
International Journal on Artificial Intelligence Tools
Vol. 9, No. 4 (2000)
© World Scientific Publishing Company

CONCURRENT ABDUCTIVE LOGIC PROGRAMMING IN PANDORA

REEM BAHGAT, OSAMA MOSTAFA
Department of Computer Science, Faculty of Computers and Information

Cairo University, 5 Tharwat Street, Orman, Dokki, Cairo - Egypt
E-mail: rbahgat@ritsec1.com.eg

GEORGE A. PAPADOPOULOS
Department of Computer Science, University of Cyprus

75 Kallipoleos Street, P.O. Box 20537, CY-1678, Nicosia, Cyprus
E-mail: george@cs.ucy.ac.cy

The extension of logic programming with abduction (ALP) allows a form of hypothetical
reasoning. The advantages of abduction lie in the ability to reason with incomplete information
and the enhancement of the declarative representation of problems. On the other hand,
concurrent logic programming is a framework which explores AND-parallelism and/or OR-
parallelism in logic programs in order to efficiently execute them on multi-processor /
distributed machines.
The aim of our work is to study a way to model abduction within the framework of

concurrent logic programming, thus taking advantage of the latter’s potential for parallel
and/or distributed execution. In particular, we describe Abductive Pandora, a syntactic sugar
on top of the concurrent logic programming language Pandora, which provides the user with
an abductive behavior for a concurrent logic program. Abductive Pandora programs are then
transformed into Pandora programs which support the concurrent abductive behavior through
a simple programming technique while at the same time taking advantage of the underlying
Pandora machine infrastructure.
Keywords: Abduction, Distributed and Parallel Implementations, Non-monotonic and
Hypothetical Reasoning, Concurrent Logic Programming Languages.

1. Introduction
Abduction was introduced by the philosopher Pierce as one of the three main forms
of reasoning (the other two being deduction and induction). Recently, the
importance of abductive reasoning has been demonstrated in many areas of Artificial
Intelligence such as diagnosis, temporal reasoning, planning and semantic networks
but also elsewhere such as in the field of databases, linguistics, and in the
intelligent retrieval of information in the Web. In logic programming, in particular,
abduction is achieved by means of finding conditional answers to queries. As a

result, it is useful to study ways for making the computation of abduction more
effective. It has been argued1 that abductive inference and its parallel realization
should be one of the future research themes in parallel/distributed logic
programming.

The development of an abductive framework in logic programming has been
proposed2,3 and further developed, among others,4,5,6. An abductive logic program is
a triple <P,A,I> where P is a general logic program, A is a set of abducible atoms
and I a set of constraints. For simplicity a number of restrictions are usually
imposed: there are no rules for abducible atoms, integrity constraints are compiled
into denials with at least one abducible and the hypotheses generated are variable
free. In the abductive proof procedure for logic programming (see5 for a review of the
main ideas), the computation interleaves between abductive phases that generate and
collect abductive hypotheses with consistency phases that incrementally check these
hypotheses for consistency with respect to the integrity constraints. The operational
semantics for sequential execution of abduction is well defined within this
framework and has been used in building meta-interpreters on top of Prolog
systems. However, as in usual deductive logic programming, abductive inference
mechanisms have several sources of parallelism of many forms (OR-parallelism,
independent and dependent AND-parallelism). The introduction of these forms of
parallelism into an abductive logic program are examined,7 the operational behavior
of such a program enhanced with parallelism are studied, and its effect on the
efficiency of execution compared with the corresponding sequential version are
highlighted.

An alternative idea however has been proposed8 within the general context of
concurrent constraint programming,9 which encompasses concurrent logic and
constraint programming. The fundamental move is that in the case of a concurrent
constraint program deadlocking, this is interpreted as a need to generate some
hypothetical values for the benefit of the suspended agents, some of which should
be able to resume execution. This generation of hypothetical values can then
correspond to an abductive phase whereas the execution of agents in the ordinary
way can correspond to the deductive phase. The possibility of modeling this
framework using the concurrent language PARLOG10 is explored11. The experience
we have gained in that work has led to the development of the present framework
that is described in this paper.

The rest of the paper is organized as follows: the next two sections set the stage
by briefly introducing the reader to abduction and the concurrent logic language
Pandora. The main part of the paper, comprising the following two sections,
describes in detail the framework of modeling abduction in Pandora and relationship
with related work. The paper ends with some conclusions and plans for future
research.

2. Abductive Logic Programming
Abduction is reasoning to explanations for an observation using a known
background theory about the domain of the observations. In many cases, together
with the background theory, we also have a set of integrity constraints whose
purpose is to restrict the possible abductive explanations. For example, the
observation that “the grass is wet” can be explained either by the hypothesis “it
rained” or by the hypothesis that “the sprinkler is on” using the known theory that
“rain or sprinkler causes the grass to be wet”. If in addition we know that “the
ground is dry” then the associated integrity constraint that “raining implies that
everything must be wet” renders the first explanation unacceptable.

In ALP an abductive logic program is a triple <P,A,I> where P (the known
theory) is a general logic program, A (the hypotheses) is a set of abducible atoms
and I a set of integrity constraints. The definition of abduction is then given as
follows:

Given an abductive logic program <P,A,I> and a goal (or observation) G, then
∆⊆A is an abductive explanation for G iff: i) P∪∆ |=G and P∪∆ satisfies the
integrity constraints I where ‘|=’ is given by some chosen underlying semantics
for logic programming, and ii) P∪∆ satisfies I under some notion of integrity
constraint satisfaction.

In the abductive proof procedure for logic programming,2,6,5 the computation
interleaves between abductive phases that generate and collect abductive hypotheses
with consistency phases that incrementally check these hypotheses for consistency
with respect to the integrity constraints. Consider the following example where a,
b, c are abducibles and ‘<-’ in I denotes negation; so for instance, ‘<- a, s’ means
‘¬(a∧s)’.

P: p <- a, r. I: <- a, s.
p <- u, b. <- b, v.
r <- a. <- b, t.
s <- s1, s2.
s <- s3.
v <- not w.
w <- c.
t <- c.

Assuming a Prolog-like evaluation order, the query <- p will reduce using the first
clause to <- a, r. Consequently, a will be abduced and the computation will enter a
consistency phase to satisfy the constraint <- a, s. During the consistency phase all
rules for s will be tried with the aim to show their failure and hence the satisfaction
of the constraint. Assuming that this is the case, r will then be reduced to the
abducible a. This is already part of the hypotheses set ∆ that we are trying to
construct. The computation will thus end with ∆={a}.

On backtracking, the second clause for p will be tried which, assuming that u
will be evaluated successfully, it will then cause the abduction of b and the

commencing of a consistency phase for it. The constraint <- b, v requires the failure
of v, and subsequently of not w, which causes the abduction of c and hence the
extension of ∆ to {b,c}. However, the evaluation of the second constraint <- b , t
requires the absence of c, resulting in an overall failure to generate another solution
(explanation) to the query <- p using the second rule for p.
3. Pandora
Pandora12,13 is a non-deterministic parallel logic programming language, which
provides stream AND-parallelism, committed-choice non-determinism, and don’t-
know non-determinism. Pandora belongs to the family of those logic languages that
adhere to the Andorra model of computation14 in that it tries to combine in an
effective way the benefits of don’t-care stream parallelism as advocated by the family
of concurrent constraint languages9 with the search capabilities of ordinary
(sequential) Prolog. Other members of the Andorra family of logic languages
include Andorra-I15,16 and AKL.17

3.1. Syntax of Pandora programs
There are two types of relation in a Pandora program: don’t-care relations and don’t-
know relations, corresponding to the kinds of OR non-determinism in logic
programming.12 Similar to Parlog relations,10 a don’t-care relation is defined by a
procedure that comprises a sequence of universally quantified guarded Horn clauses,
each of the form:

Head ← Guard | Body.
Head is the head of the clause, Guard and Body are conjunction of goals forming
the guard and body of the clause, respectively. ‘←’ denotes the implication operator,
‘,’ is the parallel conjunction operator, and ‘|’ is the commit operator. If Guard is
an empty conjunction, the commit operator is omitted. If Guard is non-empty,
then an empty conjunction in the body is denoted by the goal true. The implication
operator is omitted when both Guard and Body are empty conjunctions.

Each procedure is preceded by a mode declaration denoting its input (?) and
output arguments (^). An example of a don’t-care relation definition follows below,
where list1, and list2 are input arguments, while merge_list is an output argument.
mode merge(list1 ?, list2 ?, merge_list ^).
merge([H1 | T1], [H2 | T2], [H1 | R]) ← H1 =< H2 : merge(T1, [H2 | T2], R).
merge([H1 | T1], [H2 | T2], [H2 | R]) ← H1 > H2 : merge([H1 | T1], T2, R).
merge([], Y, Y).
merge(X, [], X).
A don’t-know relation is defined by a procedure that comprises a sequence of
universally quantified guarded Horn clauses. The syntax of these clauses is similar
to the clauses in a don’t-care relation procedure, except for the implication operator
which is denoted by ‘:-’ (as in a Prolog procedure) instead of ‘←’. Moreover, the
procedure defining a don’t-know relation is not preceded by any declaration. The
following piece of code defines the between/4 don’t-know relation:

between(X, Y, Z, []) :- X > Z : true.
between(X, Y, Z, [Y]) :- X =< Y, Y =< Z : true.

3.2. The Computational model of Pandora programs
The Pandora computational model is related to Warren’s Andorra model.14 In
Pandora, a non-deterministic choice is made after all deterministic computation, as
well as committed-choice non-deterministic computation take place. Therefore, the
computation alternates between two phases: the AND-parallel phase when goals are
evaluated concurrently except for the don’t-know non-deterministic ones which are
delayed, and the deadlock phase in which an “arbitrary” non-deterministic goal can
be reduced. A new AND-parallel phase then begins for each search branch of the
non-deterministic choice.12 A more detailed explanation follows.
(i) Evaluating a Goal for a Don’t-Care Relation
A clause in a don’t-care relation procedure is said to be a candidate clause for a goal
if and only if the input unification and the guard evaluation succeed. Input
unification is a one-way transfer of data, from a goal to a clause, whereas output
unification is a transfer in the other direction. Input unification is applied on input
arguments of the relation while output unification is applied on output arguments.
Both input unification and guard evaluation must not result in instantiating
unbound input arguments in a goal and would suspend until those arguments are
sufficiently instantiated to match the corresponding arguments in the clause head. If
the input unification and/or the guard evaluation fails, the clause is a non-candidate
clause. Moreover, the clause is said to be suspended if neither the input unification
nor the evaluation of the guard has failed and at least one of them is suspended.12
Assuming the use of an OR-parallel search operator among the clauses of a relation,
then the evaluation of a don’t-care relation goal starts with an OR-parallel search for
a candidate clause, and one of the following cases results:

(a) all clauses in the procedure are non-candidates:
The goal fails.

(b) at least one clause is a candidate:
The goal is reduced with an arbitrary candidate clause. That is, the
goal is replaced in the current conjunction of goals by the goals in
the body of the selected clause and the output arguments in the head
of the clause are unified with the corresponding arguments of the
goal.

(c) there are no candidate clauses but there is at least one
suspended clause:
The goal suspends until it is reduced with a clause that becomes a
candidate, or fails if all the suspended clauses become non-
candidates.

(ii) Evaluating a Goal for a Don’t-Know Relation
A clause in a don’t-know relation procedure is said to be a non-candidate clause for
a goal if and only if its head is not unifiable with the goal and/or it has a false
(unsatisfiable) guard. In the AND-parallel phase, the evaluation of a don’t-know
relation goal starts with testing whether the goal is deterministic, i.e. it has at most
one candidate clause, and one of the following cases results:

(a) all clauses in the goal’s procedure are non-candidates:
The goal fails.

(b) all clauses except one, say Cj, are non-candidates:
The goal is reduced with clause Cj.

(c) the goal is non-deterministic:
It suspends until it becomes deterministic, in which case either case (a)
or case (b) will be satisfied, or the deadlock phase is begun.

If the computation deadlocks, the default behavior is to select an arbitrary goal for a
don’t-know relation and create its choice point. For each search branch, a new AND-
parallel phase is begun after reducing the goal with one of the clauses in its
procedure.12

(iii) Rewrite Rules
Following the approach used for other Andorra based languages such as AKL,17 it is
possible to represent the execution of a Pandora program as a series of rewrites of
goal expressions. These rewrites are defined by means of a set of rewrite rules,
which for the case of Pandora is the one shown below. We use A to denote a single
sub-goal, G and B to denote a group of sub-goals acting as guard and body of some
clause respectively, R, S and T to denote AND-conjunctions, and C to denote a
guard G after unification of the goal to be reduced with the head of the clause
having G as a guard has taken place. Furthermore, V and W refer to sets of variable
bindings created during unification.
Local forking
A => choice(and(G1)V1|B1,…,and(Gn)Vn|Bn)

This rule applies for a goal A to be reduced in a don’t-care fashion when a number
of candidate clauses are available.
Failure Propagation
and(R,fail,S) => fail

Choice Elimination
choice(R,fail|B,S) => choice(R,S)

Deterministic Promotion
and(R,choice(Cv|B),S)W => and(R,C,B,S)V∪W

Commit Promotion
choice(R,Cv|B,S) => choice(C V|B)
if Cv is satisfiable and quiet (i.e. it produces no output bindings).
Guard Distribution
choice(R,or(G,S)|B,T) => choice(R,G|B,or(S)|B,T)

Non-Deterministic Promotion
and(T1,choice(R, S),T2)W => or(and(T1,R,T2) W,and(T1,choice(S),T2) W)

The description of Pandora’s execution in terms of the above set of rewrite rules will
assist us in presenting the abductive Pandora framework in a more formal than free
text description fashion by extending it with the machinery required to realize
abduction, as the latter is perceived in the following section.
4. Abduction in Pandora
Abduction is Pandora can be realized by exploring the idea previously suggested8 of
giving a different interpretation to the case of a concurrent logic program reaching a
deadlocked state. In ordinary concurrent logic languages, where programs execute in
a don’t-care committed choice fashion, a deadlocked state is considered as a failure
to derive a solution. In the Andorra model, a deadlocked state is interpreted as the
end of the current deterministic phase of the computation, to be followed by a non-
deterministic one where different branches of the OR-tree are to be explored in
parallel. This is also true for Pandora, being a member of the Andorra family of
languages. In the abductive Pandora framework the deadlocked state is interpreted as
the end of the current consistency (or deductive) phase to be followed by an
abductive phase. In particular, one or more (input) arguments of some suspended
process will be abduced (i.e. will be instantiated to the values that they had expected
to receive during the ordinary deductive phase), thus allowing the computation to be
resumed. The abductive phase effectively assumes that the selected abducibles have
indeed been instantiated to their indicated values, thus activating all the processes
that are suspended on them. This new framework is realized in a variant of Pandora
which we will call Abductive Pandora.
4.1. Abductive Pandora
Abductive Pandora18 is a syntactic sugar for the concurrent logic programming
language Pandora, which allows the user to easily write an abductive logic program
that will be executed concurrently. The program is then transformed to a
corresponding Pandora program which supports the concurrent abductive behavior.

By structuring the program into some conceptually meaningful form
(abducibles, constraints, and logic program), each such unit of information becomes
easily accessible in the program. Ideally, all the details of implementation should be
invisible to the user of the language - the programmer can just concentrate on the
objects and the relations between them. Let us discuss the way of carrying out this
principle in Abductive Pandora. The user writes his/her program, classifying it to
three sections as the following:

Section 1 : abducibles([a1, a2, …, an]).
Section 2 : constraints([[a1, c1], [a2, c2], …, [an, cn]]).
Section 3 : ordinary logic programming relation definitions (in Prolog, or
 Parlog, or Pandora).

The first section contains a list of abducibles a1, a2, …, an which represents the set
of abducible hypotheses that can be abduced when needed. The second section is a
list of constraints which is represented by a set of sub-lists, each of them
representing a constraint on one abducible hypothesis, that is in the head of the sub-
list. For instance, the sub-list:

[a1, c11, c12, …, c1n] n ≥ 0.
is equivalent to the integrity constraint:

← a1, c11, c12, …, c1n
The tail of the sub-list c11, c12, …, c1n represents a conjunction of goals that cannot
be true if a1 is to be abduced. If there is more than one integrity constraint on the
same abducible atom, then more than one sub-list would be present in the list of
constraints, whose heads are the same abducible atom. The last section contains
ordinary logic program clauses that can be written in either Prolog, or Parlog, or
Pandora itself.
Example:
Let us consider the example of finding the mode of locomotion of certain animals or
birds. We can write this program in Abductive Pandora, as follows:

abducibles = [animal(fifi), bird(fifi), ostrich(fifi)].
constraints = [[animal(fifi),human(fifi)], [bird(fifi), snake(fifi)],
 [ostrich(fifi), not bird(fifi)]].
locomotion(X, fly) :- bird(X), not ostrich(X).
locomotion(X, walk) :- animal(X), not snake(X).
locomotion(X, walk) :- ostrich(X).
locomotion(X, crawl) :- snake(X).

The program states that birds fly except ostriches and animals walk except snakes. It
also states that ostriches walk and snakes crawl. It also includes the set of
abducibles together with integrity constraints on them. The abductive behavior of
this program is explained later on in this section.
4.2. Mapping Abductive Pandora to Pandora
As being previously explained, Abductive Pandora is a syntactic sugar on top of
Pandora in order to simplify to the programmer his/her definition of an abductive

logic program. Programs in Abductive Pandora are then automatically transformed
to Pandora programs that provide the expected concurrent abductive behavior.

In order to implement a concurrent abductive behavior using Pandora, we
introduce the following programming technique:

(i) The abducible hypotheses will be represented as don’t-know relations.
This is because:
(a) when the selected abducible hypothesis fails to satisfy its

integrity constraints, the computation may not fail if an
alternative abducible hypothesis is successfully checked with
respect to its integrity constraints;

(b) to make the system more complete, in other words, to produce
all solutions (explanations) for the observation.

(ii) The integrity constraints will appear in the bodies of abducible clauses,
and hence must be satisfied in order for the abducible atom in the head
of the clause to be abduced.

(iii) The remaining relations in the problem will be implemented either as
don’t-care relationships if they are deterministic, or don’t-care non-
deterministic, or as don’t-know relations if they are don’t-know non-
deterministic.

Taking the previous Abductive Pandora program as an example, our implementation
would automatically transform it into the Pandora program that follows below. The
last section of the Abductive Pandora program is copied as it is in the Pandora
program. In this example, it only includes don’t-know (Prolog) relations. We must
note that the abducible hypotheses that appear in the abducible list and don’t have
constraints will not appear in the constraint list and they will appear in the
corresponding Pandora program as facts.

animal(fifi) :- not human(fifi). (1)
bird(fifi) :- not snake(fifi). (2)
ostrich(fifi) :- not(not bird(fifi)). (3)
locomotion(X, fly) :- bird(X), not ostrich(X). (4)
locomotion(X, walk) :- animal(X), not snake(X). (5)
locomotion(X, walk) :- ostrich(X). (6)
locomotion(X, crawl) :- snake(X). (7)

4.3. Concurrent abductive behavior in Pandora
Here we show in detail how an Abductive Pandora program can exhibit a concurrent
abductive behavior in a way that can be supported by the underlying ordinary
deductive implementation of Pandora:
(i) Deterministic Abduction
In the AND-parallel phase, if an abducible goal has only one clause unifiable with
it, then abduction takes place deterministically during the AND-parallel phase, in

parallel with the reduction of other goals. The integrity constraints (if any) in the
body of the abducible clause will then be executed in parallel with other goals.
(ii) Non-Deterministic Abduction
In the deadlock phase, an arbitrary suspended goal for a don’t-know relation is
selected for reduction. In case it is an abducible goal, then abduction takes place,
and a set of alternative branches result. For each search branch, a new AND-parallel
phase is begun, running all deterministic don’t-know relation goals as well as
reducible goals for don’t-care relations until they are exhausted. As a result,
abduction can either take place concurrently with the reduction of other goals (in
case it is deterministic), or takes place separately in the deadlock phase. Integrity
constraints are always checked during the AND-parallel phase.

If we set the goal locomotion(fifi,Y) with the previous abductive framework of
the respective program, we can get the search tree as in figure 1. An Abductive
Pandora system will evaluate the goal locomotion(fifi,Y) by first suspending during
the AND-parallel phase. Then it will non-deterministically get reduced in the
deadlock phase using clauses 4, 5, 6, and 7. For each search branch, an AND-
parallel phase will begin in which all deterministic don’t-know relation goals will
run, as well as reducible goals for don’t-care relations. The first branch contains a
conjunction of two deterministic goals, which run in parallel, terminating in failure.
The second branch consists of two deterministic goals, in which the first goal
animal(fifi) is an abducible goal, then abduction takes place deterministically in the
AND-parallel phase and the computation enters a consistency phase to satisfy the
constraint not human(fifi). The consistency phase will succeed and hence abduce
the hypothesis animal(fifi). The evaluation of the second goal not snake(fifi) will
also succeed, resulting in overall success of this branch, producing the answer Y =
walk. The third branch contains a deterministic abducible goal, which will be
successfully abduced, with the answer Y = walk, while the last branch will fail.
Thus we get the answer Y = walk based on the assumption that animal(fifi), or Y
= walk based on the assumption that ostrich(fifi), and bird(fifi).
(iii) Rewrite Rules
We now extend the set of rewrite rules that was used in the previous section to
describe the Pandora computational model with the machinery required to model
abduction. Effectively, the binding environment of each rewrite rule is enhanced
with two additional items: a set of variables ∆ , whose eventual set of bindings
represents the answer sought, and a set of integrity constraints IC that must be
satisfied for a potential rewrite to be valid. Here, instead of using Cv for representing
the guard G after the unification of a goal A with G’s head, we use directly the
derived binding θ.
Local forking
A => choice(and(G1)V1|B1,…,and(Gn)Vn|Bn ; ∆,IC)

Y=fly

Y=walk

Y=walk
Y=crawl

bird(fifi), not ostrich(fifi)

animal(fif i), not snake(fifi)

ostrich (fifi) snake(fifi)

not snake(fifi)

snake(fif i)
ostrich(fifi)

not not bird(fif i)

not bird(fifi)

bird(fifi)

not snake(fif i)

snake(fif i)

fail

snake(fifi)

human(fifi)

not human(fifi)

snake(fifi)

not snake(fifi)

bird(fifi)

succeed

succeed

succeed

not bird(fifi)

not not bird(fif i)

fail

succeed

Fig. 1 Concurrent Abductive Behavior in Pandora

Failure Propagation
and(R,fail,S ; ∆,IC) => fail

Choice Elimination
choice(R,fail|B,S ; ∆,IC) => choice(R,S ; ∆,IC)

Deterministic Promotion
and(R,choice(θv|B),S ; ∆,IC)W => and(R,B,S ; ∆∧θ,IC∧θ)V∪W , if IC∧θ is
satisfiable
Commit Promotion
choice(R, θ|B),S ; ∆,IC) => choice(B ; ∆∧θ,IC∧θ) , if IC∧θ is satisfiable
Guard Distribution
choice(R,or(G,S)|B,T ; ∆,IC) => choice(R,G|B,or(S)|B,T ; ∆,IC)

Non-Deterministic Promotion
and(T1,choice(R,S),T2 ; ∆,IC)W => or(and(T1,R,T2 ; ∆,IC) W,
 and(T1,choice(S) ,T2 ; ∆,IC)W)

4.4. Another example: “electrical circuits”
Figure 2 presents an electrical circuit whose corresponding Abductive Pandora
program follows below. This abductive application example was initially expressed
in the general framework of concurrent constraint programming.3,11 The electrical
circuit includes a battery (S), three bulbs, and wires connecting them. The aim is
that, based on observing the status of the bulbs (on or off), the program can abduce
the possible explanations for such observation. Note that battery, wire, and bulb
are abducible atoms, whose argument values may be assumed if necessary. Also for
this example, there are no integrity constraints.

The operational abductive meaning of wire, for instance, is that if the
computation includes the goal wire(ok, plus, Out), then it can be deterministically
abduced during the AND-parallel phase, with the variable Out being instantiated to
the value of the second parameter (plus), whereas the goal wire(broken, plus, Out)
is abduced with the variable Out being instantiated to 0. On the other hand, the
goal wire(State, plus, Out) will initially suspend. In the deadlock phase, this goal
can be non-deterministically abduced either with the variables State, and Out being
instantiated to the values ok, and plus respectively, or instantiated to the values
broken, and 0 respectively.

The procedure circuit is, in fact, the one forming the actual circuit configuration
where the last three arguments correspond to the observations that are made

regarding the state of the three bulbs (“on” or “off”) and the rest denote the
explanations that must be generated.
abducibles ([battery(empty, 0, 0), battery(ok, plus, plus),
 wire(ok, Connect, Connect), wire(broken, _, 0),
 bulb(ok, on, plus, plus), bulb(ok, off, 0, _),
 bulb(ok, off, _, 0), bulb(damaged, off, _, _)]).
constraints([]).
mode circuit(^, ^, ^, ^, ^, ^, ^, ^, ^, ^, ?, ?, ?).
circuit(S, B1, B2, B3, W1, W2, W3, W4, W5, W6, L1, L2, L3) ←

battery(S, SL, SR),
wire(W1, SL, B1L), wire(W2, SR, B1R), wire(W3, B1L, B2L),
wire(W4, B1R, B2R), wire(W5, B2L, B3L), wire(W6, B2R, B3R),
bulb(B1, L1, B1L, B1R), bulb(B2, L2, B2L, B2R),
bulb(B3, L3, B3L, B3R).

S

B1

B2

B3

Sl Sr

W1 W2

W3 W4

W5 W6

B1l B1r

B2l B2r

B3l B3r

Fig. 2 Electrical Circuit

When we compile this program by our system, it will transform it to the following
Pandora program:

battery(empty, 0, 0).
battery(ok, plus, plus).
wire(ok, Connect, Connect).
wire(broken, _, 0).
bulb(ok, on, plus, plus).
bulb(ok, off, 0, _).
bulb(ok, off, _, 0).
bulb(damaged, off, _, _).
mode circuit(^, ^, ^, ^, ^, ^, ^, ^, ^, ^, ?, ?, ?).
circuit(S, B1, B2, B3, W1, W2, W3, W4, W5, W6, L1, L2, L3) ←

battery(S, SL, SR),
wire(W1, SL, B1L), wire(W2, SR, B1R), wire(W3, B1L, B2L),
wire(W4, B1R, B2R), wire(W5, B2L, B3L), wire(W6, B2R, B3R),
bulb(B1, L1, B1L, B1R), bulb(B2, L2, B2L, B2R),
bulb(B3, L3, B3L, B3R).

Now, consider the following goal:
circuit(S, B1, B2, B3, W1, W2, W3, W4, W5, W6, on, on, on).

This query will produce the single explanation:
[ok, ok, ok, ok, ok, ok, ok, ok, ok, ok].

Whereas, the following query:
 circuit(S, B1, B2, B3, W1, W2, W3, W4, W5, W6, off, off, off).
has multiple explanations such as:

[empty, ok, ok, ok, ok, ok, ok, ok, ok, ok],
[ok, damaged, ok, damaged, ok, ok, ok, broken, ok, ok],
[empty, damaged, damaged, damaged, broken, broken, ok, ok, ok,
ok],

etc.
4.5. A Semi-formal translation scheme
Below we present a semi-formal algorithmic translation scheme of an Abductive
Pandora program to its equivalent Pandora program:
Let Abd = list of abducibles defined in the Abductive Pandora program.
Let Cons = list of constraints lists defined in the Abductive Pandora program.
For each A ∈ Abd do:

get C = { Ci | Ci ∈ Cons s.t. Ci = [A | Taili]}
if C = [] then % no integrity constraints on A

produce_clause (A)
else

For each Ci ∈ C

produce_clause(A :- Taili)
For each clause Cl in the Abductive Pandora program copy Cl to the resulting
Pandora program.

4.6. Optimizing the abductive phase
When a choice is given as to which predicate or argument of a predicate can be
abduced, the decision that will be taken more often than not has a great effect on the
efficiency of the execution. Finding the best combination of abducibles to abduce
among the set of candidate ones is a popular area of current research in the field of
abductive reasoning and its solution usually involves the use of heuristics. In our
model we try to minimize the guesses taken and we choose the following simple
heuristic: the process chosen to have its abducible parameters abduced is the one
with the smallest number of abducible parameters that can still be abduced. We have
enhanced our Pandora implementation with this policy that is invoked when the
non-deterministic phase of the computation commences.

Furthermore, it is possible, for instance, to associate with each head argument in
an abducible position an attribute indicating an assumption cost19 or a probability
value20 as it is illustrated by the following piece of code:

abducibles ([battery(empty, 0.3:0, 0), battery(ok, 0.7:plus, plus), …])
The interpretation here is that in the goal battery(empty, 0.3:0, 0), the second
argument can be abduced with an assumption cost (or hypothesis probability) of 0.3
whereas in the goal battery(ok, 0.7:plus, plus), that argument’s assumption cost is
0.7. The Pandora system can then use these attributes during the examination of the
suspended state of the computation to decide which abducible(s) to abduce.

Last but not least the Pandora system also supports a user-defined meta-relation,
called the deadlock handler, which gives the programmer a powerful way to handle
deadlock according to the need of the application in hand. One way in which it can
be used is in combination with the non-deterministic fork, to implement a heuristic
search. This is a way to reduce the search space by intelligently selecting a specific
don’t-know non-deterministic goal to execute, when several ones are candidates.
Another way is by deleting some suspended goals and adding new goals to the
existing computation; a new AND-parallel phase is then started.

The use of the above techniques may help to alleviate a problem that most
abductive models, including the one described in this paper, suffer from: the
difficulty in computing minimal explanations and avoiding computing the same
explanation multiple times.
5. Comparison With Related Work
As we have said at the beginning of the paper, although sequential abduction has
received some attention, this is not also the case for parallel abduction. In a previous
publication,2 we examined the potential of introducing parallelism into abduction by
exploiting all types of AND/OR parallelism as they are found in a typical parallel
Prolog execution framework. We then presented an implementation framework for
parallel abduction on top of the AKL system17 and, as we did in this paper, we
formalize the abductive execution mechanism by extending the rewrite rules system
of the AKL execution framework with the machinery required to handle the

abductive phase. Both AKL and Pandora are members of the family of languages
based on the Basic Andorra Model,14 in which execution comprises of two
alternating phases: the and-parallel phase where all deterministic and don’t-care non-
deterministic goals are eagerly evaluated, followed by a non-deterministic phase
where a don’t-know non-deterministic goal is evaluated by creating its choice point.
Unlike other frameworks for integrating AND/OR parallelism in logic
programming,21,22,23,24 the model supports all types of AND and OR parallelism and
suits very well the abductive behavior in which a literal is non-deterministically
abduced only when the deductive phase and any deterministic abduction have
terminated. Hence, unnecessary abduction is dramatically reduced. The fundamental
difference between our work on top of AKL and the present one is in the way the
abductive hypotheses set ∆ is handled. In another publication,7 ∆ is empty at the
beginning and it is gradually extended with abductive hypotheses. Once a certain
hypothesis is added to the set, all concurrently executing processes should become
aware of ∆’s change and, if applicable, take immediately advantage of it. For
instance, if ∆ is extended by some process with the abductive hypothesis a then any
other concurrently executing process which finds itself requiring the absence of a
(i.e. the satisfaction of not a) can immediately terminate execution, thus stopping
the system from performing unnecessary computations. Furthermore, if another
process also wants to abduce a, then once it realizes that a has already been abduced
it can carry on its execution without having to perform a consistency checking on
the integrity constraints associated with a (since the process which has already
abduced a will already have started such a consistency phase). Thus, the model
implements an “eager” abduction policy coupled with an immediate notification of
any changes in the hypotheses set. This tight synchronization between concurrently
executing processes via the shared hypotheses set ∆ saves a lot of unnecessary
computation; however, we essentially rely on an atomic updating of the shared space
∆ and we therefore base our model on Atomic AKL17 whose sensible execution
environment has to be one using shared memory. Recently,25 an attempt has been
made to map this model to a distributed architecture where ∆ is viewed as a Linda-
like shared data-space and is updated by means of Linda’s out, in and rd
primitives. However, in order to ensure consistency between the possibly conflicting
hypotheses requirements generated by the concurrently executing processes, a high
amount of communication must be performed between them, amounting to a
potentially high overhead.

The current work is based on the proposal by Codognet and Saraswat8 who
introduce abduction to the concurrent constraint framework by re-interpreting a
deadlocked situation as being a need to abduce some (input) constraints (rather than
treating deadlock as an erroneous state as it is the case for ordinary concurrent
constraint programming). Compared to the framework described in the previous
paragraph, here a “lazy” abductive policy is used, in that we resort to the abductive
phase only if the deductive phase has not been successful in reaching a conclusion.
Furthermore, the hypotheses set ∆ is predefined, comprising a set of (input)
variables whose eventual bindings (either during the deductive or the abductive
phase) constitute the required answer. We introduced these ideas to the concurrent
logic language Parlog,11 where we develop an abductive framework on top of that
language. In that framework, a Parlog program is allowed to proceed with its

ordinary execution until a deadlocked state is reached. Then, an abductive phase
commences during which a monitoring process collects all the frozen suspended
states of each one of the concurrently (and now deadlocked) executing processes.
Based on criteria essentially similar to the ones mentioned in section 4.6 above, it
decides which input variables to “abduce” (i.e. instantiate them to the values that
were expected by the processes that got suspended on them). This then leads to the
re-commencing of the (ordinary deductive) computation until the next deadlocked
phase is reached, and so forth. In the case where different choices are possible,
computation splits into different OR-branches as required. In order for the frozen
suspended states of the processes involved in some computation to be collected and
examined, all processes are connected in a “left-hand-with-right-hand” manner using
the well known short-circuit technique. The frozen state of some process is then
passed to the monitoring process via the intermediate processes through the short
circuit, the latter realized by a set of variables shared in twos between a pair of
processes. Incidentally, another such short circuit is used to detect the presence of
deadlock. This apparatus has the benefit of being implementable in a distributed
system since the above mentioned activities are by nature decentralized and are
performed by each process separately. Furthermore, the model does not depend on
any specific concurrent logic language and can be implemented on top of almost all
concurrent logic languages. However, the model is essentially interpretive; our 500
lines of Parlog code interpreter translates the original program to one enhanced by
the short circuits apparatus and run under a meta abductive compiler, itself running
on top of Parlog. The derived program is quite different from the original one and
thus difficult to be understood and debugged. For instance, in the electrical circuits
example of section 4.4, the 3-lines wire predicate would be translated in this model
to the following code:
wire(LSC,RSC,m(L,R,ok),ConnectIn,ConnectOut)

<- L=R, ConnectOut=ConnectIn.
wire(LSC,RSC,m(L,R,broken),_,ConnectOut) <- ConnectOut=m(L,R,0).
wire(LSC,RSC,m(L,R,ok),ConnectIn,ConnectOut)

 <- LSC=RSC, L=R, ConnectOut=ConnectIn.
wire(LSC,RSC,m(L,R,broken),_,ConnectOut)

 <- LSC=RSC, ConnectOut=m(L,R,0).
wire([collect_states(S)|LSC1],RSC,State,ConIn,ConOut) <-
 RSC=[collect_states(wire(LSC,RSC1,abd(State),ConIn,ConOut)|S])|RSC1],

wire(LSC1,RSC1,State,ConIn,ConOut).
The work presented in this paper is clearly based on an approach initially
implemented in a distributed fashion,8,11 although the supported syntax is
reminiscent more of how we would model abduction in an ordinary Prolog program.
Moreover, here we use a semi-interpretive approach where the original concurrent
logic program is compiled down to Pandora code, itself running on top of Parlog.
The benefits of this approach is that the original program is left intact and that the
abductive apparatus is completely handled by the Pandora system which has been

optimized to run on top of Parlog. Furthermore, the abductive phase, which is
effectively handled by the Pandora run-time system, can potentially be compiled
down to WAM code, thus enhancing further its efficiency. The potential of
compiling Pandora code to WAM is further described in another publication.12
Additionally, the Pandora system supports a user-defined meta relation which can be
used to get feedback from the user in optimizing further the execution of an
abductive program (see also discussion in section 4.6). Finally, the Pandora system
offers the opportunity of introducing (and thus supporting) abduction in three
languages, namely Pandora itself but also Parlog and ordinary Prolog.
6. Conclusions and Future Work
We presented a possible way to model abduction within the framework of concurrent
logic programming, and presented Abductive Pandora, a syntactic sugar to the
concurrent logic programming language Pandora, which allows a user to define an
abductive concurrent logic program in an easy manner. We have concentrated on the
Pandora language, which we believe, offers a number of characteristics suitable to
our purpose, with its two types of relation and its novel execution model of
alternating between two phases.

However, the user does not need to learn Pandora in order to use Abductive
Pandora; he/she can program either in Prolog, Parlog, or Pandora, extended with a
list of abducibles and a list of integrity constraints. Then our system will transform
this program into the corresponding Pandora program. So, Abductive Pandora saves
the user from learning the Pandora language to get the benefits of abduction, but,
without loss of principle bases, the user can write his/her program with the language
which he/she knows, but in a specific design. Moreover, even Prolog programs will
run using the Pandora execution model, transparently extracting AND-parallelism
whenever possible among deterministic goals while delaying non-deterministic ones
until they become deterministic or until the deadlock phase.

As part of our future plans, the proposed model will be extended to handle non-
ground abducible literals along the line of constructive abduction in logic
programming.5 It will then be necessary to incorporate in the language an enhanced
deep-guard. Also the integration of the model with constraint logic programming12,26
and the generalization of the types of integrity constraints that are supported needs
further investigation and are topics of future research. We are also looking into the
issue of compiling the Pandora abductive framework down to WAM code, thus
enhancing further its efficiency. Finally, we are planning to test the effectiveness of
our approach by using it to implement a number of applications that require
abductive reasoning.
References

[1] K. Furukawa, contribution to The Fifth Generation Project: Personal
Perspectives, eds. E. Shapiro and D. H. D. Warren, Communications of the
ACM, (March 1993) 48-01.

[2] K. Eshghi and R. A. Kowalski, Abduction through Deduction, Technical
Report, Department of Computer Science, Imperial College, London (1988).

[3] K. Eshghi and R. A. Kowalski, Abduction Compared with Negation by Failure,
Proc. 6th International Conference on Logic Programming, Portugal, MIT
Press (1989) 234-255.

[4] W. Chen and D. S. Warren, Abductive Logic Programming, Technical Report
Department of Computer Science, State University of New York at Stony
Brook (1989).

[5] A. C. Kakas, R. A. Kowalski and F. Toni, Abductive Logic Programming,
Journal of Logic and Computation, Vol. 2 (6) (1992) 719-770.

[6] A. C. Kakas and P. Mancarella, Generalised Stable Models: a Semantics for
Abduction, Proc. 9th European Conference on Artificial Intelligence,
Stockholm, Sweden (1990) 385-391.

[7] A. C. Kakas and G. A. Papadopoulos, Parallel Abduction in Logic
Programming, Proc. 1st International Symposium on Parallel Symbolic
Computation, Linz, World Scientific Publishing (Sept. 1994) 214-224.

[8] P. Codognet and V. A. Saraswat, Abduction in Concurrent Constraint
Programming, Technical Report, Xerox Palo Alto Research Center (1992).

[9] V. A. Saraswat, Concurrent Constraint Programming, ACM Doctoral
Dissertation Award, MIT Press series on Logic Programming (1993).

[10] S. Gregory, Parallel Logic Programming in PARLOG, Addison-Wesley
Publishing Company (1987).

[11] G. A. Papadopoulos, Abductive Behaviour of Concurrent Logic Programs,
Proc. Third Golden West Conference on Intelligent Systems, ACM SIGART,
Las Vegas, Kluwer Academic Publishers, Vol. 1 (1994) 27-38.

[12] R. M. Bahgat Non-deterministic Concurrent Logic Programming in PANDORA,
World Scientific Series in Computer Science, Vol. 37, Singapore (1993).

[13] R. M. Bahgat and S. Gregory, Pandora: Non-deterministic Parallel Logic
Programming, Proc. 6th International Conference on Logic Programming,
Lisbon (1989) 471-486.

[14] D. H. D. Warren, The Andorra Principle, Gigalips Workshop, University of
Bristol, Bristol, England (1987).

[15] R. Yang, Programming in Andorra-I, Technical Report, Department of
Computer Science, University of Bristol, Bristol, England (1988).

[16] R. Yang, Solving Simple Substitution Ciphers in Andorra-I, Proc. 6th
International Conference on Logic Programming, Lisbon, Cambridge, Mass.,
MIT Press (1989) 113-128.

[17] S. Janson and S. Haridi, Programming Paradigms of the Andorra Kernel
Language, Proc. International Symposium in Logic Programming, San Diego,
MIT Press (1991) 167-183.

[18] O. M. M. Ismail, Concurrent Abductive Logic Programming based on the
Andorra Family of Logic Programming, M.Sc. Thesis, Institute of Statistical
Studies and Research, Department of Computing & Information Sciences,
Cairo University, Egypt (1997).

[19] A. Wearn, Reactive Abduction, Proc. 10th European Conference on Artificial
Intelligence, Vienna, Austria (1992) 159-163.

[20] D. Poole, Probabilistic Horn Abduction and Bayesian Networks, Artificial
Intelligence 64 (1993) 81-129.

[21] U. Baron, J. C. De Kergommeaux, et al., The Parallel ECRC Prolog System
PEPSys: An overview and evaluation results, Proc. Int. Conf. Fifth Generation
Computer Systems, Tokyo, Japan 1988 841-850.

[22] B. Ramkumar and L. V. Kale, Machine Independent And and OR Parallel
Execution of Logic Programs: Part I – the Binding Environment, Part II –
Compiled Execution, IEEE Trans. on Parallel and Distributed Systems, Vol. 5,
No. 2, February 1994.

[23] J. S. Conery, The OPAL Machine, Implementations of Distributed Prolog, ed.
Peter Kacsuck and Michael J. Wise, Wiley 1992 159-182.

[24] C. Voliotis, A. Thanos, N. Sgouros, and G. Papakonstantinou, Daffodil: A
Framework for Integrating AND/OR Parallelism, Proc. 5th Hellenic Conference
on Informatics, Athens, Greece (1995) http://www.sena.gr/epy

[25] A. Ciampolini, E. Lamma, P. Mello and C. Stefanelli, Abductive Coordination
for Logic Agents, Proc. 14th ACM Symposium on Applied Computing
(SAC’99), San Antonio, Texas, ACM Press (1999) 134-140.

[26] A. C. Kakas and A. Michael, Integrating Abductive and Constraint Logic
Programming, Proc. Twelfth International Conference on Logic Programming,
MIT Press (1995) 399-417.

