
availability during dynamic upgrades of Web services as such techniques are also
required by any high availability framework.

The contributions of this paper are twofold. First, the need for availability and
upgradeability is identified and existing techniques used to tackle the problem in Web
service-based systems are presented. Second, a general architecture is presented
which can provide the basis for systems aiming at high availability and dynamic
upgradeability.

A main contribution of this architecture is that it improves on the availability of
Web services, even in the event of inter-enterprise failover. As the failover
mechanism entirely resides within the client this approach allows failing over to a
Web service provided by a completely different entity. Also, the proposed
architecture can be of benefit to prefabricated Web services as well as it only requires
(re)compiling their WSDL documents to generate all that is required: the smart-stubs
and the smart-skeletons. Because these smart-proxies are dynamically generated, the
proposed architecture is also transparent to both the end-users, and the WSDL
developers.

For the future, we plan to more elaborately define the structure and the
functionality of the WSDL compilers as well as of the corresponding SOAP messages
required by the protocols. Additionally, a prototype implementation is scheduled in
order to evaluate the proposed architecture with the development of case study
applications. Finally, related cluster management mechanisms will be examined and
the use of UDDI directories for advertising and discovering alternative Web service
providers will be more thoroughly studied.

6 Acknowledgements

This work was partly funded by the European Union as part of the IST MADAM
project (6th Framework Programme, contract number 4169).

7 References

[1] S. Ajmani, "A Review of Software Upgrade Techniques for Distributed Systems",
http://www.pmg.lcs.mit.edu/~ajmani/papers/review.pdf, 2002.

[2] S. Ajmani, B. Liskov and L. Shrira, "Scheduling and Simulation: How to Upgrade
Distributed Systems", 9th Workshop on Hot Topics in Operating Systems (HotOS 2003),
USENIX 2003, Lihue (Kauai), Hawaii, USA, 2003, pp. 43-48.

[3] G. Alonso, F. Casati, H. Kuno and V. Machiraju, "Web Services: Concepts, Architectures
and Applications", Springer-Verlag, 2004.

[4] K. P. Birman, R. V. Renesse and W. Vogels, "Adding High Availability and Autonomic
Behavior to Web Services", 26th International Conference on Software Engineering (ICSE
2004), IEEE Computer Society 2004, Edinburgh, United Kingdom, 2004, pp. 17-26.

[5] T. Bloom and M. Day, "Reconfiguration in Argus", International Conference on
Configurable Distributed Systems (CDS 1992), London, England, 1992, pp. 176-187.

[6] W. Cox, F. Cabrera, G. Copeland, T. Freund, J. Klein, T. Storey and S. Thatte, "Web
Services Transaction (WS-Transaction)", http://dev2dev.bea.com/pub/a/2004/01/ws-
transaction.html, 2004.

[7] D. Cotroneo, M. Gargiulo, S. Russo and G. Ventre, "Improving the Availability of web
services", 22nd International Conference on Software Engineering (ICSE 2002), Orlando,
Florida, USA, 2002, pp. 59-63.

[8] C. Evans, D. Chappell, D. Bunting, G. Tharakan, H. Shimamura, J. Durand, J. Mischkinsky,
K. Nihei, K. Iwasa, M. Chapman, M. Shimamura, N. Kassem, N. Yamamoto, S. Kunisetty, T.
Hashimoto, T. Rutt and Y. Nomura, "Web Services Reliability (WS-Reliability) version 1.0",
http://www.oracle.com/technology/tech/webservices/htdocs/spec/WS-ReliabilityV1.0.pdf, 2003.

[9] J. Kramer and J. Magee, "The Evolving Philosophers Problem: Dynamic Change
Management", IEEE Transactions Software Engineering, 16 (1990), pp. 1293-1306.

[10] N. K. Mukhi, R. Konuru and F. Curbera, "Cooperative Middleware Specialization for
Service Oriented Architectures", 13th International World Wide Web Conference (WWW2004),
New York, NY, USA, 2004, pp. 206-215.

[11] P. Oreizy, N. Medvidovic and R. N. Taylor, "Architecture-Based Runtime Software
Evolution", 20th International Conference on Software Engineering (ICSE 1998), IEEE
Computer Society, Kyoto, Japan, 1998, pp. 177-186.

[12] J. F. Vilas, J. P. Arias and A. F. Vilas, "High Availability with Clusters of Web Services",
6th Asia-Pacific Web Conference (APWeb 2004), Springer-Verlag, Hangzhou, China, 2004, pp.
644-653.

