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Abstract

The problem of synchronization of multimedia
objects is addressed within the framework of
concurrent constraint programming by presenting
an analysis on how the timed version of
concurrent constraint programming can be used
to model the temporal behaviour and relationships
of multimedia objects. The implementation of a
non-trivial multimedia application is presented,
using the techniques discussed in the paper.
Finally, some of the advantages and
repercussions of introducing the model of
concurrent constraint programming into the
research field of multimedia object modeling and
synchronization are addressed along with further
current and future work.
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1 Introduction

The development of multimedia applications
involves the managing of, often, complex issues
such as programming the behaviour of a variety of
media objects (still and motion video frames, audio
samples, text), expressing the spatial and
temporal relationships between and within
multimedia objects, and using special hardware.
This leads to a number of problems, among others
the lack of knowledge regarding novel
programming concepts required in the handling
of, say, audio recording or video production,
portability issues, etc. A way of handling these
problems is the development of high-level user-
friendly multimedia programming frameworks that
hide away hardware dependencies and media
characteristics and provide abstractions suitable
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for expressing easily the, often, complex
modeling and synchronization programming
paradigms.

In this paper we address one of the major
issues involved in the development of high-level
multimedia programming frameworks, that of
synchronization. Unlike most of the other
approaches that are based on imperative
programming techniques, our model is based on
declarative programming and, in particular, that of
concurrent constraint programming ([1]). More to
the point, we show how the timed version of
concurrent constraint programming ([2]) can be
used to model and support the synchronization
requirements of multimedia objects. However, our
work should also be seen as the first step towards
the design and implementation of a high-level
multimedia programming framework based on
declarative programming. To the best of our
knowledge this is the first time that an attempt is
made to use declarative programming in the
development of multimedia programming
frameworks.

The rest of the paper is then organised as
follows: The next section discusses some of the
issues related to mult imedia object
synchronization followed by a brief introduction to
the timed version of concurrent constraint
programming ([2]) in order to make the paper self-
contained. The third section presents the
development of a complete non-trivial
programming example using timed concurrent
constraint programming, thus showing the
capabilities of the model in handling the
requirements imposed by multimedia object
synchronization. The fifth section discusses some
of the advantages and repercussions of
introducing the model of concurrent constraint
programming into the research field of multimedia
object modeling and synchronization and
presents some of the research directions we are
currently pursuing.

2 Multimedia Object Synchronization

By synchronization in the context of
programming multimedia applications we usually
refer to the need for expressing the temporal



behaviour of a media object both with reference to
the environment (say, signals from the outside
environment) but also with reference to the state
of other media objects playing simultaneously with
the object in question. In particular, a high-level
multimedia programming framework should be
able, among other things, to express real-time
behaviour such as the starting and stopping of
some media object, establish or remove
connections between various media objects and
ensure global synchronization between
concurrently executing media objects ([3,4]).

The synchronization constraints that must be
expressed fall into the following categories ([3,4]):
i) intramedium (intrastream), that refer to the
constraints related to the temporal behaviour (rate
of presentation of a single stream of data) of some
particular media object (say, a MIDI device) but also
to more refined notions such as playout deadlines
of an object; ii) intermedia (interstream), that refer
to the constraints (joint presentation of multiple
data streams) occurring between different media
objects or instances of the same object.

In addition to providing the necessary
abstractions required to model the temporal
behaviour of multimedia objects, a multimedia
programming environment should also be able to:
i) be based on formal semantics allowing formal
reasoning about the written programs, and ii) offer
the implementation support required to guarantee
the temporal behaviour of the media objects as
expressed by a program. Note that the second
issue is particularly important in the case of
distributed multimedia applications such as
teleconferencing, remote visualization or
groupware, where there is a need to satisfy the so
called Quality of Service (QOS) requirements of
the application.

To this end a number of proposals have been
put forward ([4,5]) advocating principles from real-
time systems and in particular the so called perfect
synchrony hypothesis ([6]) which states that a
reactive object is expected to react
instantaneously to the presence of input signals.
Consequently, the system must be able to detect
at any instance both the presence and the
absence of signals.

3 Timed Concurrent Constraint 
Programming

Concurrent Constraint Programming (CCP)
was proposed ([1]) as a natural generalisation and
extension of Constraint Logic Programming ([7])
with the concurrency features found in
Concurrent Logic Programming ([8]). Whereas in
traditional (imperative) programming the store is
viewed as a set of variables which are eventually
instantiated to fully formed values, in CCP the
store is itself a constraint (or rather a set of
constraints) providing at every instance (perhaps

partial) information regarding the values of a
program’s variables. A program then consists of a
number of concurrently executing processes
(agents) that interact with the (shared) store in
order to either post there more information or
check whether some information holds. Instead of
the traditional read and write operations, CCP
introduces, respectively, the ask operation (check
whether the store entails a given constraint) and
the tell operation (post a new constraint to the
store). An ask operation succeeds if the required
information can be found in the store, fails if the
asked constraint cannot be entailed and
suspends if the store does not have enough
information to either entail or disentail an asked
constraint, thus providing the required
synchronization mechanism. A tell operation
succeeds if the constraint to be told is consistent
with the information that is already present there
and fails otherwise. Thus the variables in the store
are incrementally and monotonically refined,
never being in an inconsistent state. Note that the
domain of discourse over which the values of
variables range is orthogonal to the rest of the
framework and can be one of several kinds (real
numbers, finite domains, etc.).

Recently ([2]), the CCP framework has been
extended to a timed version (TCCP), along the
lines of state-of-the-art real-time languages such
as ESTEREL, LUSTRE and SIGNAL ([6,9]),
offering temporal constructs and interrupts, and
suitable for modeling real-time systems. In TCCP
declarative variables play the role of signals whose
values from one instance to another can be
different. At any given instance in time the system
is able to detect the presence of any signals;
however, the absence of some signal can be
detected only at the end of the time interval and
any reaction of the system will take place at the
next time instance. Thus, the behaviour of a
process is influenced by the set of positive
information input up to and including some time
instance t and the set of negative information
input up to but not including t. This has been
called the timed asynchrony hypothesis ([2]) and
contrasts the perfect synchrony hypothesis
mentioned in the previous section. Note that,
since it can be ensured that the state of the
system is bounded, the time taken at each stage
of the computation will be bounded.

In TCCP, a program is a collection of
procedures that take the following form:

Agents   A ::= c telling a constraint
| now c then A timed positive ask
| now c else A timed negative ask
| A, A parallel conjunction
| X^A defining a local signal X
| p(t1,…,tn) procedure call

Declaration
D ::= p(t1,…,tn)::A procedure definition



The sole temporal construct in TCCP is the
following:

now c then A else B

whose interpretation is as follows: if there is
enough positive information to entail the
constraint c then the process reduces immediately
to A; otherwise, if at the end of the current time
instance the store cannot entail c (i.e. negative
information, or in other words, the absence of
some signal has been detected), the process
reduces to B at the next time instance. Note that
either the then or the else part can be omitted as
shown in the syntax diagram above. Note also that
the “temporal” constraints c should be viewed as
signals (non-rigid variables) which hold only for the
current time instant and not necessarily for any
subsequent ones. That is why only the current
instance of a variable c is allowed to be accessed
and any need to store “persistent” data should be
satisfied by means of extra parameters in the
relevant recursive procedures.

As shown in [2], the above construct can be
used to implement a number of temporal
constructs that are usually found in real-time
languages. In the sequel we show only those that
are used in the rest of this paper. The construct

whenever c do A = now c then A else (whenever c do A)

suspends until the constraint c can be entailed
and then reduces the executing process to A,
thus modeling a temporal wait construct. On the
other hand, the following construct

now
case c1 do A1 now c1 then A1,
case c2 do A2 now c2 then now c1 else A2,
…
case cn do An now cn then now (c1 AND … 

AND cn-1) else An,

default B now (c1 AND … AND cn) else B
end

models a prioritised wait: the process reduces to
Ai if ci is now true but c1 to ci-1 were false at the
previous time instances.

Timeouts can be modelled by the construct c
before T then A else B which reduces to A if c is
entailed within T time units; otherwise it reduces
to B at the end of the specified period T. This
construct is defined as follows:

c before 1 then A else B = now c then A else B
c before (T+1) then A else B =

now c then A else (c before T then A else B)

Finally, interrupts in TCCP can be handled by
a do…watching construct similar to that found in

languages like ESTEREL but with a slightly
different semantics. In particular,

do A watching c timeout B

executes A  and if c  becomes true before A

completes execution, the process will reduce to B
at the next time instance. The most important
rules defining the above construct are the
following:

do d watching c timeout A = d
do (now d then A) watching c timeout B =

now d then (do A watching c timeout B)
do (now d else A) watching c timeout B =

now (d AND c) else then (do A watching c timeout B),
now c then next B

Note that next A is an abbreviation for now false else A

where the intended interpretation is to behave
like A from the next instance onwards.

4 Multimedia Synchronization in 
TCCP

4 . 1 TCCP as a Multimedia Synchronization
Sublanguage

What sort of synchronization requirements
must be satisfied by some programming formalism
in order to be able to act as a basis for designing a
multimedia scripting (sub)language? The following
comprises a non-exhaustive list:
• ability to express delays relative to absolute

time or the behaviour of other media objects,
• a formal treatment of time,
• t ime-constrained synchronization of

processes,
• sequential, parallel, repetitive behaviour of

processes,
• exception handling,
• ability to provide generic solutions to

synchronization problems that can be used in
a wide variety of scenaria.

TCCP supports all the above points, and
more. It offers a programming environment based
on declarative programming with well defined and
fully abstract operational and denotational
semantics, inheriting all the programming
techniques that over the years have been
developed in the field of concurrent logic
languages ([8]). A rich variety of temporal
constraints can be defined, able to express the
temporal behaviour of multimedia objects. In
addition, other constraint systems can be added,
offering powerful techniques for expressing the
spatial constraints of multimedia objects. The
model is naturally parallel, supporting a high
degree of concurrency although, if desired,
sequential behaviour can be enforced (e.g. by
using nested now…then constructs). Repetition is
achieved by means of recursive procedures.



Although not discussed extensively in this paper,
the model can exploit the object-oriented
capabilities of logic programming and, more to the
point, concurrent logic programming ([10,11,12]).

We believe that the timed asynchrony
hypothesis advocated by TCCP is not an obstacle
in using the model for multimedia object
synchronization, especially due to the fact that a
certain time delay can be tolerated (thus, placing
multimedia systems in the category of soft real-
time systems). In particular, for any (composite)
multimedia object C the following formula should
hold for all its components Ci ([3]):

| C.current_world_time - Ci.current_world_time | < ¢¢¢¢i

where ¢¢¢¢ i is the synchronization tolerance for
every component Ci. A certain synchronization
tolerance is also expected between two objects
M1 and M2 expressed by a similar formula:

| ObjToWorld(M1.object_time) -

  ObjToWorld(M2.object_time) | < ¢¢¢¢

where the function ObjToWorld translates an
object’s relative (internal) time to world ( the
application’s) time. Note also, that the timed
asynchrony hypothesis may allow more effective
synchronization in distributed multimedia
applications ([13]).

In the next section we illustrate the ability of
TCCP to act as a basis for developing a multimedia
scripting environment by coding up a complete
non-trivial application using TCCP techniques and
primitives. To set the stage we show here the
implementation of some simple programming
examples related to multimedia object
synchronization. Parameters in all capital letters
denote signals coming from or going to external
devices, whereas the rest denote local signals
(within an object or between two or more objects)
and ordinary data.

We start with an implementation of the
primitive Wait_For(N,SIG), found in ESTEREL,
which suspends a process until the signal SIG has
appeared N times (lines starting with % denote
comments).

% wait for signal SIG to appear N times

Wait_For(N,SIG) ::
whenever SIG
    do ( now N=1 then true else Wait_For(N-1,SIG) ).

Note that the call Wait_For(0 ,SIG)  waits
indefinitely (by entering an infinite recursion). The
above primitive can be used to define the agent
Play_For(MM,TU,SIG) which plays the media object
MM for TU time units defined by the signal SIG

(seconds, minutes, or otherwise).

% Play multimedia object MM for TU time units
% (defined by SIG)

Play_For(MM,TU,SIG) :: START(MM),
whenever Wait_For(TU,SIG)

do STOP(MM).

Note that we assume the existence of the
signals START(MM) and STOP(MM) that start and
stop respectively the device for the object MM. So,
the call Play_For(MM,5,SECOND) will play the media
object MM for 5 seconds (assuming the constant
emission of the signal SECOND from a timing
device). The next primitive, Delay_By(MM,Delay),
suspends an agent executing it until the media
object MM has played for Delay time units.

% suspends until the multimedia object MM
% has been playing for Delay time units

Delay_By(MM,Delay) ::
now STARTED(MM)

   then now Delay=0
      then true
      else Delay_By(MM,Delay-1).

Note that here we make use of a primitive
STARTED(MM) which polls the device of the media
object MM and returns true if MM is still playing and
false otherwise. The above primitives can be used,
for instance, to model the following scenario:
Objects MM1 and MM2 start playing concurrently for
a period of TU1 and TU2 time units respectively.
Object MM3 starts playing after object MM1 has
played for TU1 time units (depending on what SIG

is) and stops when object MM2 has played for TU2

time units).

scenario(MM1,TU1,MM2,TU2,MM3,Delay1,Delay2,SIG) ::
Play_For(MM1,TU1,SIG),
Play_For(MM2,TU2,SIG),
whenever Delay_By(MM1,Delay1),

do (do Play_For(MM3,0,SIG) % play forever
      watching Delay_By(MM2,Delay2) ).

Note that in the above example we have
adopted a temporal relation rather than a time-line
approach (see also related discussion in the next
section on the benefits of using this approach).

As a final simple example we show how the
sequent ia l  and para l le l  e lementary
synchronization operators proposed by MHEG —
the Multimedia and Hypermedia information
coding Group ([14]) — can be implemented in
TCCP.

% play M1 after a delay of T1 followed by M2 after a
% delay of T2 from the time instance M1 has ended

seq(M1,T1,M2,T2) ::
now Wait_For(T1,SIG)



then ( START(M1),
whenever STOP(M1)
     do now Wait_For(T2,SIG)

then START(M2) ).

The implementation of the parallel operator is
slightly simpler.

% play in parallel M1 after a delay of T1 and M2 after a
% delay of T2 from the time instance the parent object
% has invoked the operation

par(M1,T1,M2,T2) ::
now Wait_For(T1,SIG) then START(M1),
now Wait_For(T2,SIG) then START(M2).

4 . 2 The ‘Information Kiosk for Cyprus’ 
Example

In the previous section we showed the
capability of TCCP to model various simple
synchronization scenaria and implement
proposed synchronization operators and
primitives. In this section we show the
implementation of a complete non-trivial example
using TCCP techniques as a means to illustrate
the usefulness of timed concurrent constraint
programming as a high-level tool for building
multimedia applications. The example we have in
mind is a variant of the Virtual Museum example
([3,4]) similar to the one described in [5]; more to
the point, the application is about an information
kiosk for the Mediterranean island of Cyprus
providing various sorts of information (tourist,
archeological, geographical, etc.) in an interactive
way. Due to lack of space we show only a
simplified version of the application with minimal
functionality and focused only onto one area of
information, that of flora and fauna. The
application consists of three phases as explained
below.

During the first phase the application shows
the map of Cyprus and plays continuously an
audio commentary inviting people to use it. The
second phase begins when the user presses a
START key. A menu is displayed informing the
user of the various sorts of information available
and a cyclic audio commentary is played
explaining to the user how to select a particular
information category.

Once the user has made a selection by
pressing the appropriate button, the application
starts showing a diaporama, i.e. a combination of a
sequence of still video images accompanied by an
audio commentary. In addition, part of the display
is occupied by a small map of Cyprus where the
location of the various exhibits presented in the
diaporama is shown.

When the third phase has completed
execution, the application goes back to the first
phase. The fol lowing synchronization
requirements are imposed:
• If the user has not responded within 5

minutes during the second phase, it is
assumed that he has left and the application
goes back to the first phase.

• The third phase can be suspended and
resumed by means of suitable buttons. If
suspended, the application resumes
automatically in 30 seconds unless the
RESUME key has been pressed earlier. In
addition, both phases can be killed, in which
case the application goes back to the
beginning.

• Finally, during the third phase, audio and
video are synchronized in the following
sense: for every still image a corresponding
audio commentary is played that starts 2
seconds after the display of the image.

START

PHASE   1



PHASE   2

M E N U

STOP

PHASE   3

STOP RESUMESUSPEND

The implementation of the above scenario
which is shown below exploits both the object-
oriented and the temporal capabilities of the timed
concurrent constraint paradigm. The program
consists of a number of agents running in parallel
and communicating by means of signals. Along
the lines of the application described in [5], each
agent models in a generic way some media
behaviour. In addition, temporal behaviour of
objects is expressed by means of temporal
constraints rather than following a time-line
approach. This has the advantage of preserving
references and links between media objects
when temporal parameters are changed. In

addition, the “tempo” of the application is kept by
a separate object (the CLOCK) whose code is not
shown here due to lack of space; the idea here is
that when the application is suspended timeouts
and delays should be freezed.

The following procedure, FI_CA, models the
behaviour of a composite multimedia object
comprising the display of a still image and the
cyclic playing of an audio commentary. Note that
the procedure, being generic, can be used in
both phases 1 and 2 by simply calling it with
different parameters.



% Fixed Image - Cyclic Audio

FI_CA(VIDEO_START,AUDIO_START,AUDIO_END,STOP) ::
do ( VIDEO_START, AUDIO_START,
      whenever AUDIO_END do AUDIO_START )
watching STOP.

The next procedure, FI_MIA, models the
display of a single image (the map of Cyprus) in
connection with a sequence of video images
accompanied by audio commentary. The
procedure makes use of an auxiliary one,
Cycle_Image_Audio, that is responsible for modeling

the presentation of the diaporama (thus,
implementing implicitly a repetitive operator). Here
we assume the existence of a function
GET_UNITS(N), which returns in N the number of
video images comprising the user’s choice.

% Fixed Image - Multiple Image with Audio

FI_MIA(Delay,STOP,Second,FIXED_VIDEO,MOTION_VIDEO,CYCLIC_AUDIO_START,CYCLIC_AUDIO_END)
   :: Units^

do ( GET_UNITS(Units), FIXED_VIDEO,
      Cycle_Image_Audio(1,Units,Delay,Second,MOTION_VIDEO,CYCLIC_AUDIO_START,

    CYCLIC_AUDIO_END) )
watching STOP.

Cycle_Image_Audio(Index,Limit,Delay,Second,MOTION_VIDEO,CYCLIC_AUDIO_START,CYCLIC_AUDIO_END)
   ::

now Index#Limit+1
then ( MOTION_VIDEO(Index),

whenever Wait_For(Delay,Second),
    do ( CYCLIC_AUDIO_START(Index),

 whenever CYCLIC_AUDIO_END
        do next Cycle_Image_Audio(Index+1,Limit,Delay,Second,MOTION_VIDEO,

   CYCLIC_AUDIO_START,CYCLIC_AUDIO_END)) ).

Finally, the top agent kiosk invokes all the other
agents and synchronises their execution. Any

variables not defined within the agent are
assumed to have been defined in the
surrounding context.

% Information kiosk - it is called with a list of signals SIGNALS

kiosk(SIGNALS) :: Tempo^
FI_CA(INTRO_VIDEO,INTRO_AUDIO_START,INTRO_AUDIO_END,PRESENT_START),
whenever PRESENT_START
    do ( do FI_CA(MENU_VIDEO,MENU_AUDIO_START,MENU_AUDIO_END,MENU_CHOICE)

 watching Wait_For(5,MINUTE) timeout PRESENT_TERM ),
whenever MENU_CHOICE or PRESENT_TERM
    do ( now

case PRESENT_TERM
      do kiosk(SIGNALS)
case MENU_CHOICE
      do ( FI_MIA(2,PRESENT_TERM,Tempo,LOCATION_MAP_VIDEO,

   TOUR_VIDEO,TOUR_AUDIO_START,TOUR_AUDIO_END),
   State=running^CLOCK(30,State,Tempo,SECOND,SUSPEND,RESUME,

      SUSPEND_TOUR,RESUME_TOUR)) ).

5 Conclusions and Further Work

We have presented an alternative approach to
the issue of modeling and synchronising
multimedia objects, that of using (timed)
concurrent constraint programming. To the best
of our knowledge this is the first time declarative
programming (in the form of concurrent constraint

programming or otherwise) is proposed as the
basis for developing high-level multimedia
development frameworks.

The advantages for using TCCP in the field of
multimedia development are, among others, the
use of a declarative style of programming,
exploitation of programming and implementation
techniques that have developed over the years,



and possible use of suitable constraint solvers
that will assist the programmer in defining inter and
intra spatio-temporal object relations.

In this paper we have concentrated, almost
exclusively, on the synchronization aspects of
multimedia applications development. However,
we have only touched on the tip of the iceberg. A
number of interesting issues that must be
resolved lie ahead. First of all, we are currently
extending the present work to define a full set of
multimedia synchronization primitives using
TCCP. Part of this work will involve the
examination of more complicated multimedia
synchronization problems like the so called “lip
Sync” (live synchronization). In addition, we will be
using the object-oriented capabilities of the model
([10,11,12]) to extend the present work towards a
complete composition and modeling environment
([3,4]). Finally, regarding initial prototype
implementations, we are designing a specification
language based on TCCP techniques by
modifying existing interpreters for concurrent
logic languages which will compile the code down
to IBM’s AVA (Audio Visual Authoring) Language,
part of the AVC (Audio Visual Connection)
authoring tool, and used in connection with the
ActionMedia II card and exploiting Intel’s DVI
(Digital Video Interactive) technology. Note here
that although the user will present the
synchronization requirements as temporal
relations, these will be represented internally as
time-line relations.
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