
M. Bubak et al. (Eds.): HPCN 2000, LNCS 1823, pp. 177-186, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Modelling Control Systems in an Event-Driven
Coordination Language

Theophilos A. Limniotes and George A. Papadopoulos

Department of Computer Science, University of Cyprus
75 Kallipoleos Str., P.O.Box 20537

CY-1678 Nicosia, Cyprus
{theo,george}@cs.ucy.ac.cy

Abstract. The paper presents the implementation of a railway control system,
as a means of assessing the potential of coordination languages to be used for
modelling software architectures for complex control systems using a
components-based approach. Moreover, with this case study we assess and
understand the issues of real time, fault tolerance, scalability, extensibility,
distributed execution and adaptive behaviour, while modelling software
architectures. We concentrate our study on the so-called control- or event-
driven coordination languages, and more to the point we use the language
Manifold. In the process, we develop a methodology for modelling software
architectures within the framework of control-oriented coordination languages.
Keywords. Concepts and languages for high-level parallel programming;
Distributed component-based systems; Software Engineering principles; High-
level programming environments for Distributed Systems.

1 Introduction

A number of programming models and associated software development
environments for parallel and distributed systems have been proposed, ranging from
ones providing elementary parallel constructs (such as PVM and MPI) to ones
offering higher level logical abstractions such as skeletons, virtual shared memory
metaphors (such as Linda), coordination models ([4]), software architectures ([5]),
etc. It would be interested to examine the potential of those models in modelling real-
life non-trivial applications and in the process develop a software engineering
methodology for their use.

In this paper we present some of the main components of implementing a railway
control system using the coordination language Manifold ([1]). It is a typical real
world problem which, apart from its operational aspects, it necessitates the addressing
of several other requirements that relate to real-time, fault tolerance and adaptive
behaviour. In the process, we present a methodology for developing such real-life
applications using the control-driven coordination metaphor.

The rest of the paper is organised as follows: the next section describes briefly the
case study while the following one is a brief introduction to the coordination language

Theophilos A. Limniotes and George A. Papadopoulos178

Manifold. The description of the implementation of the case study in Manifold is then
presented with some concluding remarks at the end of the paper.

2 Description of the Case Study

The scope of designing a control system is to process raw data obtained from the
environment through sensing devices and gauges, determine the model parameters
that describe the environment, decide interdependencies of change of states, adapt
problem solving routines, and provide control information to the users. Furthermore,
other requirements to be met include functionality, timeliness, fault-tolerance,
degraded modes, extensibility, and distribution.

In particular, we study the modelling of a railway system ([2]) consisting of
railway tracks, junctions, and platforms. A number of trains is expected to be
travelling across the network. The system should be able to monitor the position of
each of the trains, access the current situation of the trains, be able to predict and cope
with future developments, and take into account timetables (and follow the specified
schedules as much as possible). Moreover, speed variation should be avoided
whenever possible (speed adjustments) and direction adjustments should be
supported. Other desirable features should include scalability and extensibility (e.g.
modifying the network topology) and fault tolerance (e.g. coping with train failures).

3 Manifold

Manifold ([1]) is a control-driven coordination language. In Manifold there are two
different types of processes: managers (or coordinators) and workers. A manager is
responsible for setting up and taking care of the communication needs of the group of
worker processes it controls (non-exclusively). A worker on the other hand is
completely unaware of who (if anyone) needs the results it computes or from where it
itself receives the data to process. Manifold possess the following characteristics:
• Processes. A process is a black box with well defined ports of connection through

which it exchanges units of information with the rest of the world.
• Ports. These are named openings in the boundary walls of a process through which

units of information are exchanged using standard I/O type primitives analogous to
read and write. Without loss of generality, we assume that each port is used for the
exchange of information in only one direction: either into (input port) or out of
(output port) a process. We use the notation p.i to refer to the port i of a process
instance p.

• Streams. These are the means by which interconnections between the ports of
processes are realised. A stream connects a (port of a) producer (process) to a (port
of a) consumer (process). We write p.o -> q.i to denote a stream connecting
the port o of a producer process p to the port i of a consumer process q.

• Events. Independent of streams, there is also an event mechanism for information
exchange. Events are broadcast by their sources in the environment, yielding event

Modelling Control Systems in an Event-Driven Coordination Language 179

occurrences. In principle, any process in the environment can pick up a broadcast
event; in practice though, usually only a subset of the potential receivers is
interested in an event occurrence. We say that these processes are tuned in to the
sources of the events they receive. We write e.p to refer to the event e raised by a
source p.
Activity in a Manifold configuration is event driven. A coordinator process waits to

observe an occurrence of some specific event (usually raised by a worker process it
coordinates) which triggers it to enter a certain state and perform some actions. These
actions typically consist of setting up or breaking off connections of ports and
channels. It then remains in that state until it observes the occurrence of some other
event which causes the preemption of the current state in favour of a new one
corresponding to that event. Once an event has been raised, its source generally
continues with its activities, while the event occurrence propagates through the
environment independently and is observed (if at all) by the other processes according
to each observer’s own sense of priorities. Figure 1 below shows diagramatically the
infrastructure of a Manifold process.

The process p has two input ports (in1, in2) and an output one (out). Two input
streams (s1, s2) are connected to in1 and another one (s3) to in2 delivering input
data to p. Furthermore, p itself produces data which via the out port are replicated to
all outgoing streams (s4, s5). Finally, p observes the occurrence of the events e1
and e2 while it can itself raise the events e3 and e4. Note that p need not know
anything else about the environment within which it functions (i.e. who is sending it
data, to whom it itself sends data, etc.).

s1

s2

s3

in1

in2

out

e1 e2

e3 e4

s4

s5

P

Fig. 1.

Note that Manifold has already been implemented on top of PVM and has been
successfully ported to a number of platforms including Sun, Silicon Graphics, Linux,
and IBM AIX, SP1 and SP2. For more information on the language and its potential
uses we refer the interested reader to [1] and [5].

4 Implementing the Railway System as Components

Our aim is to construct a system that consists of static and dynamic components. The
static ones are those that comprise a railway network, namely platforms, tracks, and
junctions; we refer to them as rail components. These can be altered in the sense that
entities of this kind can be added or removed, but these operations are not continual

Theophilos A. Limniotes and George A. Papadopoulos180

and time dependent as it happens with the dynamic components. The number and
variation of both types of components directly relates to the scalability of the system.

The dynamic components are the trains themselves. There is a potential number of
trains remaining dormant, that can be activated at any moment. Their ‘course’ or
‘route’ can be seen as a collection of static objects that the train’s trip comprises.
Other dimensions of continual change are the location of the train that is time
dependent and the status of the train that is indirectly related to the status of the ‘next
one to visit’ rail component. The two entities above can trigger at any time the
redefinition of part of the route, including the destination platform of the train.

The railway system model built in Manifold consists of coordinating modules at a
higher level and computational components at a lower level. In this particular
application the computational components are written in C. Due to lack of space, we
refrain from describing these modules in this paper. Irrespectively of its functionality,
each module represents a building block in the architecture of the system. At one level
the coordination components specify a number of transition pipelines that constitute
the deportment of a process. At a higher level another transition system defines the
interaction among such processes. Thus the pattern of the system formed can be
described as transitions (at a higher level) to predefined algorithms (at a lower level).
It should be made clear at this stage that the first level can have processes written in
both computational languages which have their external behaviour observable, and
processes written in Manifold defining different sets of transitions into the process
structure.

Here follows a description of the coordination component. We should emphasize at
this point that only the most important parts of the code are shown below in the
presented manifolds. The whole application comprises around 2,000 lines of Manifold
and C code. Thus, the presented functionality of the major components described
below is somewhat simplified. Note that the names within the boxes refer to atomic
(C code) processes, which are called by the respective manifolds and perform some
lower level (namely irrelevant to the coordination protocols used) function.

Train Coordinator Code. An instance of this Manifold receives at a port the
identification number of a train that is about to depart. For the current model this
instance has to be predefined in Main, so that the particular train’s id can be
associated with a particular number of already activated Train instances that can run
in parallel.

Let such a Train instance be train1. This train1 will have to observe
events that are only broadcast by particular Platforms and Junctions (which
the train in question will go through during its trip) to which train1 sends requests
for passing. A particular input port (say train1.rail) is assigned for this job.
This port then is passed as a parameter to the manner CheckInput whose function
is to make any process dereferenced from this input port an observable source of
events.

Similarly, provided that we have such a reference of a Train instance (&train1
that is), connected to the input port of another process instance which in turn is also a
parameter for CheckInput’s input port (say platfrom1.train), train1 will
be able to have its events observable by that other process instance. Moreover it has
to be sorted out through which port each event of another process will be made

Modelling Control Systems in an Event-Driven Coordination Language 181

available to train1 This can be done by dereferencing a local event to another
input port (say train1.get) which has to be connected to the output port of the
event it expects (say platform1.send). An example of such code follows:

Train ()
port in rail
port in get1, get2, get3./* get three different events */
port in depart /* get train id from Actual Rail info*/
{
 event get_thru deref get1.
 event get_thru_next deref get2.
 event gone deref get3.
 process i is variable(1).
 begin:
 CheckInput(rail);
 while true do {
 begin:
 /* steps of going through a rail component */
 if (i==1) then (raise(get_thru),WAIT);
 if (i==2) then (raise(get_thru_next),WAIT);
 if (i==3) then (raise(gone),WAIT);
 if (i==4) then (post(end)).
 /*reply to events above done */
 get_thru | get_thru_next | gone:i=i+1.
 end:. }
}

Platform Coordination Code. The instances of this Manifold are activated at the
beginning of Main() as ‘auto’ instances. Each platform instance is given its id as a
parameter at the declaration statement. In that way, each platform instance is
associated with a particular platform right from the beginning.

Each Platform instance has to observe events which, in fact, are requests from
Train instances. A particular input port is assigned for this purpose. This port then
is passed as a parameter to an input port (say platform1.train) of the manner
CheckInput, so that any instance of a process dereferenced from that input port, is
an observable source of events.

A Platform instance can ‘reply’ to events of a Train instance, which in this
case can be consider as requests, when its reference, i.e. &platform1 is connected
to the input port of that train which in turn is also a parameter for CheckInput’s
port. The platform code follows below.

Platform(Manifold Get_Block_Status(event),
 Manifold Get_Block_Free, port in id)
port in train, next_id.
port out send1, send2, send3.
{
 event OK_free, OK_free_next, gone_OK, replies.
 event replies.
 auto process ID is variable.
 auto process next_ID is variable.
 begin: heckInput(train);

Theophilos A. Limniotes and George A. Papadopoulos182

 (id->ID,next_id->next_ID,post(replies)).
 replies: while true do {
 begin:(&OK_free->send1,
 &OK_free_next->send2,&gone_OK->send3).
 OK_free.*train:{ event im_free.
 auto process gs is
 Get_Block_Status(im_free).
 begin:Trip(train);
 ID->(->gs,->ID).
 im_free.gs:raise(OK_free).
 end:.}.
 OK_free_next.*train:{ event im_free.
 auto process gs is
 Get_Block_Status(im_free).
 begin:Trip(train);
 next_ID->(->gs,->next_ID).
 im_free.gs:{ auto process gf is
 Get_Block_Free.
 ID->gf;
 (raise(OK_free_next),raise(OK_free)).
 }. end:.}.
 gone_OK.*train:{ auto process gf is
 Get_Block_Free.
 begin: next_ID-> gf;
 Trip(train);

(raise(gone),raise(OK_free_next),raise(OK_free)).
} } }.

Junction Coordination Code. The operation of a Junction instance is basically
the same as that of a platform, and the id of the next track that the train will pass is
provided by

train.next_track->junction.next_id.

as well as

train.next_track2->junction.next_id2

which is an alternative choice for a diversion, in case that the first track is occupied.
The availability of a second choice in its route is decided by the train instance itself.
The junctions instance role in this is that it checks serially for this second choice
(if it is free) if and only if checking the first choice has not preempted the control to
the ‘im_free’ state.

Modelling Control Systems in an Event-Driven Coordination Language 183

Assembling All Components Together. The above described major components are
assembled together as indicated by the figure below. The following description is
concerned with the externally observable behaviour, and as all but one atomic are
activated from within the coordinator manifolds, we are not concerned with these
atomics at this level.

Departures
Train_Ids

Train

Platform Junction

EventsEvents

Fig. 2.

To show a particular scenario, we consider a simple case (effectively a snapshot of
a more general scenario) of 3 trains travelling on a railway configuration involving a
junction and a platform. There are two tracks connected to the junction and one tracj
leaving the junction and ending at the platform. Two of the trains are approaching the
junction travelling on either track, whereas the third one is stationed at the platform.
In Main there are two streams created that connect two output ports of a
Departure atomic with two input ports of two other instances of the Train
coordinator. All instances of Platform and Junction controllers can accept
requests. So, there are two Train instances running in parallel with this model,
sending out requests to the already activated Platform and Junction instances.
For the requests and replies there should be streams hardwired between pairs of
‘send ’ and ‘get ’ ports of particular Platform/Junction and Train
instances respectively. Also, a guard is required to be placed at Train’s
‘end_port’ in order to be able to preempt to a state that defines a new transition
configuration. Finally, we have to hardwire the reference of each instance of a process
with the dereferenced port of the instance that it has to send an event to.

A number of Train instances have to be activated at the begin state of Main,
together with an instance Departures atomic. The Departures is a
computational process that reads records from the Time_Scheduler and produces
at its output ports train ids. These are the values to a transition between the
Departure and the Train instances. The rest of the behaviour of the system is
then decided by the hardwired connectivity between Train instances on the one
hand and Platform/Junction instances on the other. This connectivity is
entered as sets of transitions in separate states. Control is set from one state to another
by guards set on Train instances in such a way as to indicate that the procedure of
going through a component has ended. That is

guard(train1.end_port,a_connected,new_state).

The action of this non-transitory guard is that it preempts control to new_state,
whenever there is one connection at least at the arrival side. The Main manifold for
this scenario is shown below.

Theophilos A. Limniotes and George A. Papadopoulos184

Main()
{
 event step1,step2, step11, step21, step22.

 auto process platf1 is
Platform(Get_Block_F,Get_Block_P,Get_Block_S,104).
 auto process junct1 is Junction(Get_Block_F,
Get_Block_J,Get_Block_S,201).

 process train1 is
Train(TrackInfo,PlatfInfo,Get_Track,Get_ATI_R,1).
 process train2 is
Train(TrackInfo,PlatfInfo,Get_Track,Get_ATI_R,1).
 process train3 is
Train(TrackInfo,PlatfInfo,Get_Track,Get_ATI_R,3).

 begin: "main starts"->stdout;
 (activate(train1), activate(train2),
 activate(departures),
 departures.train1->train1.depart,
 departures.train2->train2.depart,
 post(step21)).
 step11: (train1.next_track->platf1.next_track,
 guard(train1.l3,a_connected,step22),

 (platf1.send->) -> train1.go,
 (platf1.send->) -> train2.go,
 (platf1.send->) -> train3.go,

 (platf1.send2->) -> train1.go2,
 (platf1.send2->) -> train2.go2,
 (platf1.send2->) -> train3.go2,

 (platf1.send3->) -> train1.go3,
 (platf1.send3->) -> train2.go3,
 (platf1.send3->) -> train3.go3,

 (&platf1->) -> train1.rl,
 (&train1->) -> platf1.tr,
 (&platf1->) -> train2.rl,
 (&train2->) -> platf1.tr).

 step21: (train1.next_track->junct1.next_track,
 train1.next2->junct1.next_track2,
 guard(train1.end_comp,a_connected,step11),

 (junct1.send->) -> train1.go,
 (junct1.send2->) -> train1.go2,
 (junct1.send3->) -> train1.go3,

 (&junct1->) -> train1.rl,
 (&train1->) -> junct1.tr).

Modelling Control Systems in an Event-Driven Coordination Language 185

 step22:"step22 activated"->stdout.
}

5 Conclusions

This case study is concerned with the implementation of a railway system using a
control-driven coordination language. There are already two implementations of a
similar system; one is based on a data-flow architecture ([7]) and the other uses
another control-driven language, namely ConCoord ([3]). In the data-flow model all
processes act through decisions based on a Global Data Store. In that particular
application, the behaviour of control processes is based upon the event action model,
which in turn is based on the values of the above data structure. There is no direct
reflection of the system’s architecture in this, as the controller processes communicate
only with the data store.

A characteristic feature of control-driven systems is that coordination is achieved
through changes of states in processes or through broadcasting of events. Particularly
in Manifold the Global Data Store manipulation, is left entirely to the computational
processes, which reflect changes with the raising of events. To the coordinating
building blocks, data and their values mean nothing. All they cope with is the
handling of event occurrences with the preemption to new states, and the connection
and definition of communication in streams between such components.

Regarding the issues of precision, synchronization and interaction with the
environment, the entities requiring timing for changing their state, rely on
coordination processes, with a request-reply event system. For every route component
that the train has to cross, there is a check on the components’ status before the train
is allowed to proceed. The event-triggering mechanism of Manifold provides a natural
synchronization mechanism for these types of control applications. The timing
constraints imposed can exhibit (soft) real-time behaviour (albeit for lack of space we
have not elaborated in detail on this issue in this paper).

Finally, Manifold’s philosophy on coordinators being treated as black boxes, aware
RQO\�DERXW�ZKDW� LV� KDSSHQLQJ� LQ� WKHLU� LPPHGLDWH�YLFLQLW\� �QDPHO\� WKHLU� LQSXW�DQG
RXWSXW� SRUWV� � SURYLGHV� D� QDWXUDO� ZD\� IRU� DFKLHYLQJ� H[WHQVLELOLW\� DQG� DGDSWDELOLW\
(dynamic reconfiguration of the railway topology). Each component in the system
(trains, junctions and platforms) operates in a quite autonomous manner, continuously
consulting and updating the global state and communicating with the other
components by means of events. Thus, a train only has to deal with its immediate
challenge (crossing a junction or approaching a platform), while asynchronously the
global state may be changing, i.e. the railway topology may be altered, the route of
the train may be modified, etc.

Theophilos A. Limniotes and George A. Papadopoulos186

Acknowledgments

This work has been partially supported by the INCO-DC KIT (Keep-in-Touch)
program 962144 „Developing Software Engineering Environments for Distributed
Information Systems“ financed by the Commission of the European Union.

References

1. F. Arbab, ‘The IWIM Model for Coordination of Concurent Activities’, First International
Conference on Coordination Models, Languages and Applications (Coordination’96),
Cesena, Italy, 15-17 April, 1996, LNCS 1061, Springer Verlag, pp. 34-56.

2. E. de Jong, ‘Software Architectures for Large Control System: A Case Study Description’,
Second International Conference on Coordination Models, Languages and Applications
(Coordination’97), Berlin, Germany, 1-3 Sept., 1997, LNCS 1282, Springer Verlag, 1997,
pp. 150-156.

3. A. A. Holzbacher, M. Perin, M. Suhold, ‘Modelling Railway Control Systems Using Graph
Grammars: A Case Study’, Second International Conference on Coordination Models,
Languages and Applications (Coordination’97), Berlin, Germany, 1-3 Sept., 1997, LNCS
1282, Springer Verlag, 1997, pp. 172-186.

4. G. A. Papadopoulos and F. Arbab, ‘Coordination Models and Languages’, Advances in
Computers, Marvin V. Zelkowitz (ed), Academic Press, Vol. 46, August, 1998, 329-400.

5. G. A. Papadopoulos, ‘Distributed and Parallel Systems Engineering in Manifold’, Parallel
Computing, Elsevier Science, special issue on Coordination, 1998, Vol. 24 (7), pp. 1107-
1135.

6. M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young and G. Zelesnik, ‘Abstractions
for Software Architecture and Tools to Support Them’, IEEE Transactions on Software
Engineering 21 (4), 1995, pp. 314-335.

7. S. Stuurman and J. van Katwijk, ‘Evaluation of Software Architectures for a Control
System: A Case Study’, Second International Conference on Coordination Models,
Languages and Applications (Coordination’97), Berlin, Germany, 1-3 Sept., 1997, LNCS
1282, Springer Verlag, 1997, pp. 157-171.

	1 Introduction
	2 Description of the Case Study
	3 Manifold
	4 Implementing the Railway System as Components
	5 Conclusions

