
A Multi-dimensional Model Enabling Autonomic
Reasoning for Context-aware Pervasive Applications

Nearchos Paspallis
Department of Computer Science,

University of Cyprus
20537-1678 Nicosia, Cyprus

+357-2289-2672

nearchos@cs.ucy.ac.cy

Konstantinos Kakousis
Department of Computer Science,

University of Cyprus
20537-1678 Nicosia, Cyprus

+357-2289-2684

kakousis@cs.ucy.ac.cy

George A. Papadopoulos
Department of Computer Science,

University of Cyprus
20537-1678 Nicosia, Cyprus

+357-2289-2693

george@cs.ucy.ac.cy

ABSTRACT

A fundamental requirement for autonomic computing is to be able

to automatically infer how human users react in similar contextual

conditions. This paper examines the problem of autonomic

reasoning for adapting context-aware applications in mobile and

pervasive computing environments. In this type of systems, both

the context and the adaptation possibilities must be modeled

appropriately to enable the adaptation reasoning engine to infer

decisions on which adaptations to perform. It is assumed that

multiple cross-cutting concerns affect such decisions, and thus we

introduce a multi-dimensional, utility-based model which

attempts to simulate the user’s reasoning mechanisms. The

proposed model is applied to component-based mobile and

pervasive applications, and is being evaluated through a detailed

scenario. It is argued that the proposed model provides a novel

and promising approach for designing context-aware, self-

adaptive systems, in particular with respect to mapping the

adaptive behavior to the system.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Object-oriented design

methods

General Terms
Algorithms, Design, Human Factors

Keywords

Context-aware, Self-adaptive, Utility functions, Modeling

1. INTRODUCTION
With the advent of mobile computing and the increasing

importance of ubiquitous computing, one can easily realize the

potential of context-aware, self adaptive systems. Such systems

are commonly expected to provide autonomic behavior, utilizing

their knowledge on the context to adapt their functioning. For all

these, the main driving and guiding force is the optimization of

the user experience. In other words, the context is sensed and the

adaptations are decided with the purpose of improving the service

utility as it is perceived by the user in the mobile or ubiquitous

computing environment.

However, building systems which can be configured to anticipate

and react on the user needs and wishes is not trivial. The human

reasoning is complex and it has not been sufficiently understood

yet. Furthermore, different users exhibit different behavior and

consequently, different choices. Even if users were interviewed,

many would not be able to detail their decision process in the

form of an algorithm. Many users are not even explicitly aware of

the factors which affect their decision, when faced with a choice.

In this respect, we propose an approach which attempts to take

into consideration as many choice-affecting aspects as possible.

These aspects form a multidimensional space, and the choice is

automatically made based on the overall matching across these

dimensions. It is argued that this approach can offer a reasonable

approximation of the user’s reasoning process, while at the same

time requiring only a reasonable amount of work from the

developers. Finally, it is assumed that the developed applications

are component-based and are dynamically composed at runtime.

The rest of this paper is structured as follows: Section 2 provides

the required foundations regarding context awareness and self-

adaptive behavior in mobile and pervasive computing systems.

Then, the basic multi-dimensional reasoning model is presented in

Section 3. A case-study scenario is introduced in Section 4 to

evaluate the proposed multi-dimensional utility-based approach.

This approach is compared with related work in Section 5 and,

finally, Section 6 concludes the paper by summarizing its main

contributions and by pointing to our plans for future work.

2. FOUNDATIONS
Consider a user in a mobile or pervasive computing environment.

Such environments are generally designed to offer services to the

users and they involve both direct and indirect user interaction. In

both cases it is assumed that the user perceives the service and has

a personal opinion about its utility (i.e. different users might

perceive the utility of the same service differently). In this

discussion, the utility refers to a quality metric, broader than

Quality of Service (QoS), which aims to capture the general user

satisfaction with the functioning of a system in a given context.

For instance, if a user prefers a system configuration over another

Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage

and that copies bear this notice and the full citation on the first

page. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

MobiQuitous 2008, July 21-25, 2008, Dublin, Ireland.

Copyright © 2008 ICST ISBN 978-963-9799-27-1

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3848
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3848

one, then it is assumed that the former has a higher utility. A more

formal definition of utility is provided further on.

In mobile and ubiquitous computing environments, the context

changes frequently. For this reason, systems targeting this type of

environments feature multiple configurations and modes (referred

to as variants in this paper), which are designed to optimize the

utility for different subsets of the context space. In the scope of

context-aware, self-adaptive systems the main goal is to provide

mechanisms which dynamically and automatically find and apply

the optimal configuration as the context changes. In this case, we

assume that the optimality is computed by means of the user-

perceived utility, which must be maximized.

In order to enable a more rigorous study of the problem, we

propose a set of definitions for context, variants and utility. These

definitions provide the foundation for the proposed approach.

2.1 Context
In this text we follow Dey’s definition for context, which is one of

the most frequently cited [1]: “Context is any information that can

be used to characterize the situation of an entity. An entity is a

person, place, or object that is considered relevant to the

interaction between a user and an application, including the user

and application themselves”.

In practice, context can be divided into several cross-cutting

types, or dimensions. Some of these are infinite (e.g. time) while

some others are limited in value (e.g. the user’s gender can only

be “male” or “female”). In this perspective, the context might be

modeled as a multidimensional space in which each relevant

context type defines a dimension (in the case of types with finite

value-domains, each value is assigned a range in the dimension).

Similar approaches exist in the literature such as the one in [2].

Assuming that each context type can be abstracted by a real

number (i.e. �), then a context space of d types can be abstracted

as a d-dimensional space �d. Then, at any time t, the context can

be abstracted by a point ct, which defines a value for each of the d

dimensions (i.e. the ct is defined as (ct
1, ct

2, …, ct
d), where ct

i

indicates the context value at dimension i for the time instance t).

We refer to these points ct as context instances. More formally,

these two terms can be defined as follows:

Context instance
ct A (ct

1, ct
2, …, ct

d) � �d, where ct
i � � � i in [1..d]

(1)

Context space
context space A �d

(2)

In these definitions, the context space (or context) is defined as a

d-dimensional geometric space, and a context instance is a point

(or vector) of the space. Although a geometric analogy is used to

characterize the context, no assumptions are made concerning the

relation between points, especially their geometric distance. Since

discrete states of context can be mapped to (arbitrary) real values,

no relation can be guaranteed for neighboring points.

2.2 Variants
In software engineering, there are two main approaches for

software adaptation: parameter adaptation and compositional

adaptation. Several aspects of adaptations have been extensively

studied, such as where, when, and how they are applied [3].

In the context of mobile and ubiquitous computing environments,

adaptivity is required to overcome the variability of these

environments. In this respect, systems are designed with adaptive

properties so that a system can be configured in different modes

(i.e. combinations of component compositions and parameter

settings), each one of which is designed to offer maximum utility

for different conditions of the context. The main characteristic of

alternative variants is that they maintain the functional properties

of the software system, while possibly varying their extra-

functional characteristics. In this case, the purpose of the context-

aware, self-adaptive system can be seen as the adjustment of the

extra-functional properties of the system with the aim of

optimizing the perceived utility [4].

Assume that the system supports a finite set of N variants:

variant1, variant2, …, variantN. In practice, the set of variants can

be infinite. For example, in the case of parameter adaptation the

value domain can be infinite (e.g. consider a component which

can be adapted dynamically by setting an interval parameter to

any “positive integer”). In order to simplify the analysis of such

systems, it is important to assume that in such cases, the

adaptation domain can be transformed to a finite set of

configurations by quantizing their value range (i.e. by mapping

ranges of the infinite domain to a finite number of values). For

instance continuing with the previous example, the “positive

integer” parameter can be reduced to {“0”, “greater than zero and

less than 10”, “10 or more”}. In this way, it can be assumed that

the number of variants is always finite.

In some cases, these variants are defined a priori by the software

developers. However, in order to provide maximum flexibility

and to meet the requirements of such dynamic environments, the

variants are often required to be constructed dynamically. For

instance, in component-based systems the variants are constructed

by examining the provided and required services (i.e. interfaces)

of each component [5]. Thus, the exact set of available variants

fluctuates according to the availability of components and

services and also according to the contextual conditions. The

definitions of variants are summarized below:

Variant
A variant is any parameter-based or compositional-

based configuration of the application, maintaining

its original functional properties

(3)

Variants
variants A {variant1, variant2, …, variantN}

(4)

In this paper, we are primarily concerned with component-based

applications, and thus we assume that the system comprises of

either a single application or a set of applications. However, we

consider the utility of each possible application individually,

partly based on the user preferences for each one of them, as it

will be discussed in the next section.

2.3 Utility Functions
Here, we refer to utility functions as mathematical artifacts which

map combinations of context states and variants to scalar values,

typically in the range [0, 1] where 0 indicates minimum (worst)

utility and 1 indicates maximum (best) utility (i.e. quite similar to

the notion used in micro-economic where utilities represent user

happiness). The choice of the [0, 1] bounds provides the

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3848
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3848

convenience of allowing the multiplication of different utilities

without exceeding the original bounds.

The purpose of a utility function is to provide a formal,

mathematical method for computing the utility of a service, as it is

perceived by the end-user. In this respect, the utility function is

defined as shown below:

Perceived utility fu nction
A perceived utility function (Uperceived) is a function

that for any context point Ct and any two variants Vx

and Vy, it computes arithmetic values (e.g. in the

range of [0, 1]) so that f(ct, vx) > f(ct, vy) if and only

if the user prefers variant Vx to Vy from her or his

point of perception

(5)

Given this definition, the problem of decision in self-adaptive

context-aware systems becomes the formation of a computed

utility function (Ucomputed) which can approximate the perceived

utility. This approximation is the topic of the following section.

3. MULTI-DIMENSIONAL MODEL
Most modern mobile phones provide personalization, and manual

adaptation through profiles, which are user-customizable. For

example, a user can configure the “default” profile of his smart-

phone with a custom tune and also by setting the vibration off.

This implies that when the “default” profile is selected, the user is

alarmed for incoming calls with the selected tune and the smart-

phone does not vibrate. Different profiles, such as the “meeting”,

can have different settings such as sound-off and vibration on.

This example is a scenario where the adaptation affects multiple

dimensions. For instance, one such dimension is whether there

will be a tune played when the phone receives a call or not, and

another dimension is whether the vibration will be activated or

not. A third dimension, which is not completely cross-cutting, is

which tune is played for incoming calls. In this paper, we extend

this model, to arbitrary numbers and types of dimensions. We

refer to these as adaptation dimensions, and we argue that it can

provide the foundation for specifying context-aware, self-adaptive

applications, as it will be described later on.

To enable this kind of adaptation reasoning, the utility of each

application is computed independently for each dimension, and

the overall utility is computed as their weighted sum. Regardless

of whether the subject under discussion is an application or an

individual component, its utility over a specific dimension can be

more easily computed in terms of a fitness function. Such

functions measure the fitness of particular variants for specific

context conditions. For example, considering the dimension of the

mobile phone sound alert, the fitness function would examine if

the variant into consideration (e.g. sound off) is a good fit for a

given context (e.g. in a meeting). Fitness functions are essentially

utility functions covering only a specific aspect of the adaptation.

In practice, it is not possible to define a perfect utility function,

because generally users are not completely aware of how they

perceive the optimality of a service, nor can they describe it. For

instance, it is possible for a user to sense that she or he prefers one

variant over another, without explicitly knowing why and which

contextual factors affect their opinion. Furthermore, it is possible

that the user’s perceived utility depends on factors that cannot be

explicitly measured or abstracted, such as their emotional state.

Uperceived(variantX)A¦
i

U
i
perceived(variantX) (6)

Ucomputed(variantX)A¦ U
i
perceived(variantX)

K

i

(7)

Ucomputed(�) # Uperceived(�) (8)

In this text, we propose the formalization of utility functions

which try to approximate the functioning of the users’ internal

reasoning process. In practice, users evaluate the utility of a

service over numerous aspects. This can be expressed by an

equation as shown by formula (6), where the fitness function over

dimension i is expressed as Ui. However, in order to implement a

realistic adaptation reasoning algorithm which imitates the user,

we define the computed utility which is an approximation of the

perceived utility as shown by formula (7), and which is computed

over a subset of the dimensions of the perceived utility. For

example, a user perceives the overall utility offered by a video-

conference system as a combination of many factors, but that

could be simulated by examining his perception over the video

clarity and latency only. It is argued that this approach results to a

computed utility which approximates the user perceived utility, as

shown by formula (8). Furthermore, it is argued that this

approximation provides a reasonable and realistic approach for

enabling context-aware, self-adaptive behavior.

Finally, it is worth noting that this elementary approach enables

adaptation reasoning over multiple dimensions, but it is limited in

terms of customization. Most notably, it is expected that different

users have different perception for the importance of each of the

examined dimensions, compared to other users. For this reason,

the overall utility of an application is expressed as the weighted

sum of the dimensional utilities, as shown below:

¦

¦

�

{
K

i

i

K

i

mjii

mj

w

CVfitnessw

CVUtility

1

1

)),((

),(

(9)

The weights wi can be adjusted to reflect the importance of each

of the monitored dimensions for the targeted user. In this paper, it

is assumed that the weights are manually adjusted by the users,

but in future work we plan to provide methods and mechanisms

that automate this (for example by taking into consideration user

feedback that is collected at runtime).

Given this mathematical method for computing utilities, a

context-aware, self-adaptive system can be constructed by means

of evaluating the computed utility of each variant whenever the

context changes, and by adapting to the optimal variant when

needed. This approach is evaluated in the following section.

4. CASE STUDY-BASED EVALUATION
To illustrate the functioning of the proposed approach, we present

a case-study scenario, along with explanations of how the utility

functions are evaluated along the scenario. The scenario is about

an on-site technician who uses a smart-phone device to assist her

in her everyday assignments. In particular, the smart-phone runs a

specialized, context-aware application which updates her of any

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3848
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3848

upcoming tasks even while out of the office and, also, it allows

her to interact with her colleagues when she needs to do so.

For simplicity, we consider four dimensions only. Based on these

dimensions, the system tries to optimize the user’s perception.

These dimensions are the hands-free operation, the audio volume,

the system response and the video quality. The hands-free

operation dimension examines the user’s need for hands-free

operation (i.e. when she is driving) and the system’s ability to

provide her this mode. The audio volume dimension controls the

audio volume, for which the user’s need may vary, based for

example on the ambient noise. The system response dimension

measures the capacity of the system to quickly respond to the user

input. The user’s need for responsiveness may vary based on her

activities (e.g. relaxing at home or working on a difficult and

stressful task) and its provision can depend on factors such as

CPU load and network latency and bandwidth. Finally, the video

quality dimension measures the video stream quality (i.e. in terms

of resolution, refresh rate, and colors), which is relevant when the

user uses to a video conferencing application.

A typical day of this user is as follows: The user wakes up and

starts preparing for work. She then takes her car to work, at which

time she instructs her smart-phone to sync with the enterprise

server. When the user arrives at office, she has a video conference

with her colleagues to plan the day’s activities. Next, she drives to

a client’s site and her agenda is updated dynamically while she

drives. The updates are spoken to her by a text-to-speech system.

The user arrives on-site and uses the device to get information in

the specifications of the machinery she needs to maintain, and

also in order to contact her colleagues by voice when needed.

To enable this sort of scenario, a smart-phone device is assumed,

running an appropriate context-aware, adaptation supporting

middleware. Such middleware would provide functionality for

automatic context management (i.e. sensing and access of context

data), and for deployment and adaptation of applications.

4.1 Experimental Setup
In the following paragraphs, we describe the experimental setup

which is based on the case study scenario and which attempts to

demonstrate how the multi-dimensional utilities approach is used.

Table 1: Case study scenario - Possible variants

Short name Descr iption
1 Offline-Visual No net connection with visual UI

2 Offline-Audio No net connection with audio UI

3 Offline-Audio-

Loud

No net connection with audio UI and

loud volume

4 Online-Visual Online operation with visual UI

5 Online-Audio Online operation with audio UI

6 Online-Audio-

Loud

Online operation with audio UI and

loud volume

7 VideoConf-HQ Video conference mode with high

quality streaming

8 VideoConf-LQ Video conference mode with low

quality streaming

First, based on the possible component compositions and the

parameter settings, the middleware dynamically constructs the set

of possible variants (i.e. possible system configurations). These

variants specify compositions of the application, as well as values

of their configurable parameters. For simplicity, the numerical

parameters are quantized to a few values only (e.g. the volume is

set for either noisy or quiet environments, as opposed to allowing

arbitrary values in a range of 0 to 1 for example). A limited and

fixed set of variants is defined as shown in Table 1.

Throughout the execution of this scenario, the middleware

monitors the context (including the user’s occupation, status and

anticipated needs) and tries to autonomously select the most

suitable variant. This sort of adaptation is decided by means of a

feedback control loop, which continuously estimates the utility of

each possible configuration through a set of utility functions (in

this case the feedback consists of the sensed context values).

Applying the four detected dimensions to the utility function of

formula (9) results to the equation shown below:

4321

44332211)()()()(
),(

wwww

fwfwfwfw
CVU mj

���

�����������

(10)

In this case, the utility of each variant Vj for some given context

conditions Cm is computed as the weighted sum of the fitness of

the given variant for the specified context, over the four detected

dimensions. In this case, the weights are assumed to be values in

the range [0, 1] reflecting the importance of each aspect to the

targeted user. In this example, it is assumed that all weights are

equal (for example set to 1).

Next, the fitness functions of formula (10) are defined, in relation

to the context and to the variants’ properties. Generally, the

fitness functions attempt to evaluate the relevant context types

and the corresponding properties of the variant into question.

Their goal is to return higher values for better matches of the

given context with regards to the dimension into consideration.

An example of how the functions of the case study example

would be constructed with pseudo-code is depicted in the

following:

f1(�) A Utilityhands-free:

 if(context.user.state is driving OR manual_work)

 then return variant.offered_hands-free

 else return 1 - variant.offered_hands-free

f2(�) A Utilityaudio-volume:

 1 – diff(context.env.noise_level, variant.offered_audio-volume)

diff(x, y): a function which compares two values x, y and returns a

higher value the more different they are (min 0 and max 1)

f3(�) A Utilitysystem-response:

 if(context.user.state is manual_work)

 then (0.7*variant.offered_sr + 0.3*context.resources.cpu_avail)

 else (0.5*variant.offered_sr + 0.5*context.resources.cpu_avail)

f4(�) A Utilityvideo-quality:

 if(context.user.state is video_conferencing)

 then (0.6*variant.offered_vq + 0.4*context.resources.net_bw)

 else 0

Figure 1: Fitness functions of the case study scenario

Figure 1 shows how the fitness functions are generally expressed

in terms of context values (e.g. context.user.state) and variant

properties (e.g. variant.offered_hands-free). Based on the body of

these fitness functions, the context needs can also be computed.

To better understand the nature of the dimensional (fitness) utility

functions, consider that had the user being interested in just one

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3848
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3848

dimension of the adaptation domain (e.g. hands-free option), then

that fitness function (e.g. f1) would correctly rank the variants for

a context state, based on their offered hands-free properties only.

As mentioned already, it is assumed that the middleware provides

automatic management of context sensing, and asynchronously

informs the adaptation reasoning engine whenever some relevant

context change occurs (i.e. a change in the above context types).

The relevant context types for this scenario are shown in Table 2.

Table 2: Case study scenario - Needed context types

Context type Descr iption & Values
Describes the state of the user (i.e. whether

she or he is working, resting, sleeping, etc)

user.state

Values: driving, manual_work, video_conf,

resting, sleeping

Describes the level ambient noise (i.e. noise

in the environment of the device)

env.

noise_level

Values: lower, low, medium, high, higher

Describes the availability of CPU based on

the work load and the running applications

resources.

cpu_avail

Values: 0:0.1:1, where smaller values

indicate lower availability and higher values

indicate higher availability

Describes the bandwidth of the network, as a

percentage of the total available (e.g.

assuming a 54Mbits 802.11G interface)

resources.

net_bw

Values: 0:0.1:1, where 0 indicates no

network connection, 1 indicates 54Mbps

bandwidth availability, etc

The other constituent of fitness functions are the variant

properties. These properties describe the variants in terms of

specific characteristics, such as for example their ability to

operate in hands-free mode. These are shown in Table 3.

Table 3: Case study scenario – Variant properties

Variant ohf oav osr ovq
Offline-Visual 0 0 0.2 0

Offline-Audio 0.8 0.5 0.2 0

Offline-Audio-Loud 0.9 1 0.2 0

Online-Visual 0 0 0.8 0

Online-Audio 0.8 0.5 0.8 0

Online-Audio-Loud 0.9 1 0.8 0

VideoConf-HQ 0.5 0.5 0.7 1

VideoConf-LQ 0.5 0.5 0.7 0.7

4.2 Experiment Scenes
Based on the experimental setup of Section 4.1, we define a

detailed scenario, which comprises a number of individual scenes.

For each one of these scenes, we define the context values for the

relevant context types (As mentioned already, it is assumed that

the middleware provides automatic management of context

sensing, and asynchronously informs the adaptation reasoning

engine whenever some relevant context change occurs (i.e. a

change in the above context types). The relevant context types for

this scenario are shown in Table 2.

Table 2) and we compute the utilities for each dimension

independently, as well as the overall utility. Based on the scenario

described at the beginning of this Section, we define the scenes as

shown in Table 4.

Based on these settings and their specified context values, the

adaptation reasoning engine evaluates the dimensional utilities for

each of the four aspects, as well as the overall utility as the

weighted sum of these utilities. Based on these, an individual

ranking of the variants is inferred for each of the examined

context states. These results are illustrated in Table 5.

Table 4: Case study scenario - Experiment scenes

Scene # Descrip tion & Context
Context user.state env.noise res.cpu res.net_bw

The user is still at home, and syncs her smart-

phone’s agenda over the slow home network.

Scene #1

resting low (0.1) hi (0.9) med (0.5)

The user enters her car and drives to work. She

wants to continue receiving updates in her agenda.

Scene #2

driving med (0.5) hi (0.8) low (0.2)

The user sits at her office and has a video conf

with her colleagues to plan the day activities

Scene #3

video_con

f

med (0.5) hi (0.7) hi (0.9)

The user arrives to the client’s site and performs

manual maintenance on the installed equipment

Scene #4

man_work hi (0.9) lo (0.3) med (0.6)

As illustrated in Table 5, a different variant is selected for each

scene (i.e. context conditions). For the first scene, the typical

online variant with visual UI is selected. This is a reasonable

choice as the home environment is characterized by low ambient

noise, medium network bandwidth and the user is capable of

using the preferred visual UI mode of interaction. The overall

(average) utility is computed to be 0.64, with the corresponding

computed utilities for hands-free, audio-volume, system-response

and video-quality set to 1, 0.9, 0.67 and 0 respectively. The rest of

the selections are also argued to be reasonable for the contextual

conditions of each scene.

Table 5: Adaptation decisions based on dimensional utilities

Scene # Selected Variant Score overall (dimensional)
Scene #1 Online-Visual 0.64 (1, 0.9, 0.67, 0)

Scene #2 Online-Audio 0.61 (0.8, 1, 0.64, 0)

Scene #3 VideoConf-HQ 0.76 (0.5, 1, 0.56, 0.96)

Scene #4 Online-Audio-LD 0.61 (0.9, 0.9, 0.65, 0)

The complete set of computed utilities (both dimensional and

overall) can be computed with a small script implementing the

dimensional utility functions. This can be especially useful for the

developers of the context-aware applications, as it allows them to

fine tune both the variant properties (as shown in Table 3) and the

dimensional utility functions (i.e. the fitness functions as shown in

Figure 1). This kind of matrices provides important insight to the

developers concerning the correctness of the utility functions as

well as the functioning of the context-aware system early on at

development time. In the next section we compare the proposed

multi-dimensional model to the related work, and we argue on its

advantages and limitations.

5. RELATED WORK
The current state of the art refers to three main types of adaptation

approaches, namely action-based, goal-based and utility-function

based [6]. In this paper we are concerned with utility function-

based approaches, which assign values (utilities) to adaptation

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3848
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3848

alternatives and which provide higher levels of abstraction by

enabling dynamic determination of the optimal adaptation

alternative (variant), typically the one with the highest utility.

The use of utility functions for enabling context-aware, self-

adaptive systems is a rather novel approach, receiving increasing

interest from the software engineering community. For example,

the MADAM project proposed a middleware which uses a utility-

based, architectural approach to adaptation [7]. In this case, the

utility functions are also expressed as functions on context, using

intermediate property predictor artifacts. The latter are used to

compute reusable parts of the utility function. Furthermore, a

similar multi-dimensional utility approach is also described in [8],

but which is however limited to four QoS-specific dimensions.

Unlike the state of the art, our approach breaks the computation of

the utility for a variant into several aspects, covering different

cross-cutting dimensions of the adaptation. For instance, the

MADAM approach [7] uses a static approach where the context-

aware properties of applications are fixed into the composition

plans, making the reuse of individual components significantly

harder. Contrary to this, our approach does not depend on any

hard-coded properties in the plans, but rather it dynamically

acquires the relevant properties of each variant at deployment

time by accessing its relevant metadata. This has the significant

advantage of facilitating reusability.

As it is stated in [9], interfacing with humans is one of the main

challenges in designing and implementing autonomic computing

systems. Quoting the author, “the difficulty with utility functions is

that humans find them difficult and awkward to specify”. The

results of this paper target primarily developers of context-aware,

self adaptive systems. It is argued that the proposed model can be

of significant help as it adopts the Separation of Concerns (SoC)

approach to allow the developers to concentrate on an individual

aspect of the adaptive behavior of the system at a time. Further

on, it is argued that the proposed model can facilitate reusability

of the context-aware and adaptation properties of the components

(and applications), which is a significant gain for the developers.

Finally, while this approach appears to have some potential in the

field of context-aware, self-adaptive applications, it naturally

comes with a few limitations as well. For instance, the tuning of

the utility functions can be quite cumbersome and difficult to be

performed. In this respect, we are working on a mechanism which

tries to automatically perform that task with minimum user-

intervention, using results from the control theory field. Another

limitation concerns the case where a large number of variants is

deployed which poses scalability issues. However, as we are

primarily concerned with small mobile and embedded devices

running only a few context-aware applications, it is argued that

this problem will not arise too frequently.

6. CONCLUSIONS
Mobile and pervasive computing introduces new and important

challenges to the software developers. Especially with respect to

the interaction with users, context-aware applications are

expected to automatically and autonomously adapt to maximize

the overall user satisfaction. In this respect, we have introduced a

novel, multi-dimensional utility model which mitigates the

complexity inherent in the development of such systems.

The improvement is achieved by introducing a utility function-

based approach that allows the developers to focus on a specific

aspect of the context-aware, self-adaptive behavior at a time. The

adaptations are decided by matching the offered properties of

each variant to the contextual conditions, and then repeating this

for each relevant dimension. Furthermore, this approach offers

high reusability as both the adaptation properties of the variants

and the utility functions of the system are highly reusable.

7. ACKNOWLEDGMENTS
This work was financially supported by the EU as part of the IST-

MUSIC project (6th Framework Programme, contract no. 35166).

8. REFERENCES
[1] Dey, A. K. 2001. Understanding and Using Context.

Personal Ubiquitous Computing, Vol. 5, No. 1, pp. 4-7.

[2] Padovitz, A., S. W. Loke, A. Zaslavsky. 2004. Towards a

Theory of Context Spaces, 2nd IEEE Annual Conference on

Pervasive Computing and Communications Workshops

(PERCOMW’04), IEEE Computer Society Press, pp. 38-42.

[3] McKinley, P. K., S. M. Sadjadi, E. P. Kasten, and B. H. C.

Cheng. 2004. Composing adaptive software. IEEE

Computer, Vol. 37, No. 7, pp. 56-64.

[4] Paspallis, N., and G. A. Papadopoulos. 2006. An approach

for developing adaptive, mobile applications with separation

of concerns. 30th International Computer Software and

Applications Conference (COMPSAC 2006), Chicago, USA,

IEEE Computer Society Press, Vol. 1, pp. 299-306.

[5] Cervantes, H., and R.S. Hall. 2004. Autonomous adaptation

to dynamic availability using a service-oriented component

model. 26th International Conference on Software

Engineering, (ICSE 2004), Edinburg, Scotland, UK, pp. 614-

623.

[6] Walsh, W. E., G. Tesauro, J. O. Kephart, and R. Das. 2004.

Utility functions in autonomic systems, International

Conference on Autonomic Computing (ICAC), New York,

NY, USA, 17-18 May 2004, IEEE Computer Society Press,

pp.70-77.

[7] Floch, J., S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, E.

Gjorven. 2006. Using architecture models for runtime

adaptability. IEEE Software, Vol.23, No.2, March-April

2006, pp. 62-70.

[8] Alia, M., V. S. W. Eide, N. Paspallis, F. Eliassen, S.

Hallsteinsen, G. A. Papadopoulos. 2007. A Utility-based

Adaptivity Model for Mobile Applications, 21st International

Conference on Advanced Information Networking and

Applications Workshops (AINAW'07), Niagara Falls,

Ontario, Canada, May 21-23, 2007, IEEE Computer Society

Press, pp. 556-563.

[9] Kephart, J. O. 2005. Research challenges of autonomic

computing, 27th International Conference on Software

Engineering (ICSE 2005), St. Louis, MO, USA, pp. 15-22.

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3848
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3848

