A Highly Parallel Model for
Object-Oriented Concurrent Constraint Programming

Richard Banach

Department of Computer Science
University of Manchester
Oxford Road
Manchester, M13 9PL
UK
E-mail: banach@cs.man.ac.uk

Abstract

Two of the currently most promising programming
paradigms, namely Object-Oriented Programming and
Concurrent Constraint Programming are combined
into a single, highly parallel computational model
based on Term Graph Rewriting Systems. In
particular, we show how multi-headed Term Graph
rewrite rules provide a powerful tool able to
manipulate Term Graphs which themselves represent
in a homogeneous way objects, concurrently
executing agents and constraints. Due to the inherent
fine grain parallelism of Term Graph Rewriting the
proposed model is highly parallel with all activities
(object communication, agent execution and
constraint solving) executing concurrently.

1. Introduction

The generalised computational model of Term Graph
Rewriting Systems (TGRS) ([5]) has been used
extensively as an implementation vehicle for a
number of, often divergent, programming paradigms
ranging from the traditional functional programming
ones ([12,15]) to the (concurrent) logic programming
ones ([3,10,18]). Recent studies have shown that
TGRS are also able to act as a means for
implementing languages based on computational
models such as Linear Logic ([4]) and ®-calculus
d2.7).

t Temporary attachment: German National
Research Centre for Computer Science (GMD-
FIRST), Rudower Chaussee 5, D-1199 Berlin,
Germany. E-mail: hem @ prosun.first.gmd.de

0-7803-2018-2/95/$4.00 © 1995 IEEE

‘George A. Papadopoulos

Department of Computer Science
University of Cyprus
75 Kallipoleos Str.
Nicosia, P.O.B. 537, CY-1678
CYPRUS
E-mail: george @turing.cs.ucy.ac.cy

Two of the currently most promising programming
paradigms are Object-Oriented Programming (OOP)
and Concurrent Constraint Programming (CCP)
([20]), a generalisation and amalgamation of
Constraint Logic Programming and Concurrent
Logic Programming. The issues of object orientation
and constraint solving are rather orthogonal to each
other, both offering to the language environment that
supports them powerful new features. Typical types
of application where both formalisms are needed are,
for instance, interactive graphical user interfaces,
object-oriented databases, etc. Thus a number of
models combining OOP and (possibly Concurrent)
Constraint Programming have been proposed
([6,13,22)).

In this paper we use TGRS as the unifying
framework for OOP and CCP and we show that both
these programming paradigms can be represented
homogeneously by Term Graphs which are
manipulated by associated sets of rewrite rules. In
addition to the ability of TGRS to present objects,
agents and constraints in a uniform way, thus
allowing the natural intermixing of all of them, the
model is highly parallel and all activities involved in
a computation such as constraint solving, agent
execution and object composition are done
concurrently.

The way to achieve all these is to allow the use of
multi-headed rewrite rules in addition to the
traditional approach of single-headed ones. We show
then that such things as single or multiple
inheritance, object encapsulation and entailing
constraints can be effectively modelled by means of
multi-headed rewrite rules. The rest of the paper is
organised as follows. The next two sections introduce
the models of Concurrent Constraint Programming
and Term Graph Rewriting Systems with some

emphasis on the associated language Dactl which we
will be using as our implementation platform. The
following two sections discuss the way CCP and
OOP can be modelled in a TGRS framework. The
paper ends with some conclusions and a short
discussion on further and related research.

Concurrent Constraint
Programming

2.

Concurrent Constraint Programming ([20]) is a

generalisation and amalgamation of Constraint Logic

Programming and Concurrent Logic Programming.

In CCP computation evolves around the notion of a

shared store where a number of concurrently

executing agents, which themselves share variables,
post constraints with respect to these variables. The
store evolves monotonically in the sense that posted
constraints should be consistent with each other;
thus, once some information is posted to the store it
cannot be retracted. Note that the agents do not
communicate directly with each other even if they
share common variables; instead all inter-agent
communication is done via the shared store. This is
achieved by means of two fundamental operations
pcrformed by the concurrently executing agents:
ask {c) succeeds if c is entailed by the current
store, fails if ¢ is incosistent with the store and
suspends otherwise; in the latter case some other
concurrently executing agent(s) will have to add
enough information to make c consistent or
incosistent with the store so that the ask
operation can succeed or fail.

+ tell(c) attempts to add c to the current store
and succeeds in doing so if ¢ is consistent with
the information already posted there; otherwise
the operation fails.

More formally a concurrent constraint program
adheres to the following grammar:

P = D.A

D = pX) :: A | D.D

A = success | fail | tell{c)->A |
EfaAh]| IKa|pX

E = ask(c)—>A | E+E

where P, D, A, ¢ and X denote respectively programs,
procedure declarations, agents, constraints and tuples
of variables and in p (X) :: A we assume that
vars (A} cX.

The behaviour of the elementary agents comprising

the above syntax is as follows:

¢ ask(c)->A, checks if ¢ is entailed by the
current store and if it does then behaves like
agent A, otherwise it fails or suspends
accordingly.

62

* ask(cl)->al + ask(c2)->A2, may
behave either like 21 or A2 depending on which
ones of c1 and c2 are entailed or not. If both
Al and A2 can evolve the choice is
nondeterministic.

* tell{c)->A, adds c to the current store if it
is consistent with the information already posted
there and then behaves like A; if ¢ is incosistent
with the store then it fails. Here we employ
eventual rather than atomic publication
semantics ({20]) meaning that potential
inconsistencies may not be detected immediately.

* Alla2 behaves like A1 and A2 executing
concurrently.

¢ JX.A behaves like A with the variables X
restricted to A.

* p(X) is simply a call to procedure p.

In the CCP framework as described above, the
underlying constraint system is a system of partial
information of the form <D, > where
* Dis aset of primitive constraints.
* I is the entailment relation which must satisfy
the following axioms:
— ukx if xe u (reflexivity), and
— ubkx if uky for all ye v and vix
(transitivity).

Thus the state of the computation in a CCP program
is a multiset of primitive constraints and a multiset
of agents.

3. Term Graph Rewriting and Dactl
The TGRS model of computation is based around the
notion of manipulating term graphs or simply
graphs. In particular, a program is composed of a set
of graph rewriting rules L->R which specify the
transformations that could be performed on those
parts of a graph (redexes) which match some LHS of
such a rule and can thus evolve to the form specified
by the corresponding RHS. Usually ({5]), a graph G
is represented as the tuple <N, rootg, Symg,
Succg> where:

* Ng is the set of nodes for G

* rootg is a special member of Ng, the root of G
* Symg is a function from Ng to the set of all

function symbols
* Succg is a function from Ng to the set of

tuples NG*, such that if Succ (N) = (Nq..Ny)
then k is the arity of N and Nj..N) are the
arguments of N.

Note that the arguments of a graph node are identified
by position and in fact we write Succ (N, i) to
refer to the ith argument of N using a left-to-right

ordering. The context-free grammar for describing a
graph could be something like

node | node+graph
A(node,..,node) | identifier |
identifier:A(node,..., node)

graph
node

where A ranges over a set of function symbols and an
identifier is simply a name for some node.

As an illustrative example of how computation in a
Term Graph Rewriting System evolves we can view
the evaluation of the following expression as
rewriting of terms or trees, which are restricted forms
of graphs:

2+ (3*4)
:
N\
3/ \4

This rewrites to the following one:

2 + 12

P /+ \12

And finally to:

14
14

The usefulness of graph representation is revealed if
we have a call to a function square which is
evaluated lazily:

square (2+3)
square

|
2/ \3

This is rewritten to:

(243) * (2+3)
D
+
2 3

Then to:

*5

S

And finally to:

25
25

In the associated compiler target language Dactl ([9]),

a graph G is represented as the tuple <Ng. rootg,

Symg, Succg, NMarkg, AMarkg> where in

addition to those parts of the tuple described above

we also have:

* NMarkg which is a function from Ng to the set
of node markings {€, *, #1}

* AMarkg which is a function from Ng to the set
of tuples of arc markings {g, ~} *

A Dactl rule is of the form

63

Pattern -> Contractum, X1 T e Xy 2TV
lllzl..u.ij

where after matching the Pattern of the rule with
a piece of the graph representing the current state of
the computation, the Contractum is used to add
new pieces of graph to the existing one and the
redirections x : =y, .., X : =y are used to redirect
a number of arcs (where the arc pointing to the root
of the graph being matched is usually also involved)
to point to other nodes (some of which will usually
be part of the new ones introduced in the
Contractum), the last part of the rule
H12z3..K425 specifies the state of some nodes (idle,
active or suspended).

The Contractum is also a Dactl graph where
however the definitions for node identifiers that
appear in the Pat tern need not be repeated. So, for
example, the following rule

r:F[x: (ANY-INT) y: (CHAR+STRING)
v1:REWRITABLE v2:RENRTTABLE]
-> ans:True, dl:1, d2:2,
ri=*ans, vl:=*dl, v2:=*d2;

will match that part of a graph which is rooted at a
(rewritable) symbol F with four descendants where
the first matches anything (ANY) but an integer, the
second either a character or a string and the rest
overwritable symbols. Upon selection, the rule will
build in the contractum the new nodes ans, d1 and
d2 with patterns True, 1 and 2 respectively;
finally, the redirections part of the rule will redirect
the root F to ans and the sub-root nodes v1 and v2
to 1 and 2 respectively. The last two non-root
redirections model effectively assignment. A number
of syntactic abbreviations can be applied which lead
to the following shorter presentation of the above
rule

F[x: (ANY-INT) y: (CHAR+STRING)
V1 :RENRTTZABLE v2:REWRITABLE)
=> *True, vi:=*1, v2:=*2;

where => is used for root overwriting and node
identifiers are explicitly mentioned only when the
need arises. Finally, note that all root or sub-root
overwritings involved in a rule reduction are done
atomically. So in the above rule the root rewriting of
F and the sub-root rewritings of v1 and v2 will all
be performed as an atomic action.

The way computation evolves is dictated not only by
the patterns specified in a rule system but also by the
control markings associated with the nodes and arcs
of a graph. In particular, * denotes an active node
which can be rewritten-and #7 denotes a node waiting
for n notifications. Notifications are sent along arcs

64

bearing the notification marking . Computation
then proceeds by arbitrarily selecting an active node t
in the execution graph and attempting to find a rule
that matches at t. If such rule does not exist (as, for
instance, in the case where t is a constructor)
notification takes place: the active marking is
removed from t and a “notification” is sent up along
each ~-marked in-arc of t. When this notification
arrives at its (necessarily) #™ -marked source node p,
the * mark is removed from the arc, and the n in p’s
#1 marking is decremented. Eventually, #0 is
replaced by *, so suspended nodes wake when all
their subcomputations have notified.

Now suppose the rule indeed matches at active node
t. Then the RHS of that rule specifies the new
markings that will be added to the graph or any old
ones that will be removed. In the example above, for
instance, the new nodes ans, dl and 42 are
activated. Since no rules exist for their patterns
(True, 1 and 2 are *“values™), when their reduction is
attempted, it will cause the notification of any node
bearing the # symbol and its immediate activation.
This mechanism provides the basis for allowing a
number of processes to be coordinated with each
other during their, possibly concurrent, execution.

Thus, a possible encoding in Dacti of the previous
two programs could be the following one, where
some other features of the language such as module
support are also being illustrated.

MODULE ExprEx;
IMPORTS Aritimetic;
RULE

INITIAL => #IAJA[2 ~*IMul[3 4]];
ENDMCDULE ExpxEx;

MODULE Squarebx;
IMPORTS Arithmetic;
SYMBOL REWRITABLE Square;
RULE
Square[n] = #IMul[“*nn];
INITIAL => *Square{ IAGA[2 3]]:
ENDMODULE SquareEx;

The sequence of evaluation in these cases is as
follows (where INITIAL denotes the first rule in a
Dactl program to be rewritten); for the first program
we have:

*INITIAL — #IAAA{ 2 ~*IMul[3 4) }
— #IAAA[2 ~*12]
— *IA4d(2 12)
— *14

and for the second one we also have:

*INITIAL - *Square[Iadd[2 3

11
- #IMul("*n:TAGA[2 3] n]

— #IMul[“*n:5n]
— *IMul{ n:5n]
— *25

Note the use of the identifier n to indicate the sharing
of the sub-expression TAGA[2 3].

A final example illustrating some of the points
discussed in this section is a nondeterministic merge
program;

Merge[Cons([x xs] ys zs:Var] —>
*Merge[xs ys zslj,
zs:=*Cons[x zsl:Var] |

Merge[xs Consl[y ys] zs:Var] —
*Merge(xs ys zsl],
zs:=*Consy zsl:Var]|

Merge([Nil ys zs:Var] -> zs:=*ys|

Merge[xs Nil zs:Var] -> zs:=*xs]|

Merge[ll:Var 12:Var zs] ->
#Merge[*xs “ys zs}:

Note here the use of the redirection operation : = to
redirect all arcs pointing to some node with label
Var to its “value” thus effectively modelling
assignment. Note also the last rule which suspends
until either of Merge’s first two arguments is
instantiated to a list. Nondeterminism in the above
program stems: i) from the use of the rule separator
| indicating a nondeterministic choice in the case of
more than one rule being a candidate for matching,
and ii) from the last rule where Merge will activate
again when any one of its first two arguments gets
instantiated.

Further details about the language will be mentioned
when we discuss particular examples; however, for
detailed information on TGRS the reader is advised to
consult references ([5,21] whereas for Dactl
appropriate references are [9,8].

3.1 Multi-Headed Rules

The fundamental difference between the framework
just described and the one that will be used in the rest
of the paper is the extension of the rewrite rules with
multi-headed left hand sides. In particular, a rule now
is of the form:

Pattern -> Contractum, X 1TV e X 12V,
ulzl..ujz:;

where

Pattern ::= node,..,node

Multi-headed pattern matching allows powerful
programming techniques. Compare the following
piece of code implementing a Fibonacci function and
using multi-headed rules

65

Fibln m] -> *last[0], *Current[1],
*Campute[n}, *Result[m];

Campute[n], Lastix], Current(y]l ->
#Campute [~*ISub(n 1}],
#Current [**IAdd[x y]]1, *Last(y]:

Campute[0], Current[n], Result[m:Var] ->
m:=*n;

with the following one which is written in a
traditional concurrent logic style (a functional style
could also be employed instead).

Fib(n: (0+1) m:Var] -> m:=*n;

Fib[n:INT m:Var] ->
#Fib[~*ISubfn 1] ml:Var},
#Fib[A*ISub(n 2] m2:Var],
m:=##IA34 ("l “m2] ;

Fib[n:Var m] -> #Fib["n m];

As discussed in [1], in the former version the size of
the proof of Fib[n m] is proportional in n and the
number of intermediate results which need to be
stored is always 2. The trick is to keep the last
computed value for the next step of the computation
(by passing Current’s argument to Last) and
then get rid of it. In contrast note that in the
traditional encoding of the Fibonacci function proofs
grow exponentially with respect to n. Incidentally,
we recall that + is the union operator; so in the
second version of Fib, the first rule will be selected
if the argument n is either a 0 ora 1 and the second
is a variable.

An important point to note in the use of multiple
heads is the fact that upon matching a set of nodes
forming the LHS of some rule, the rewriting to the
corresponding RHS will also cause the removal of
these nodes from the graph apparatus. To be more
precise, rules such as the second one in the first
version of Fib are actually written as follows:

rl:Campute(n}, r2:Last[x], r3:Current[y]
-> #Campute [**ISubln 117,
#Current [**IAdd({x y}], *Last[y],
rl:=*GARBAGE, r2:=*GARRACE,
r3:=*GARBAGE;

Thus, the multiple TGR rules exhibit a “linear”
behaviour ([1,4]) where heads forming the LHS of a
matched rule denote resources which must be
consumed whereas those redexes created in the RHS
instead denote resources which can be created. This is
the sort of behaviour we want when multiple heads
are meant to be used in modelling object-oriented
behaviour as will be shown in section 5. However,
as we shall see when we discuss the modelling of
CCP in the next section, we may want to retain
these heads after a reduction has been performed by

means of a matched rule. This can be done easily and
efficiently by simply including the respective head id
(such as r1, r2 or r3 above) in the RHS of the
rule. In general and for reasons of readability we will
refrain from redirecting explicitly the heads of a
matched rule to the atom GARBAGE, although it
should be assumed as taking place for every such
head with the exception of those whose head ids
appear also in the RHS of the rule.

Finally, note that the overwhelming majority of
theoretical results that have developed for TGRS
([5.21]) carty over to the case where multi-headed
rewrite rules are involved in a computation. So our
underlying theoretical framework requires no
semantic extensions.

4. Concurrent Constraint
Programming Using Multi-

Headed TGRS

One of the advantages of mapping a computational
model onto TGRS is that all objects involved in the
computational model (data values, variables, agents,
constraints, etc.) are represented uniformly as graph
nodes shared by arcs. In addition, all operations
performed by the computational model (instantiation
of variables, communication and synchronisation of
concurrently executing processes, etc.) are effectively
modelled by modifying a representative graph
structure as dictated by associated sets of rewrite
rules.

The consequence of TGRS exhibiting these
characteristics is that in mapping the CCP formalism
onto it all activities associated with both agent
behaviour and constraint solving can be represented
uniformly. The main advantages of such an approach
is that the interaction between the two components
of a CCP program (agents and constraints), as they
both evolve in the concurrent execution of a CCP
program, can now be clearly seen; this is contrary to
the “black box™ approach that it is often adopted
where the constraint solving is completely isolated
and invisible to the user program. Thus: i) it is
possible to examine the way constraint solving
influences the execution of the user program, ii) the
constraint system, not being fixed, can be tailored to
the needs of the user program, iii) reasoning about
the (concurrent) execution of a user program can be
done more easily, iv) the resultant model increases
concurrency a) between agents and constraints and b)
within the agents and the constraints themselves.

The ability of TGRS to model both agents and
constraints uniformly is illustrated in the following
figure which shows the graphical representation of a
store containing the agents F(x y z] andGly z
w)] and the constraints <x=1, y=2, gz<=w>.

66

Agents, constraints and arguments to them are all
represented by graph nodes; relationships between
them is represented by arcs connecting the
appropriate nodes. Note that the direction of arcs
indicates which nodes are arguments to other nodes
(so, for instance, LessEq has as arguments z and
w).

We show now how all the main activities in the
execution of a CCP program as described in section 2
are modelled by graph transformations.

4,1 Entailment Relation

The entailment relation + can be modelled in TGRS
by noting that each entailment pair <t1,..,tn F
t> can be simulated effectively by a tell operation.
In particular, since if <t1,..,tn F t> we have
that t1,.., tn U t is consistent, we can model the
above entailment pair by means of the following
TGRS rule

rl:tl, .., m:tn -> *rl, .., *rn, *t;

making use of multi-headed left hand sides. Note here
the repetition of the head ids r1, ..., rn in the RHS
of the rule. We recall from section 3.1 that heads in
the LHS of a matched rule are actually removed from
the graph upon rewriting to the RHS of the rule.
Since constraints in CCP are added to the store
monotonically (i.e. an added constraint can never be
removed), we want to retain the matched constraints
after rule reduction has been performed. This is
achieved in the way shown above which in fact is an
optimisation for the similar rule

1, .., tn -> *tl, .., *tn, *t;

where we garbage collect t1, ..., tn only to create
them again immediately.

A more concrete example follows promptly (where
=» is taken to mean “it translates to”).
<x=1, x=y b y=1>

=
x:1, r:x yl -> *x, *r, y:=*1;

4.2 Asking and Nondeterministic Selection

The way the ask constraint and the nondeterministic
selection operator + is modelled is shown below.

flx,v,2) :: ask{x=1) -> gly)
+
ask(y=2) -> h{z).
=

Fix:Var y z] -> #F["x y z];
Flx:1y z] = *G[y];
Flx y:Var z] -> #F[x *y z];
Flx y:2 z] -> *H[z];

In particular, ask is modelled by means of pattern
matching and the nondeterministic behaviour of the +
operator is captured by the parallel rule separator |
which indicates that both rules for F should be tried
for matching concurrently (and also by the
overlapping patterns in the left hand sides of the two
rules as in the original program). Note the
suspension in the first and third rules if it cannot be
determined whether the corresponding ask operations
can be satisfied (in this case because the variables
involved are still unistantiated).

4.3 Telling
The tell constraint is modelled as follows.

flx,y,2) :: tell o=1,y>5) -> g{z).

=
Flx y z] => x:=*1, *GT[y 5], *G[z];

Note that more complicated constraints such as >
(greater than) are translated into equivalent elementary
functions which effectively simulate a large (even
infinite) number of rewrite rules. Also, we recall that
the above rule models eventual publication of told
constraints. To model atomic publication the non
trivial requirement of locking an arbitrary part of the
graph would have to be satisfied.

4.4 Parallel Composition and Existential
Quantification

The modelling of the last two fundamental activities
of a CCP program is done as follows.

f(x) :: y.gx.y) Il Iz.hix,z)

=
F[x] -> *G[x yl, y:Var, *H[x z], z:Var;

Since in TGRS there is no concept of a variable, a
new variable is denoted by creating a node with the
special pattern Var which is interpreted by all agents
as representing an unistantiated variable.

As a final example we consider the following CCP
fragment of a program implementing the N Queens
problem.

queen(n,a) :: 31.(gen(n,l1) i
queent(l, (1,[].a,[]1)).

queenl (cl,ncl, 1, s0, s2)
ask(cl=[cfler]) ->
3sl. (check(cf,cr,ncl, 1,s0,s1) |
queenl (cr, {cf|ncl), 1,s1,s2))
+
ask(cl=[],ncl={]) -> tell(s0=([1]s2])
+
ask(cl=[],ncl=[_|_])) -> tell(sD=s2).

gen(n,x) ::
ask(n=0) > tell(x=[])
+
ask(n>0) ->
Jm xs. ((tell x=[n|xs],
tell (r=n-1))
-> gen(m,xs) .

Its translation to an equivalent set of TGRS rules is
shown below.

Queen(n a] -> *Gen(n 1],
*Queenl [l Nil Nil a Nil),
1:Var;

Queenl[cl:Cans(cf cr] ncl 1 s0 s2] -
*Check[cf cr ncl 1 s0 s1],
*Queenl [cr Cons[cf ncl] 1 sl s2),
sl:Var|

Queenl [cl:Nil ncl:Nil 1 s0 s2) -»>
*Eg(s0 Cons(l s2]]|

Queenl [cl:Nil ncl:Cons{aNY ANY] 1 sO s2]
-> *Bgq[s0 s2] |

Queenl([cl:Var ncl:Var 1 s0 s2) -»>
##Queenl el *ncl 1 s0 s23;

Gen[n:0 1} -> *Eq[l Nil]|

Gen{n: (INT-0) 1] —>
*Eq(l Cons{n 1s]), #Eq[m ~*ISubln 1]],
*Gen[m 1s], m:Var, ls:vVar|

Gen{n:Var 1] -> #Gen([™n 1];

67

*Eql]

Cons|

\

I:Var n:1 Is:Var

Incidentally, we recall that the keyword ANY will
match any node and thus patterns like (INT-0} will
match any integer but 0.

One of the advantages of using TGRS is that the fine
grain execution of the CCP program is completely
visible to the programmer (in the Dactl environment,
for instance, it is possible to trace the execution of a
program) and thus a number of properties about the
program’s behaviour can be revealed. As an example
if we trace the execution of the goal Gen[1 Var]
we get the graph structure shown above.

Simple lines denote evolution of agents, arrows
denote sharing of data structures and the thick arrows
highlight the data dependencies between agents during
their evolution. By examining the graph, one is able
to notice, for instance, that in order for the agent
Gen (and hence the associated constraint Eq) in the
right hand side of the graph to be able to evolve, its
first argument (m) must first be instantiated by the
other Eqg constraint. Thus one can use this
knowledge about the partial ordering of events to
derive a better coding, either at a lower than the
TGRS level or even at the TGRS one by
transforming the second rule for Gen to the
following one.

Gen[n: (INT-0) 1) ->
*Eg(1l Cons[n 1s]), #Eg[m ~*ISub[n 1}],
#Gen ["m 1s], m:Var, 1s:Var|

Here note that the recursive Gen will remain inactive
until its first argument is instantiated by the Eq
constraint thus saving some uneccessary overhead of
activation and immediate suspension.

]

m:Var

5. Object-Oriented Programming
Using Multi-Headed TGRS

The relationship between multi-headed TGRS rewrite
rules of the form

HL,.,Hn > B

and Object-Oriented Programming can be understood
if one views the multiple heads H1, ..., Hn as object
“slots” for method invocation. Encapsulation and
hiding is then modelled by having rewrite rules
which use only a subset of H1,..,Hn. Also,
inheritance is achieved by creating objects which
inherit heads Hi from either a single other object
(single inheritance) or many objects (multiple
inheritance). The following example, the unavoidable
2-D point, illustrates the above points. Such a point
could be represented by means of the following set of
head patterns:

p:Point, mess: (Var+Cons[ANY ANY]),
x:X COORD[INT], y:Y_COORD|[INT)

The first pattern plays the role of the class id (an
object of type Point), the second is a stream of
messages to the object being at any time either a list
of such messages or an unistantiated variable, and the
rest are this object’s arguments (in this case an X and
a Y coordinate in the form of integers). Thus a 2-D
point at coordinates (1,2) is modelled by the context

(Var+Cons [ANY ANY]),
X _COORD[1]}, Y_COORD([2)

Point,

Now using multi-headed LHS one can define
metthods for such an object as follows.

68

Point, Cons[Clear rest],
X_COORD([x:INT], Y_OOORD|[y:INT]
->

Point, rest, X COORD[0], Y_COORD[O];

Point, Cons[Move(dx dy] rest],
X COCRD([x:INT], Y_COORD[y:INT]
->
Point, rest, #X COORD{"*IAAd[dx x]],
#Y_COORD(~*IAdd[dy v1];

p:Point, message_list:Var, x, y
->
p, “message list, x, y;

The first rule defines a Clear methed; note here that
the old values of the X and Y coordinates dissapear
implicitly due to the linear behaviour of the rule as
explained in section 3.1 and are substituted by the 0
value in the RHS of the same rule. The second rule
makes use of the built-in functions for arithmetic to
define a Move method. Finally, the last rule
suspends execution of the context if no messages
have been sent to the object.

One could also define the following method which
projects the target point on the x-axis.

Point, Cons[ProjectX rest], Y_COORD[y:INT]
-> Point, rest, Y COORD[0];

Note that the particular method does not need to
know the value of the x-coordinate. Now it is also
possible to define methods for a coloured 2-P point.

Point, Cons[GetColour [m:Var] rest],
X_COORD([x:INT], Y_COORD[y:INT],
Colour [c:CCOLOUR]

—>
Point, rest, X _COORD([x], Y _CCORD[yY],
Colour(c], m:=*c;

The above method returns in m (which must be a
variable) the colour of the 2-D point, thus employing
the back-communication technique used in concurrent
logic languages. Note that all previously defined
methods for any 2-D point are still applicable to the
case of a coloured one. Note also that COLOUR is a
user-defined pattern denoting the way this particular
class is represented in the system.

In the same way, methods for a 3-D coloured point
can be defined as follows.

Point, Cons[Set_3D Black rest],
X_COORD([x:INT], Y _OOORD(y:INT],
Z_COORD([z:INT], Colour{c:QOLOUR]

->
Point, rest, X CQOORD([x], Y_COORD[y],
Z_COCRD{z], Colour(Black]:;

Again all methods defined for a 2-D and a 2-D
coloured point are applicable to a 3-D coloured one.
Thus we see that the use of multi-headed rules
implements single and multiple inheritance directly
whereas in other similar models such as concurrent
logic languages the same functionality can be
achieved by the, rather indirect, technique of
delegation.

6. Conclusions

‘We have presented a highly parallel execution model
for Object-Oriented Concurrent Constraint Programs
using as a common uniform formalism the Term
Graph Rewriting computational model. The approach
we have used to support Object-Oriented
Programming techniques complements the one we
propose in [19] where we introduce records. It is also
closely related to the LO model proposed in ([1]);
however, our model is effectively a subset of that one
and restricts computation within a single context
(being similar in this sense to the model proposed in
[11]). As far as Concurrent Constraint Programming
is concerned, our approach is similar to the one
presented in [17] where, however, graph grammars
are used instead.

The advantages of using the TGRS model for Object-
Oriented Concurrent Constraint Programming can be
summarised as follows:

* The model is highly parallel at all levels of
interaction between the concurrently executing
entities (agents, objects, constraints, etc.).

¢ The uniform representation and handling of the
activities associated with both the Object-
Oriented and the Concurrent Constraint
components offers a natural integration
mechanism and facilitates the reasoning about
the run-time behaviour of programs.

* Since TGRS languages have been implemented
on parallel configurations ([14,21]) the
mappings we have described in this paper
effectively form an implementation apparatus.

We are currently examining ways to efficiently
implement the multi-headed pattern matching and in
the process we draw expertise from other models
([1,11,16]) which use similar mechanisms.

Acknowledgements

Part of this work was done while the second author
was visiting GMD-FIRST as part of the ERCIM-
HCM Fellowship Programme financed by the
Commission of the European Community under
contract no. ERBCHBGCT930350.

69

References

1

(2]

(3]

4]

(5]

(6]

7

[8]

[10]

J.-M. Andreoli and R. Pareschi, Linear
Objects: Logical Processes with Built-in
Inheritance, JCLP’90, Jerusalem, Israel, June
18-20, MIT Press, pp. 495-510.

R. Banach, J. Balazs and G. A. Papadopoulos,
Translating the Pi-Calculus Into MONSTR,
submitted to the Journal of Universal
Computer Science, 1994.

R. Banach and G. A. Papadopoulos, Parallel
Term Graph Rewriting and Concurrent Logic
Programs, Parallel and Distributed Processing
‘93, Sofia, Bulgaria, May 4-7, Bulgarian
Academy of Sciences, pp. 303-322, North
Holland (to appear).

R. Banach and G. A. Papadopoulos, Linear
Behaviour of Term Graph Rewriting
Programs, ACM Symposium on Applied
Computing °95, Nashville, TN, USA, Feb.
26-28, ACM Computer Society Press (to

appear).

H. P. Barendregt, M. C. J. D. Eekelen, J. R.
W. Glauert, J. R. Kennaway, M. J. Plasmeijer
and M. R. Sleep, Term Graph Rewriting,
PARLE’87, Eindhoven, The Netherlands, June
15-19, LNCS 259, Springer Verlag, pp. 141-
158,

B. N. Freeman-Benson and A. Borning,
Integrating Constraints with an Object-
Oriented Language, ECOOP’92, June, LNCS
615, Springer Verlag, pp. 268-286.

J. R. W. Glauert, Asynchronous Mobile
Processes and Graph Rewriting, PARLE’92,
Champs Sur Marne, Paris, June 15-18, LNCS
605, Springer Verlag, pp. 63-78.

J. R. W. Glauert, K. Hammond, J. R.
Kennaway and G. A. Papadopoulos, Using
Dactl to Implement Declarative Languages,
CONPAR’88, Manchester, UK, Sept. 12-16,
Cambridge University Press, pp. 116-124.

J. R. W. Glauert, J. R. Kennaway, and M. R.
Sleep, Final Specification of Dactl, Internal
Report SYS-C88-11, School of Information
Systems, University of East Anglia, Norwich,
UK, 1988.

J. R. W. Glauert and G. A. Papadopoulos, A
Paralle] Implementation of GHC, FGCS’88,
Tokyo, Japan, Nov. 28 - Dec. 2, Vol. 3, pp.
1051-1058.

[t

(12]

(13]

(14]

{15]

{16]

(17}

(18]

[19]

(20]

(21]

[22]

70

- Ph.D. Thesis,

A. Guglielmi, Concurrency and Plan
Generation in a Logic Programming Language
with a Sequential Operator, /CLP’94, Santa
Margherita, Italy, June 13-18; MIT Press, pp.
240-254.

K. Hammond, Parallel SML: A Functional
Language and its Implementation in Dactl,
School of Information
Systems, University of East Anglia, Norwich,
UK, published by Pitman Publishers, 1990.

S. Janson and S. Haridi, Programming
Paradigms of the Andorra Kernel Language,
ISLP’91, San Diego, USA, Oct. 28 - Nov. 1,
MIT Press, pp. 167-186.

J. A. Keane, An Overview of the Flagship
System, Journal of Functional Programming
4(1), pp. 19-45, January 1994,

J. R. Kennaway, Implementing Term Rewrite
Languages in Dactl, Theoretical Computer
Science 72, 1990, pp. 225-250.

J. Meseguer, Solving the Inheritance Anomaly
in Concurrent Object-Oriented Programming,
ECOOP’93, Kaiserslautern, Germany, July
26-30, LNCS 707, Springer Verlag, pp. 220-
246.

U. Montanari and F. Rossi, Graph Rewriting
for a Partial Ordering Semantics of Concurrent
Constraint Programming, Theoretical
Computer Science 109, 1993, pp. 225-256.

G. A. Papadopoulos, A Fine Grain Parallel
Implementation of Parlog, TAPSOFT’89,
Barcelona, Spain, March 13-17, LNCS 352,
Springer Verlag, pp. 313-327.

G. A. Papadopoulos, Object-Oriented Term
Graph Rewriting, to be submitted for -
publication, 1995.

V. A. Saraswat, Concurrent Constraint
Programming, Ph.D. Thesis, Carnegie-Mellon
University, January 1989, appeared as ACM
Doctoral Dissertation Award, MIT Press series
on Logic Programming, 1993.

M. R. Sleep, M. J. Plasmeijer and M. C. J.
D. Eekelen (eds.), Term Graph Rewriting:
Theory and Practice, John Wiley, New York,
1993.

G. Smolka, M Henz and J. Wiirtz, Object-
Oriented Concurrent Constraint in Oz,
Research Report RR-93-16, DFKI, Germany,
April 1993.

