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Abstract—Ubiquitous social networks have in recent years
become significant for sharing of content generated in online
video platforms. Our work investigates how the predictabil-
ity of video sharing is associated with the underlying social
network of the initial sharer of the video and the context of
the media platform it was uploaded. In particular we combine
user-centric data from Twitter with video-centric data from
YouTube to give insights that neither dataset (social network
and media service dataset) individually gives. We propose a
simple model to predict future popularity of a video resource
with a small and easily extracted feature set, based on the
notion of influence score of a user and its fluctuation through
time, as well as the distance of content interests among users of
both datasets. We further demonstrate how the incorporation
of our prediction model into a mechanism for content delivery
results in considerable improvement of the user experience.

Index Terms—Analytics; Social Networks; Social Web; Social
Cascade; Social Prediction; Regression Analysis; Video Popu-
larity; Data Mining and Knowledge Extraction;

1. Introduction

The diffusion of video content is fostered by the ease of
producing online content via media services. It mainly hap-
pens via ubiquitous Online Social Networks (OSNs), where
users increasingly repost links they have received from oth-
ers (social cascades). If we knew beforehand when a social
cascade will happen or to what range it will evolve, we could
exploit this knowledge in various ways. For example, in the
area of content delivery infrastructure, where popular items
would be proactively replicated, so that bandwidth could be
spared. Our work focuses on video virality over an OSN
and combines detailed information both of the OSN and
the media service with a small and easily extracted feature
set. It proposes a prediction model that performs better than
methods like Support Vector Machines (SVM), Stochastic
Gradient Descent (SGD) and K-Nearest Neighbours (KNN),
among others. We, furthermore, proceed to incorporate it
into a mechanism for content delivery achieving substantial
improvement for the user experience.

The remainder of this paper is organized as follows.
Section 2 reviews previous related work. Section 3 formally

describes the addressed problem. Section 4 provides an
outline of the methodology, followed by the preparation of
the employed datasets. Our main findings are presented in
Section 5, where also a validation is conducted. Section 6
investigates the incorporation of the proposed model into a
content delivery mechanism. Section 7 concludes the work
and discusses directions for future work.

2. Related Work

The field of predicting social virality is active
( [5], [12], [6], etc.). Studies focus on the prediction of the
amount of aggregate activities (e.g. aggregate daily hashtag
use [11]), on the prediction of user-level behaviour (like
retransmission of a specific tweet/URL [12] or on the predic-
tion of growth of the cascade size [5]. One branch of virality
research is based on study of the evolution of cascades
during a specific time-window ( [11], [14]), whereas other
works examine the cascades continuously over their entire
duration [5].

Although our work focuses solely on video sharing, we
identify the following methods for virality prediction in
general, with our approach falling into the first category:
Feature-based methods are based on content, temporal and
other features, and the learning algorithms schemes they use
are based on simple regression analysis ( [5]), regression
trees [2], content-based methods( [14]), binary classification
( [7], [8]), etc. They do not focus, though, on the underlying
network infrastructure, and often encounter difficulty in ex-
tracting all the necessary features due to the large volume of
accommodated graphs. Time-series analysis works ( [15]),
on the other hand, argue that patterns of a resource’s growth
of popularity are indicative of its future retransmissions.

3. Problem Description

We consider a directed graph G(t) = (V (t),E(t)) rep-
resenting a social network that evolves through time, con-
sisting at time t of V vertices and E edges. Edges between
the nodes of the graph denote friendship in case of a social
network (for Twitter B is a follower of A if there is an edge
between B and A pointing at A.) We want to associate the



TABLE 1. NOTATION OVERVIEW

G(t) = (V (t),E(t)) graph G at time t of V vertices and E edges
Au2v number of actions where u influenced v
Âu2v predicted output
M total number of predicted values
α,β ,γ coefficients of feature set variables
U vector of YouTube interests of user u
V vector of Twitter interests of user v

Features Set

Score(u, t) Score of node u at time t
dScore = dScore(u, t)/dt derivative of Score of node u at time t
content dist content distance

number of retransmits of a video link by a user v ∈V after
u ∈V has transmitted the link. User v is a follower of u.

We express this number, intuitively, as a combina-
tion of the following features: the Score(u, t) of node u,
dScore(u, t)/dt of node u, and content distance between the
content interests of the involved users both in the OSN and
the media service. The validity of the predictors is analyzed
in this paper. The intuition for their selection is based on
the notion, that, the higher influence score a node depicts,
the more influence it is expected to exert on other nodes
of the social graph. Moreover, the dScore/dt(u, t) expresses
the popularity rise / fall of the node, and, lastly, the content
distance associates the resource with the user context.

Denoting the output, the predicted output and the total
number of predicted values by Au2v, Âu2v and M, we aim to
find the values α , β , γ , so that:

Au2v = α×Score(u, t)+β × dScore(u, t)
dt

+γ×content dist
(1)

and √
1
M

M

∑
i=1

(Âu2v−Au2v)2 (2)

is minimum.

4. Proposed Methodology

4.1. Dataset

Interests of users were analyzed in [1] against direc-
tory information from http://wefollow.com, a website listing
Twitter users for different topics, including Sports, Movies,
News & Politics, Finance, Comedy, Science, Non-profits,
Film, Sci-Fi/ Fantasy, Gaming, People, Travel, Autos, Mu-
sic, Entertainment, Education, Howto, Pets, and Shows.

Twitter is one of the most popular OSNs centered around
the idea of spreading information by word-of-mouth [13]. It
provides mechanisms such as retweet, which enable users to
propagate information across multiple hops in the network.

The activity of Twitter users was quantified, and a variety
of features were extracted, such as the number of their
tweets, the fraction of tweets that are retweets, the fraction
of tweets containing URLs, etc. Aggregated features of

YouTube videos shared by a user included in the dataset
include the average view count, the median inter-event time
between video upload and sharing, etc.

A sharing event in the dataset is defined as a tweet
containing a valid YouTube video ID (with a category,
Freebase topics and timestamp). We augmented the provided
dataset with Tweet content information about the 15 million
video sharing events included in the dataset, as well as
information about the followers of the 87K Twitter users.

4.2. User Score Calculation

A user score is calculated combining the number n of its
followers, reduced by a factor of 1000 to compensate the
wide range of followers in the dataset from zero to more
than a million, a quantity b catering for users with reciprocal
followership, calculated by taking an average of number of
a user’s followers to the number of users he follows, as well
as the effect e of a user’s tweet, measured by multiplying
average number of retweets with number of user’s tweets
and normalizing it to correspond to the total number of
tweets. The distribution of these combined metrics depicts
large variance and we have applied a logarithmic transfor-
mation in order to avoid the uneven leverage of extreme
values.

Score = log
(

n+
((

b
100

)
×n
)
+ e
)

(3)

4.3. Content Distance

The content distance content dist expresses a measure
of similarity of user’s u YouTube and his follower’s v
Twitter interests. Content distance is calculated using cosine
similarity between vectors of user’s u YouTube and user’s
v Twitter video interests, as follows:

content dist = 1− U ·V
‖U‖‖V‖

(4)

5. Experimental Evaluation

By combining user ids, followership information, user
features and tweet context we build a measure of Au2v,
expressing the number of times a user’s u tweet is retweeted
by his followers v. We aim to associate the independent
variables of the features set with the series depicting Au2v.

The regression summary of Table 3 shows that coeffi-
cients of all predictors are significant (P> |t| is significantly
less than 0.05). Therefore, Score, dScore and content dist
can be considered as good predictors. We note that t here
refers to t−statistic, denoting the quotient of the coefficient
of dependent variable divided by coefficient’s standard error.
P refers to the P− value, a standard statistical method for
testing an hypothesis. P−value < 0.05 means we can reject
the hypothesis that the coefficient of the predictors is zero,
in other words the examined coefficient are significant.

The selection of the above predictors comes as a result of
comparing the P− values of various metrics in the dataset



and the combination of those with the lowest P− value.
The metrics included the number of distinct users retweeted,
fraction of the user tweets that were retweeted, average
number of friends of friends, average number of followers
of friends, number of YouTube videos shared, the time the
account was created, the number of views of a video, etc.,
among many others.

TABLE 2. REGRESSION RESULTS WITHOUT OUTLIERS (I)

Dep. Variable Au2v R-squared 0.629
Model OLS Adj. R-squared 0.629
Method Least Squares F-statistic 3.072e+04
Prob (F-statistic) 0.00 Log-Likelihood 13947.
No. Observations 54473 AIC -2.789e+04
Df Residuals 54470 BIC -2.786e+04
Df Model 3 Covariance Type nonrobust

TABLE 3. REGRESSION RESULTS WITHOUT OUTLIERS (II)

coef std err t P > |t| 95% Conf.Int.

Score 0.1460 0.001 145.244 0.000 0.144 0.148
dScore 0.0200 0.001 25.819 0.000 0.018 0.022
con dist 0.1656 0.003 65.690 0.000 0.161 0.171

Results of regression model on data obtained after re-
moving outlier data points appear in Tables 2 and 3. We
discover that content dist feature plays an important role in
video popularity prediction, suggesting high dependence of
video sharing via Twitter on the video content itself. Fig. 1
plots depict an improved alignment of the path of regression
line to the optimal path after the removal of outliers.

Figure 1. Regression plots for each independent variable.

5.1. 10-fold Cross-Validation

We performed a 10-fold cross validation on the dataset,
fitting the regressor to 90% of the data and validating it on
the rest 10% for the prediction of Au2v dependent variable
from Score, dScore and content dist independent variables.
Predictive modeling was conducted after removing outliers

from the data. The results of the predictive modeling using
linear regression show that we achieve a root mean squared
error of 0.1873 across all folds, which means that our
prediction varies by 0.1873 from the real values of Au2v.
Plot in Fig. 2 depicts how close our predictions are to the
real values of the dependent variable.

Figure 2. 10-fold Cross-Validation of Au2v without outliers.

5.2. Classification and Comparison with other
Models

We predict a user popularity as follows. If Au2v crosses a
threshold, e.g. 30%, i.e., if more than 30% of user’s u tweets
are retweeted by others users, then user u can be considered
as a popular user. This can also be interpreted as “if a user
u’s tweets will be popular or not, given user u’s Score,
dScore, and content dist (measure of his YouTube interests’
similarity with the Twitter interests of his followers)”.

Classification was conducted initially with three different
methods: Linear Regression, i.e., the Predictive Model we
present in this study, Random Forest and Naive Bayes
methods. Area Under the Curve (AUC) is a score that
computes average precision (AP) from prediction scores.
This average precision score corresponds to the area under
the precision-recall curve and the higher AUC represents
better performance. Plots in Figure 3 correspond to com-
puted precision-recall pairs for different probability thresh-
olds and the AUC score computes the area under these
curves. Best performance is achieved by Linear Regression
(0.699), followed by Naive Bayes (AUC:0.608) and Ran-
dom Forest (AUC:0.608). Complementary methods tested
were Support Vector Machines (SVM), Stochastic Gradient
Descent (SGD) and K-Nearest Neighbours (KNN).

SVM is a supervised learning model with associated
learning algorithm that analyzes data used for classification
and regression analysis. Given a set of training examples,
each marked to belong to one of the two categories (popular/
non-popular user), the SVM training algorithm builds a
model that assigns new examples into each of the categories,
acting as a non-probabilistic binary linear classifier.



Next classification model was Stochastic Gradient De-
scent (SGD), a gradient descent optimization method for
minimizing an objective function written as a sum of dif-
ferentiable functions, and a popular algorithm for training a
wide range of models in machine learning, including linear
support vector machines, logistic regression and graphical
models. Its use for training artificial networks is motivated
by the high cost of running backpropagation algorithm over
the full training set, as SGD overcomes this cost and still
leads to fast convergence.

The last classifier implemented was K-Nearest Neigh-
bours (KNN), a method classifying objects based on closest
training examples in the feature space. The input consists of
positive, typically small, integer -15 in our case- of closest
training examples in the feature space. In KNN classifica-
tion, the output is a class membership (popular/ non-popular
user), whereas an object is classified by a majority vote of
its neighbours, with the object being assigned to the class
most common among its K-Nearest Neighbours.

After plotting the results of computed precision-recall
pairs for various probability thresholds we observe that best
performance is noticed in the case of our Predictive Model,
followed by SVM (AUC:0.608), Naive Bayes (AUC:0.608),
Random Forest (AUC:0.608), KNN (AUC:0.601), and,
lastly, SGD (AUC:0.580).
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Figure 3. Comparison with other models.

6. Incorporation into Content Delivery
Schemes

Content Distribution Networks (CDNs) aim at improving
download of large data volumes with high availability and
performance. Content generated by online media services
circulates and is consumed over OSNs (with more than
400 tweets per minute including a YouTube video link
[3] being published per minute) and largely contributes to
internet traffic growth [4]. Consequently, CDN users can
benefit from an incorporated mechanism of social-awareness
over the CDN infrastructure. In [9], [10] Kilanioti and

Papadopoulos introduce a dynamic mechanism of preactive
copying of content to an existing validated CDN simulation
tool and propose various efficient copying policies based on
prediction of demand on OSNs.

Rather than pushing data to all CDN surrogates, they
proactively distribute it only to social connections of the
user likely to consume it. The content is copied only under
certain conditions (content with high viewership within the
media service, copied to geographically close timezones of
the geo-diversed system used where the user has mutual so-
cial connections of high influence impact). This contributes
to smaller response times for the content to be consumed (for
the users) and lower bandwidth costs (for the OSN provider).
Herein, we incorporate the proposed Predictive Model in the
suggested policy [10] and prove that it further improves its
performance.

The proposed herein algorithm encompasses an algo-
rithm for each new request arriving in the CDN and an
algorithm for each new object in the surrogate server. We
use LRU for handling non-homogeneous sized objects in
the surrogates and prune the least recently used items first.
To ensure that least recently used items are discarded, the
algorithm keeps track of their usage in a scheme described
in [10]. Internally, the module implementing the algorithm
communicates with the module processing the requests and
each addressed server separately (Fig. 4).

Request Handler
Surrogate server 1

Surrogate server 2
Surrogate server 3

Surrogate server 4
Surrogate server 5

. . .
Surrogate server u

Predictive Model

Prefetching Unit

Servicing
Unit

Figure 4. The social-aware CDN mechanism.

6.1. For Every New Request in the CDN

To begin with, we check whether specific time has
passed after the start of cascade and, only in the case of an
uncompleted cascade, define to what extent the object will
be copied. We introduce the time threshold, that roughly
expresses the average cascade duration. Initially, we check
whether it is the first appearance of the object (Fig. 5).
The variable o.timestamp depicts the timestamp of the last
appearance of the object in a request and helps in calculating
the timer related to the duration of the cascade. If it is
the first appearance of the object, the timer for the object



TABLE 4. CONTENT DELIVERY VERIFICATION - NOTATION OVERVIEW

G(t) = (V (t),E(t)) Graph representing the social
network

V (t) = {V1(t), . . . ,Vn(t)} Nodes representing the social
network users

E(t) = {E11(t), . . . ,E1n(t), . . . ,Enn(t)} Edges representing the social
network connections, where
Ei j stands for friendship be-
tween i and j

R = {r1,r2, . . . ,rτ} Regions set
N = {n1,n2, . . . ,nυ} The surrogate servers set. Ev-

ery surrogate server belongs
to a region ri

Ci, i ∈ N Capacity of surrogate server i
in bytes

O = {o1,o2, . . . ,ow} Objects set (videos), denoting
the objects users can ask for
and share

Si, oi ∈ O Size of object i in bytes
Πi Popularity of object i, i ∈ O
qi = {t,Vψ ,ox},1 < x < w,1 < ψ < n Request i consists of a times-

tamp, the id of the user that
asked for the object, and the
object id

P = {p12, p13, . . . , pnw} User posts in the social net-
work, where pi j denotes that
node i has shared object j in
the social network

ptsi, ptei,1 < i < τ peak time start and peak time
end for each region in secs

Q = {q1,q2, . . . ,qζ } Object requests from page
containing the media objects,
where qi denotes a request for
an object of set O

Qhit , Qtotal Number of requests served
from surrogate servers of the
region of the user/ total num-
ber of requests

X ,Y ∈ R Closest timezones with mu-
tual followers / with highest
centrality metric values

cascade is initialized and o.timestamp takes the value of the
timestamp of the request. If the cascade is not yet complete
(its timer has not surpassed a threshold), we check the
importance of the user applying its Score.

For users with Score surpassing a threshold (average
value: 1.2943 in the dataset), we copy the object to all
surrogate servers of the user’s timezone and to the surrogate
servers serving the timezones of all followers of the user.
Otherwise, selective copying includes only the surrogates
that the subpolicy decides. Subpolicy (Fig. 6) checks the Y
timezones with the highest value of the combined feature
set (Predictive Model(Score, dScore, content dist)) for the
user Vi(t) as an average. Copying is performed to the
surrogate servers that serve the Y timezones of highest
combined feature set value, according to the coefficients
derived from our analysis. We note here that variations of the
subpolicy include the replacement of the timezones depict-
ing the highest average values of Predictive Model(Score,
dScore, content dist), with those derived from the applica-
tion of Naive Bayes, Random Forest, SVM, SGD, and KNN
schemes.

1: if o.timestamp == 0 then
2: o.timer = 0;
3: o.timestamp = request timestamp;
4: else if o.timestamp != 0 then
5: o.timer = o.timer + (request timestamp -

o.timestamp);
6: o.timestamp = request timestamp;
7: end if
8: if o.timer > time threshold then
9: o.timer = 0;

10: o.timestamp = 0;
11: else if o.timer < time threshold and user.Score >

Score threshold then
12: copy object o to surrogate that serves user’s Vi(t)

timezone;
13: for all user Vy(t) that follows user Vi(t) do
14: find surrogate server n j that serves Vy(t)’s time-

zone;
15: copy object o to n j;
16: end for
17: else if o.timer < time threshold then
18: copy object o to surrogates n j that Subpolicy decides;
19: end if

Figure 5. Algorithm for every new request (timestamp, Vi(t), o) in the
CDN.

1: find the Y timezones that depict the highest average
values of Predictive Model(Score, dScore, content dist)
for user Vi(t);

2: for all timezones that belong to Y do
3: find surrogate server n j that serves timezone;
4: copy object o to n j;
5: end for

Figure 6. Subpolicy.

The realistic network depiction for the simulation of
nodes representing the surrogate servers, the origin server,
and the users requesting the objects is analyzed in detail
in [9], along with information about the dataset and the
configuration settings of the simulations.

We examine Mean Response Time (MRT), the most
significant client-side metric associated with CDN user ex-
perience. MRT indicates how fast a client is satisfied. For
the most representative case of time thresholds covering
all the examined requests of our dataset we observe a
trade-off between the reduction of the response time and
the cost of copying in servers. This is expressed for all
schemes used (Linear Regression, Naive Bayes, Random
Forest, SVM, SGD, KNN) with a decrease of the MRT as
the timezones increase and a point after which the MRT
starts to increase again (Fig. 7). For the scheme augmented
with our Predictive Model, namely the Linear Regression,
this shift occurs with approximately 7 timezones out of the
10 used. After this point the slight increase in the MRT
is attributed to the delay for copying content to surrogate
servers. The cost for every copy is related to the number of



hops among the client asking for it and the server where
copying is likely to take place. We observe that Linear
Regression outperforms all the other schemes, depicting
MRTs smaller than their respective. The proposed model
performs better than the algorithm suggested in [9], and its
variations [10], depicting an average MRT of 1.0647 msec.
We note here that timezones with highest average values for
each scheme, that Subpolicy defines, are pre-calculated, in
order to reduce computational burden in the simulations.
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Figure 7. Effect of timezones used as Y on Mean Response Time for various
schemes.

7. Conclusions

Circulation via OSNs further intensifies the problem
of HTTP traffic caused by online generated content. We
conclude herein that video sharings over an OSN platform
can be predicted with a small set of features combined from
both the platform and the media service. Despite the focused
scope of this work and the limitations of its conduction
merely with Twitter and YouTube data, the scale of the
medium allows us to make assumptions for generalization
across different OSNs and microblogging platforms, which
we plan to extensively analyze in the future. Our results
have direct application to the optimal placement of online
video content. We believe that our approach can serve as
a useful starting point for extensive experimentation with
social-aware content delivery schemes.
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