pROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1988,

cdited by ICOT © ICOT. 1958

A PARALLEL IMPLEMENTATION OF GHC

John R. W. Glauert and George A. Papadopoulos

Declarative Systems Project,
University of East Anglia, Norwich NR4 7TJ, U K.
{irwg,gp}@sys.uea.ac.uk

ABSTRACT

A parallel implementation of Guarded Horn Clauses
(GHC) using graph rewriting techniques is described. GHC
programs are mapped to rewriting rules in Dactl, a compiler
target language based on generalised graph rewriting. We
provide a complete translation scheme for unrestricted GHC
programs paying particular attention to the OR-parallelism
involved and show that the run-time test required in the
presence of user defined calls in the guards can be easily
and efficiently implemented in our model. We show that our
model supports a variety of execution schemes: evaluating
the body of a clause after commitment to that clause or in
parallel with the evaluation of the guard. We provide a
number of examples throughout to illustrate our techniques.

1 INTRODUCTION

GHC (Ueda 1986) belongs to the class of the so called
committed-choice non-deterministic logic languages; other
members of this class are PARLOG (Gregory 1987) and
Concurrent Prolog (Shapiro 1983). These languages
support committed-choice OR-parallelism and stream AND-
parallelism. In this paper we describe a parallel
implementation of GHC based on graph rewriting.

According to a graph rewriting model of computation,
programs are represented as labelled directed graphs. A set
of rewriting rules describes transformations which may be
performed on the graph by identifying and rewriting
reducible expressions, or redexes (Barendregt et al.).
Independent redexes may be rewritten in any order, or
concurrently, so graph rewriting provides a natural model
for expressing parallel computations in which a number of
processors may cooperate to rewrite a single graph with no
need for centralised control.

We show that GHC programs can be viewed as sets of
rewrite rules to be applied to an initial graph corresponding
to a goal query. On rewriting redexes within this graph until
none remain, a final stage will be reached where the
resulting graph represents the answer to the query. GHC
clauses are translated to Dactl (Glauert er al. 1987), a
compiler target language based on graph rewriting intended
to serve as an interface between new generation declarative
languages and novel computer architectures.

Some of the objectives of such a bridging computational
model are:

+ to decouple the development of the languages from that of the
architectures so that changes in either level should not
necessarily affect the other;

+ to reduce the number of required implementations;

* to provide a means of assessing the potential of languages for

parallel execution and in particular to allow the testing of
various execution strategies and models so that the most suitable
one for each language can be found;

= to act as a point of reference in comparing the implementation of
a certain language with that of another not belonging necessarily
to the same class;

- finally, to free the programmer from the burden of considering
low-level and machine-dependent implementation details.

2 DACTL

A program in Dactl (Declarative Alvey Compiler Target
Language) is a set of rewrite rules specifying a binary
reducrion relation which defines the possible
transformations of graph objects. Graph rewriting is often
used to implement functional languages which have a close
resemblance to rerm rewriting systems. Dactl, however, is
fundamentally a language of graph rewriting, and although
it has been proven that certain, regular, classes of term
rewriting systems can be modelled by a graph rewriting
language like Dactl (Kennaway 1988), the translation of
GHC uses capabilities not found in term rewriting.

In addition to the specification of a reduction relation, a
practical rewriting system must say something about control
of evaluation or reduction strategy: the choice procedure for
selecting candidate redexes from those available in the
graph. Dactl can model very general and potentially
ambiguous rewriting systems for which there may be no
terminating (normalising) strategy. Since no predefined
strategy is adequate, Dactl employs control markings to
determine the order of reduction.

As an example, the following fragment of Dactl defines
some rules for an append function:

RULE
Append [Nil y] => *y|

Append[Cons[h t] vyl (t yll;
Similar notation is used for rewritable functions, such as
append, and data value constructors, such as Cons.
However, there will be no rules for rewriting cons nodes.
Each node has a symbol and a list of arcs to successor
nodes.

The first rule says that an append node with nil as first
argument is to take the value of the second argument. That
argument is activated causing further evaluation if it is a
rewritable function. The second rule applies when a cons
node is the first argument. The result is a new Cons node
(bearing the suspension marker, ‘#’) whose second
argument is a recursive call to append. This call is
activated, using the ‘=’ marker, and the notification marker,
~’ on the argument, causes the Cons node to be reactivated

=> #Consl[h "~*Appen

1052

when the result has been calculated. Hence the original
caller of append will be notified of completion only when
the argument to Cons has been evaluated.

In general, Dactl rules take the form:
Pattern —> Contractum, Activations, Redirections

The partern may be matched against any suitable part of the
graph; it can be a simple graph or it can contain patrern
operators. In particular, there are four pattern operators: 47,
¢_* ‘¢’ and Any. The intention is that p+g matches anything
matched by p or g (union), p-q matches anything matched
by p but not by g (difference), psg matches anything
matched by both p and g (intersection) and any matches
successfully against any node.

The contractum specifies new graph structure which may
contain references to the pattern graph. After a successful
matching, a copy of the contractum is built, adding new
structure to the graph. The redirections part indicates how
the new structure is to be linked into the original graph. A
redirection involves a source node identifier (which must be
from the original graph) and a target node identifier (usually
in the new graph). All references to the source node are
changed to become references to the target node. Hence arcs
are redirected away from the source to the target.

The example was given in the shorthand form of Dactl.
The longhand form is as follows:

RULE

a:Append[n yl, n:Nil, y:Any -> *y, a:=yl
a:Append[c yl, c:Cons[h t], y:Any, h:i:Any,

t:Any -> d:#Consl[h “bl, b:*Append(t vyl, a:=d;
The longhand form gives an explicit tabulation of the graphs
representing pattern and contractum. The components of a
rule are made very visible, including the root redirection
implied by the use of the ‘=>" separator between pattern and
contractum of rules.

Contractum nodes may be created active, using the “*’
marking, or suspended using a marking of the form ‘#’,
‘4#°, ... when rewriting of the node will only be considered
when a number of children bearing the notification marking
“~* equal to the number of ‘#’ markings have responded.
Note here that the number of ‘#” is allowed to be less than
the number of children bearing the notification marking; this
can be used to express non-strictness. The acrivations
section allows a rule to make active some nodes in the
original graph which were matched by the pattern.

Only activated nodes will be considered for matching; if
a match is found, the corresponding contractum is built and
the redirections and activations are performed. However, if
no rule matches, we notify all nodes suspended on the node
in question by removing a ‘#” annotation, making the nodes
active when the last #’ is removed. This principle of
notification on matching failure is rather unfamiliar but
explains why many rules will redirect the root of the
matched graph to an activated constructor node. Since there
are no rules for the constructor, the attempt to match using
the constructor will fail and hence those nodes suspended
on the constructor will be notified of the result.

Redirection has much the same effect as overwriting the
source with the target, and we will often describe the
process as overwriting. Although the most frequent kind of
redirection has a similar effect to the classical root-overwrite
of many graph reduction models, Dactl also allows the
effect of overwriting non-root nodes. This is particularly
important for the GHC translation where it is used to model
instantiation of logical variables based on the use of a

symbol var which is neither a constmuctor (since it can
appear to be overwritten when instantiated) nor a normal
function (since there are no rewrite rules for the symbol).
Symbols like var are called overwritables, as opposed to
the creatable constructors and the rewritable functions.

A rule wishing to suspend evaluation until a variable is
instantiated creates a suspended node with a notification
marker on an arc to the variable node, but does not activate
the variable node itself. When another part of the
computation wishes to instantiate the variable, it redirects
arcs to the variable to the value to be given and it activates
the value. If the value is a constructor, matching will fail,
and all nodes suspended on the original variable will be
notified. The following fragment is not from the GHC
translation, but illustrates the principles using a logic
programming version of append:

RULE

Append[x:Var y v] => #Append["x y Vvl]

Append[Nil y v:Var] => *Succ, v:=*y|

Append[Cons[h t] y v:Var] => *Append(t vy n:Var],
v:=*Cons[h n];

Note the presence of the non-root overwrites in the ths of the

last two rules using ‘:=" to instantiate the third (output)

argument of Append to the appropriate value.

A form of rule ordering is available: rules separated by a
‘1’ 'may be tried for matching in any order whereas rules
following a “;’ will only be considered if none of the earlier
rules apply. The sequenced form can be considered.a
shorthand version of an equivalent set of rules using pattern
difference operators instead.

Finally, note that repeated identifiers in the pattern of
Dactl rules are allowed, and they are taken to denote a test
for pointer equality during matching. In the next section we
will see that in the graph rewriting framework as supported
by Dactl, the pointer equality test is all that is needed to
implement GHC's run-time test.

3 GHC

We assume familiarity of the reader with GHC; here it
suffices to mention only the rules of suspension and the rule
of commitment:

« Unification invoked directly or indirectly in the guard of a clause
C called by a goal G cannot instantiate the goal G.

+ Unification invoked directly or indirectly in the body of a clause
C called by a goal G cannot instantiate the guard of the clause C
or the goal G until C is selected for commitment.

» When some clause C called by a goal G succeeds in solving its
guard, it tries to be selected for commitment. To be selected, C
must first confirm that no other clause in the program has been
sclected for G. If confirmed, C is selected indivisibly.

4 IMPLEMENTATION

The first part of this section describes the implementation
of the flat subset of GHC; we then go on to extend this basic
framework to accomodate the full version of the language
where calls to user defined predicates are allowed in the
guards. The translation to Dactl illustrated here is
simplified, but captures the essence of our model.

4.1 Flat GHC

Here we assume that head unification, guard evaluation
and body evaluation (after commitment) are performed in
that order. In addition, repeated occurrences of variables in
the head are not allowed; these are eliminated by means of
extra calls to the unification primitive in the guards. We thep
start by noting that the first rule of suspension (see previous
section) suspends any head unification that attempts (0

instantiate a variable in the call to a non-variable term in the
nead; in other words all the head arguments that have non-
variable patterns specify conditions that must be satisfied by
input data received from the call. There is therefore an
implicit input-output moding of the clauses as in the case of
PARLOG. In fact, a clause does one of three things: it
evaluates the guard if the required input patierns have been
produced, it fails if the produced input patterns are
incompatible with the required ones, and it suspends
otherwise. We therefore translate any GHC clause to three
Dactl rewrite rules that model success, failure and
suspension of head unification respectively. The GHC
program

ex{[H|T],x) :— gl{(H) | bl(T,X,Y).
ex (X, £(Y)) :- g2a(Y), g2b(Z) | b2a(X), b2k(2).
may be translated to Dactl as follows:
{0} Ex(pl p2] => #Search[“#0OR["0l "02]1,
ol:*Ex1({pl p2], 02:*Ex2(pl p2];
{la} Ex1{Cons[h t] x]
=> #Ex1 Commit [**G1l[h] t x];
{2a} Exl[pl:Var p2] => #Ex1{"pl p2]l;
{3a} Ex1[Any Any] => *FAIL;
{4a} Exl1 Commit [SUCCEED t x] =>
*Result [B1[t x y:Varl]l;
{5a} Exl_Commit[FAIL Any Any)] => *FAIL;
{1lb) Ex2[x Tup["F" yl]

=> #Ex2 Commit [“guard x z],
guard: #AND [*G2aly] "~*G2b[z:Var]];
{2b} Ex2[pl p2:Var] => #Ex2[(pl "p2]:;
{3b} Ex2[Any Any] => *FAIL;
{4b} Ex2 Commit [SUCCEED x z] =>
*Result [Body[B2a[x]
Ex2 Commit [FAIL Any Any] => *FAIL;

B2b{z]1];
{5b}
The top level rule {0} activates a set of parallel
computations, one to evaluate the guard of each clause of the
GHC predicate. Each guard computation will either fail,
succeed, or suspend awaiting instatiation of goal variables.
Clauses whose guards succeed must not proceed to evaluate
the corresponding body goals immediately, since there may
be multiple successful guards. Successful guards therefore
build a closure Result [body], where Result is a
constructor, and the argument body will evaluate the
appropriate body if activated.

The search node and the tree of suspended or nodes
ensure committment of no more than one clause. The or
nodes will be notified on completion of the guard
computations, becoming active when the first notification
signal arrives since there is only one suspension marker. As
soon as one guard succeeds, the or node propagates the
closure for the corresponding body up the tree to the Search
node. If failure reaches the search node then all guards
have failed and search reports failure of the goal. The
definition of search and or is given by:

OR({FAIL FAIL] => *FAIL|

OR[res:Result {Any] Any] => *res|
OR[Any res:Result [Any]] => *res;
OR[FAIL p] => p|

OR[p FAIL] => p;

Search[p:FAIL] => *p]|

Search [Result {body]] => *body;

The computation for the guard of each clause uses a separate
set of three rules: The first rule {1a,b} models successful

head unification when all the required patterns are available.
The function then attempts to solve the corresponding guard
by activating a Dactl graph of the form:
#Clausename Commit [“guard conj env]

where guard conj is either a single call or a conjunction of

1053

such calls as described below. enw is the set of variables
imported by the body from the head or guard. New GHC
variables in the guard or body of a clause appear as new
Dactl nodes with the pattern var. If Clausename Commit
succeeds in solving its guard, it overwrites itself to the code
for the respective clause body which is wrapped in the
constructor Result {4a,b}. Otherwise the result FaIL is
returned {5a,b}.

The second rule {2a,b} models suspension if some
arguments are not sufficiently instantiated, leaving the
clause to be retried when the arguments become more
defined. The final rule {3a,b} detects failure to match,
passing FAIL to the or node. The Clausename Commit
rules will be extended in the next section where we
introduce the implementation of the run-time test for full
GHC.

A GHC predicate with n clauses is translated by this
scheme into 5n+1 simple Dactl rules: 1 for the top level
rule, 3 per clause for head unification, and two for guard
evaluation and committment. Many optimisations which
usually reduce the number of Dactl rules are possible and
some will be illustrated later. Empty guards or bodies are
replaced by the value sUCCEED.

A guard is either a single call or a conjunction
represented using the anp function which can be used with
any arity. A body can also be either a single call or a
conjunction. A single call is represented explicitly, while a
conjunction of calls is represented as Body [bl b2 .. bn]
with one b for each body call. When fired it rewrites to the
same form as a guard:

Body (bl b2 .. bn] => #AND["*bl ~*b2 .. "*bnl;

AND [SUCCEED SUCCEED .. SUCCEED] => *SUCCEED;
r:AND[(Any-FAIL) (Any-FAIL) (Any-FAIL)] -> #r;
AND [Any Any .. Any] => *FAIL;

The anp function monitors its children processes; if any of
the goals fails it terminates with Farzn; if they all succeed it
terminates with succeep; if the arguments are a mixture of
uncompleted goal computation and succzep for completed
goals, then the special form used on the right-hand side of
the middle rule indicates that the node should be suspended
as it is, to be re-awoken when any goal completes.

The above example belongs to the most general case
where the clauses have overlapping patterns as well as
guards. For the other three cases (unguarded clauses with
overlapping patterns, and clauses with non-overlapping
patterns with and without guards) a more direct translation to
a Dactl rewrite rule system is possible. An optimised
translation including use of some primitive predicates is
illustrated by the following example:

primes (Max,Ps) :- true | gen(2,Max,Ns),
sift (Ns,Ps) .
gen (N,Max,Ns) :- N=<Max | Ns=[N|Nsl], N1l:=N+1,
gen (N1,Max, Nsl) .
gen (N,Max,Ns) :- N>Max | Ns=[].
sift ([P|Xs]),2s) :- true | Zs=[Pl2Zsl],
filter(P,Xs,¥s), sift(¥s,Zsl).
sift ([, Zs) :- true | Zs=[].
filter (P, [X|Xs],¥Ys) :—- X mod P=:=

| filter (P, Xs,¥s).

filter (P, [X|Xs],¥s) :- X mod P=\=0
| Ys=[X|¥sl], filter(P,Xs,Y¥Ysl).
:- true | Ys=[].

The equivalent Dactl program is shown below:

filter(pP, [],Y¥Ys)

Primes [max ps] => #AND["“ol “o2],
ol:*Gen[2 max ns:var],

02:*3Sift [ns ps];

1054

Gen[n max ns] => #Search[“#OR["0l "021],
ol:#Genl Commit [**Lesseg[n max] n max nsl,
02:#Gen2 Commit [**Greater(n max] ns];

Genl Commit [SUCCEED n max ns] =>

*Result [Body (bl b2 b3]11],
bl:Unify[ns Cons[n nsl:Var]l],
b2:Evall[nl:Var Plus[n 117,
b3:Gen(nl max nsi]|

Genl Commit [FAIL Any Any Any] => *FAIL;

GenZ2 Commit [SUCCEED ns] =>

*Result [Unify[ns Nil]]!

Gen2_ Commit [FAIL Any] => *FAIL;

Sift[Cons[p xs] zs] => #AND["bl “b2 ~b31,
bl:*Unify[zs Cons{p zsl:Var]],
b2:*Filter{p xs ys:Var],
b3:*Sift[ys zsl]|

Sift [Nil zs] => *Unify[zs Nil]]

Sift[pl:Var p2] => #Sift{"pl p2];:

Sift[Any Anyl => *FAIL;

Filter[p Cons[x xs] ys]
=> $Search [#OR["0l "02]1],

ol:#Filterl Commit ["guardl p xs ys]

guardl:*Eval2 [Mod([x p] 0],

o2:#Filter2 Commit ["guard2 p x xs ys],

guard2:*Not_eval2([Mod[x p] 0]}

Filter[p Nil ys] => *Unifylys Nil]|

Filter[pl p2:Var p3] => #Filter[pl "p2 p3]:

Filter [Any Any Any] => *FAIL;

Filterl Commit [SUCCEED p xs ys] =>

*Result [Filter[p xs ys]]|

Filterl Commit [FAIL Any Any Anyl => *FAIL;

Filter2 Commit [SUCCEED p x xs ys] =>
*Result [Body[bl b217,

bl:Unify(ys Cons[x ysl:Var]l],
b2:Filter(p xs ysl]|

Filter2 Commit [FAIL Any Any Any Any] => *FAIL;

rrimes needs no head unification, nor has it a guard, so we

execute the body directly. Gen also needs no head
unification so we go directly to guard evaluation. sift has
non-overlapping patterns so no search is required. Filter
has identical patterns, so the code for head unification is
shared. Many more optimisations are possible (some of
them particular to Dactl) and these are described in Glauert
and Papadopoulos (1988).

The unification primitive may be implemented as
follows:

Unify[x x] => *SUCCEED;

Unify[vl:Var v2:Var] => *SUCCEED, vl:=v2]
Unify{v:Var t:(ARny-Var)] => *SUCCEED, v:=*t|
Unify[t:(Any-Var) v:Var] => *SUCCEED, v:=*t;

plus appropriare rules for decomposing structures and
comparing ground terms. The first rule is used when a term
attempts to unify with itself. The next one unifies two
variables using the non-root overwriting facility of Dact] to
perform the assignment of one variable to the other. We do
not use activation markings in the redirection so any nodes
suspended on these variables will not be awakened just to
suspend again. The last two rules assign a variable to a non-
variable term. Here, the use of the activation marking will
awake any nodes waiting for the result of this unification.
This definition of unification suffices for the case of safe
GHC. In the next section we will extend it to perform the
required run-time test for general GHC programs.

- For completeness we describe finally the
implementation of the otherwise primitive (see the
appendix for a more efficient implementation); its definition
in Dactl is the following:

Otherwise[Any SUCCEED] => *SUCCEED;
Otnerw%se{Any Result [bodyl] => *body;
Otherwise [otherwise FAIL] => *otherwise;

An otherwise process is called as the top rewrite rule that
handles the OR-parallelism. The first argument is the clause
that calls the ctherwise primitive and the second is either a
single clause that textually precedes the one with the
otherwise or a group of clauses monitored by o=r
processes. Ctherwise remains suspended until the or
processes have reported back. If they have all failed,
otherwise fires the clause that uses the otherwise
primitive; otherwise it fires the body of the clause that
committed successfully.

4.2 OR-parallelism

We now show how GHC's full OR-parallelism can be
easily and efficiently implemented using Dactl's pointer
equality facility. We recall that if user-defined calls are
allowed in the guards there is a need for a run-time check to
determine whether a variable attempting unification is
allowed to do so. If unification could only proceed by
binding a non-local variable, unification suspends. This
suggests the need for a mechanism to determine at run-time
the current environment of the variable as well as the
environment where the binding is attempted. If the two
coincide, unification is allowed to proceed; otherwise
unification suspends. A variable is now represented as
var [env] where env denotes the current environment of the
variable. Variables introduced in a guard are created in a
new local environment. When a guard commits, this
environment is merged with the calling environment,
promoting the new variables to the status of variables in the
calling environment.

GHC allows some computation in the body of a clause
to proceeed before successful evaluation of the guard and
commitment to the clause. Although our model can support
this extreme form of speculative evaluation, we do not
believe it will be beneficial in general and consider first the
case where the body of a clause is only executed after
commitment to that clause. As a consequence, new variables
introduced in the body are created in the environment of the
caller. To implement this scheme, a GHC call is represented
as a Dactl function with an additional argument identifying
the environment of the call. For example, the GHC query

mp(X), alX,Y).
is represented in Dactl as

Initial =>.#AND["bl ~b2],

bl:*P[env:E x:Varlenv]], b2:*Qlenv x y:Var(env]]
where p, 0, x, v all share the same environment (Initial i$
a Dactl reserved word indicating the initial graph to be
rewritten). The clause

p{X) = (X, Y) | s(¥,2).
is represented as

Plinh x] => #P_Commit [inh loc:E "guard yl,
guard:*R[loc x y:Var[locl];
P Commit [inh loc SUCCEED y] =>
*S[inh vy z:Var([inh]], loc:=inhl
P _Commit [Any Any FAIL Any] => *FAIL;

Any new variables appearing in the guard (eg. y above) are
given the local environment of that guard (1oc); however,
since the corresponding body will be evaluated only after
commitment, any new variables in it (eg. z) are given the
inherited environment of the caller (inh). Upon successful
evaluation of the guard, P commit performs the redirection
loc:=inh thus merging the environment of its guard with
the inherited environment of the head; any local guard
variables that remained unistantiated will be given the
environment of the caller. The decision on whether t0
instantiate a variable or suspend is taken by the unification

Amitive which is now represented as Unifylenv tl t2]
where the £1 and £2 are terms and env is the environment
where unification is attempted. The definition of unify is:
(1} Unifylany x x] => *SUCCEED;

(21} Unifyvlenv vl:Var[env] v2:Var[Any.] =>
*SUCCEED, vl:=v2]|
(3} Urnifylenv vl:Var[Anv] v2:Var{env]] =>
*SUCCEED, v2:=vl;
(4} Unifylenv vl:Var[Any] v2:Varl{Anyl] =>
##Unifylenv “vl "v2]|
{5} Unifylenv v:Var([env] t:(Any-Var[Any])] =>
*SUCCEED, v:=*t|
(6} Unifylenv t: (Any-Var{Anyl) v:Varfenvl]] =>
*SUCCEED, v:i=*t;
(7} Unifylenv t: (Any-Var[Any]) v:Varlenv']] =>
#Unifylenv t ~vl|
(8) Unifylenv v:Var[env'] t:(Anv-Var[Any])] =>
#Unifylenv ~v t];
Rules (2} to {4} cover the case of unifying two variables: if
the environment of the unify call is the same with the
current environment of any of these variables, that variable
is unified with the other one, otherwise unification
suspends. Note the optimisation in the fourth rule: although
unify suspends on v1 and v2 there is no need for it to
suspend also on the environments of the variables. Since i
body is executed after commitment, the environment of a
variable in a guard can change only at that time; however, a
guard will commit only when all its local computation has
completed successfully. In other words once an attempted
unification suspends, it can only resume if the associated
variable is instantiated to a non-variable term by some
external goal. As a final point in the description of unifying
two variables we stress the need for suspending when the
environments of the variables and unify are incompatible
even if such a unification does not create local bindings.
This is because variables could be instantiated too early.
Consider the following program:

p(X,Y) :— g{X,Y) | true.
p{X,Y) :— r(X) | true.
g{X,Y) :- true | X=Y.
r{X) :- true | X=a.

If the unification x=v required by the guard of the first rule
for p is always allowed to proceed, then the goal

- X=a, p(X,b).

always succeeds whereas the goal

- X=a, Y=b, p(X,Y).

may fail if the guard g (x,Y) executes first Our
implementation, however, respects the concept of anti-
substirution (Ueda 1986) and treats the two goals the same
way. The last four rules define the case where a variable
attempts to unify with a non-variable term. Again if the
environments of the variable and unify are compatible,
unification is allowed, otherwise it suspends. So in the
following program

- op(E(2)),

p(X) = g(X) | .
q(Y) :- true | Y=£f(a).

the corresponding Dactl code
Initial => #AND["p ..],
p:*P[env:E Tup("F" z:Var(env]]];
P{inh =] => #P_ Commit[inh loc:E “guard bodyl,
guard:*Ql{loc =], Dbeody: .. ;

Qlinh y] => *Unifylinh y Tup(["F" Aj];

will eventually suspend on the call unify(e z:vVar(e']

1053

a], where e#e', until some other process instantiates =.
Incidentally note that in some implementations (Levy 1936)
the above program would create cross-environment
references with certain associated problems.

We will illustrate the execution of a program using a
graphical representation to clarify further some of the issues
discussed above. The following program

T p(X)r q(XrY

p(Vv) - g(V,U) | =(U,W).
g(X,¥) :- true | X=1, ¥Y=2.
r{¥,Y¥) :- true | X=2, ¥Y=3.

has Dactl code given by

Initial => #AND["bl "b2],
bl:*P[env:E x:Var(env]],b2:*Q[env x y:Varlenv]];
Plenv v} => #P Commit [env loc:E ~guard ul,
guard:*Q{loc v u:var(locl];
P Commit [env loc SUCCEED u] =>
*Rlenv u w:Varlenv]l,
P _Commit [Any Any FAIL Any] => *FAIL;
Qlenv x y] => #AND["bl "b2],
bl:*Unify[env x 1],
Rlenv x y] => #AND["bl "b2],
bl:*Unify[env x 2], b2:*Unifylenv y 311/

loc:=env|

b2:*Unifylenv y 21];

After executing the first rule, the state of the derived graph is
shown in fig. 1:
#AND

lP /Q\

env:k
y:vVar

*

x:Var

Figure 1

Note that both goals in the conjunction and their associated
variables share the same environment. The nodes
representing the two goals are both active and can be
excecuted in parallel. Suppose that the one for p is executed
first. After rewriting it using the appropriate rule, the state of
the graph is as shown in fig. 2.

#AND

/ ~
*Q

<IN\

env:k

y:var

\

vivVar

u:var

Figure 2

1056

Two nodes are again active, both representing different calls
of the predicate, ¢. The one shown in bold was introduced in
the guard of p and the other is the original call in the goal
conjunction. Note here that the former call and all the
variables first introduced in it share a different (local)
environment. Suppose that the node representing the call in
the guard is rewritten first. The graph now looks as shown
in fig. 3:

#AND
/)
#P Commit / \
env:kE
. y:var
loc:E ~
#AND
v:Var

P

*Unify *Unify

Two unifications are attempted in parallel but only one (u=2)
can proceed; the other will have to be suspended until the
variable involved, v, is instantiated by the process executing
the remaining ¢. The left one matches rule 8 in the definition
of unify (given above) and the right one matches rule 5 (fig.

4).

#AND
/)
#P Commit » \
env:E
» <« y:Var
loc:E ~
#AND
\ v:var
SUCCEZD

fUni 2

Figure 4

The node corresponding to the unification of the variable u
rewrites to succeeD and the node for u itself overwrites to 2.

However, the second unification has suspended awaiting
instantiation of the variable v because the environment of
Unify is not the same as the environment of v. The required
run-time tests have been performed as simple pointer
equality tests. In fact, the only active node is the one
corresponding to the goal ¢ which, when executed, will be
able to instantiate the variable v, since ¢ and v share the same
environment. This instantiation will re-activate the node
corresponding to the suspended unify operation which will
succeed after testing the compatibility of its two arguments,
since v will then be data.

Note that the program used in the example does not
conform exactly to the translation scheme outlined earlier.
We have introduced the optimisation that for a predicate
which has a single guarded clause, we can evaluate the body
directly if the guard succeeds. The predicate p is an example
of such a predicate.

This optimisation is one example of many which are
possible within the framework of Dactl. The appendix to this
paper illustrates the code actually generated by our compiler.
We explain there some further optimisations.

4.3 Speculative Evaluation

We now extend the above technique so that the body of a
clause is executed in parallel with the respective guard
which is allowed provided it does not attempt to instantiate a
variable either in the guard or the caller of the clause until
commitment (second rule of suspension). This is achieved
by associating a new local environment with variables
introduced in the body. The pointer to the environment of the
body is passed to the Commit rules which will promote
body variables to the environment of the caller if the clause
is chosen. In addition, if we have information that a body
fails, we avoid committing to the corresponding clause since
it is doomed to fail even if the guard succeeds. Hence we
retain GHC sematics, but reduce the failure set somewhat.
As an example, let us reconsider the following clause:

p(X)
This is now represented as follows:

- r(X,Y) | s(Y,2).

Plinh x] => #Commit [inh locg:E locb:E ~g "bl,
g:*R{locg x yv:V[locgll,

b:*S[loch v z:2[locbl]l;

Both guard and body are now fired in parallel; unification
will again suspend if any incompatibilities in the
environments are detected. There is a standard function
Commit now which is defined by:

{1} Commit [Any Any Any FAIL Any] => *FAIL]
{2} Commit [Any Any Any Any FAIL] => *FAIL|
{3} Commit [inh locg locb SUCCEED SUCCEED] =>
*SUCCEED ;
{4} Commit[inh locg loch SUCCEED body] =>
*Result [inh locg locb bodyl|
{5} r:Commit [inh locg locb guard SUCCEED] ->
#r;
If either the guard or the body fails, we report failure using
one of the first two rules. If both the guard and body
succeed the third rule is selected which simply reports
success. The fourth rule is selected if the guard has
successfully terminated but the body is still executing; the
commit rule passes the necessary data to the monitoring
Ssearch process which choses a candidate clause and will
merge the environments as required. The final rule is
selected in the case where the body has succeeded, but the

guard has not completed: Commit is suspended again waiting

for the guard to complete execution. search is now defined

as:

gearch([p: (SUCCEED+FAIL)] => *p;

gearch[Resulc [inh locg locb body]] => body,
locg:=*inh, locb:=*inh;

The unify primitive must now be modified to suspend also
on the environments of the variables; this is because a
suspended unification in a body should now resume either
when an involved variable is instantiated to a non-variable
term or when, after commitment to the clause, the
environment i1s promoted. Rules (43, {7} and (8} are
modified accordingly and there is an additional auxiliary
rule:

Unifylenv vl:Var[envl] v2:Var{env2]] =>
#Unify wait [env "v1l “envl "v2 “env2] |
Unifylenv v:Var[env'] t] =>
#Unify wait[env "v “env' t env']]|
Unifylenv t v:Var[env']] =>
#Unify wait(env t env v "env'];
{9} Unify wait[env tl Any t2 Any] =>
*Unifylenv tl1 t2];

S PERFORMANCE

Initial results from analysing the performance of our
compiler from GHC to Dactl show that inclusion of the run-
time test does not significantly impair performance for safe
programs. The programs were run on a Sun 3/180 using our
Dactl interpreter written in C which executes approximately
1000 rewrites per second.

(4%}

{71

oA

In the table below, the first figure in each entry shows
the performance of our GHC compiler; the second (in
italics) shows the performance of the handwritten code for a
PARLOG to Dactl implementation.

Programs A R PC GNC
Merge 2021 1211 614 2625
(100x 100) 2021 1211 614 2624
Primes 86494 | 58207 4558 83947
(1 to 300) 82013 | 53726 4495 83947
Quicksort 27234 | 16879 944 26314
(50 els reversed.) | 27234 | 16879 944 26313
Tree search 200 143 65 368
(15 els bin. tree) 216 148 6l 349
Isotree 893 649 193 1211
(15 els bin. tree) 812 568 177 968

A=Activations, R=Rewrites, GNC=Graph nodes created,
PC=Parallel cycles performed.

6 DISCUSSION AND RELATED WORK

~ The implementation of the flat subset of GHC is very
similar to the one for PARLOG which is described in
Glauert er al. (1988) and Papadopoulos (1988). Since in
PARLOG the safety test is done at compile time, there is no
need for a run-time test. However, the compile-time test is
not always successful; safe programs may be rejected as
unsafe. A combination of the compile and run-time tests is
possible in our Dactl implementations and it could be useful
for both PARLOG and GHC.

Although our implementation detects failure as early as
possible it cannot abort a computation whose result is not
needed any more; this is because the notion of killing active
processes has no meaning in a graph rewriting model. If an
AND process detects a failure from one of its children it
terminates immediately, reporting failure, but it does not kill
the rest of its child processes. In most cases these will

1057

eventually suspend waiting for input data which will never
arrive. Also, when an cr process commits to the body of a
clause, the rest of the guards continue their execution
although they cannot affect the final result. This 1s perfectly
acceptable by the definition of the language; as Ueda (1986)
points out a truly parallel language may have to allow
possible useless computation. However, for efficiency
reasons we would like to be able to terminate such
unnecessary computation. This is possible in our model by
means of a transformation technique which involves
enhancing a Dactl function with an additional parameter to
be instantiated when the computation of that function must
be aborted; indeed, it can also be used to suspend and
resume computation, which is useful for systems
programming and metaprogramming. This technique is
discussed 1n the implementation of PARLOG
(Papadopoulos 1988) and the reader is referred to that
document for further details.

Finally, we note that our technique for detecting the
current environment of a variable (needed when calls to user
defined predicates are allowed in the guards) involves just a
simple pointer equality test. We believe that this technique is
more efficient than the ones proposed so far such as pointer
colouring or guard system numbers (Kishi er al. 1985).
Commitment is performed by a simple non-root overwrite
which merges the local and the calling environment and
does not involve the difficulties of other known schemes
such as handling cross-environment references (Levy 1986).
We would like to stress here the fact that, if desired, a
mixture of the two possible strategies (speculative and non-
speculative) can be used. Some of the clauses of a GHC
program may be translated to Dactl code based the first
strategy, and others to code based on the second. Although
speculative evaluation of the body of a clause in parallel
with the respective guard achieves the maximum degree of
parallelism, it remains to be seen whether it is an acceptable
strategy from the point of view of efficiency.

7 CONCLUSIONS AND FUTURE RESEARCH

We have presented a parallel implementation of Guarded
Horn Clauses based on graph rewriting. We showed that
GHC clauses can be seen as rewrite rules specifying
possible transformations on graphs representing goal
queries. We provided a complete translation scheme from
GHC to Dact}, a compiler target language based on graph
reduction. This scheme is general enough to accomodate all
kinds of GHC programs including the ones that use nested
calls in the guards (the required Dactl code to run GHC
programs as well as a number of example programs can be
found in Glauert and Papadopoulos (1988)). The ability to
share subexpressions, an inherent property of graph
reduction, allowed the run-time test needed for such
programs to be implemented using a simple pointer equality
test. An additional advantage of such an implementation
stems from the fact that Dact!l will be used ds a front-end to a
number of machines namely Flagship (Watson ez al. 1983),
GRIP (Peyton Jones et al. 1987) and ZAPP (Sleep and
Kennaway 1984).

The use of Dactl as the implementation language for
GHC allows the former to be used as a common basis for
comparing implementations of the latter with other
languages both logic and functional. This is discussed
further by Hammond and Papadopoulos (1988). A
performance comparison between our GHC (or PARLOG)
10 Dactl implementation on Flagship and a similar one for
PARLOG on Alice CTL (Lam and Gregory 1987) would

‘also be interesting.

1058

We are currently investigating the extension of our
model to accomodate a wider family of languages, namely
the CP-family, P-Prolog (Yank and Aiso 1986) and a class
of equational (logic+functional) languages (DeGroot and
Lindstrom 1986).

ACKNOWLEDGEMENTS

We are grateful to the anonymous referees for their
constructive comments.

REFERENCES

Barendregt H. P., van Eekelen M. C. I. D.,
Glauert J. R. W., Kennaway J. R., Plasmeijer M.
J. and Sleep M. R., Term Graph Rewriting, PARLE
Conference, Eidhoven, Netherlands, June 15-19, LNCS
259, pp. 141-158, 1987.

DeGroot D. and Lindstrom G. (eds), Logic
Programming: Functions, Relations and Equations,
Prentice-Hall, 1986.

Glauert J. R. W., Hammond K., Kennaway J. R.
and Papadopoulos G. A., Using Dactl to Implement
Declarative Languages, CONPAR'88, Manchester UK.,
Sept 12-16, 1988.

Glauert J. R. W., Kennaway J. R. and Sleep M.
R., Dacil: a Compurational Model and Compiler Target
Language Based on Graph Reduction, ICL Technical
Journal, May, pp. 509-537, 1987.

Glauert J. R. W. and Papadopoulos G. A. A
Parallel Implementation of GHC Based on Graph
Reduction, Internal Report, University of East Anglia,
U.K., 1988.

Gregory S., Parallel Logic Programming in PARLOG:
the Language and its Implementation, Addison-Wesley,

Hammond K. and Papadopoulos G. A., Parallel
Implementations of Declarative Languages Based on Graph
Reduction, Alvey Technical Conference, pp. 246-249,
University of Wales, Swansea, July 4-7, 1988.

Kennaway J. R., Implementing Term Rewrite Languages
in Dactl, CAAP '88, Nancy, France, March 21-24, LNCS
299, pp. 102-116, 1988.

Kishi M., Kuno E., Rokusawa K. and Ito N., The
Daztaflow-based Parallel Inference Machine to Support Two
Basic Languages in KLI, ICOT, Japan, TR-114, 1985.

Lam M. and Gregory S., PARLOG and ALICE: A
Marriage of Convenience, 4th ICLP, Melbourne, Australia,
May 25-29, pp. 294-310, 1987.

Levy J., A GHC Abstract Machine and Instruction Ser, 3rd
International Conference on Logic Programming, London
UK., July 14-18, LNCS 225, pp. 157-171, 1986.

Papadopoulos G. A., A High-Level Parallel
Implementation of PARLOG, Internal Report SYS-C88-05,
University of East Anglia, UK., 1988.

Peyvton Jones S. L., Clack C., Salkild J. and
Hardie M., GRIP - A High-Performance Architecture for
Parallel Graph Reduction, FPLCA'87, Portland Oregon,
U.S.AL, Sept. 14-17, LNCS 274, pp. 98-112, 1987.

Shapiro E. Y., A Subser of Concurrent Prolog and its
Interpreter, 1ICOT, Japan, TR-003, 1983.

Sleep M. R. amd Kennaway J. R., The Zero
As.sz,g.nmenz Parallel Processor (ZAPP) Project, in
Distributed Computing Systems Programme, Peter

Peregrinus (ed), pp. 250-269, London, 1984.

Ueda K., Guarded Horn Clauses, D.Eng. Thesis,
University of Tokyo, Japan, 1986.

Watson 1., Woods V., Watson P, Banach R.,
Greenberg M. and Sargeant J., Flagship: A Parallel
Architecture for Declarative Programming, 15th
International Symposium on Computer Architecture, IEEE,
pp- 124-130, Honolulu, Hawaii, May 30 - June 2, 1988.

Yank R. and Aiso H., P-Prolog: A Parallel Logic
Language Based on Exclusive Relations, 3rd International
Conference on Logic Programming, London U.K., July 14-
18, LNCS 225, pp. 255-269, 1986.

APPENDIX
GHC Cede
search (Key,Value, t (_,1(Key,Value'),))
:~ true | Value=Value'.

search (Key, Value, t (X, ,Y)) :- otherwise |

- searchl (Key,Value, X, Y} .
search(Key,Value',X) |
Value=Value'.
search(Key,Value',Y) |
Value=value'.

searchl {(Key,Value,X,Y) :~

searchl (Key,Value,X,Y) :-

Dactl Code
MODULE Search;
IMPORTS Arithmetic;

SYMBOL REWRITABLE Search; Search Commit;
Searchl; Searchl Commit;

Logic; Lists; Strings; GHC;

PUBLIC Search;
RULE
Search[inh vo vl Tup["T" v2 Tup["L" v3 v4] v5]]
=> #Search Commit [inh “guard vO0 vl v2 v4 v5],
guard:*Eg([v0 v3]1|
Searchipl p2 p3 p4:Var[Any] pE]
=> #Search([pl p2 p3 "p4 pSl;
Search[pl p2 p3 Tup["T" v2 ~l:Var(Any] v5] pS5]
=> #Search[pl p2 p3 “#Tup["T" v2 "1 v5] p5l:
Search([Any Any Any Any Any] => *FAIL;
Search Commit [inh SUCCEED Any vl Any v4 Any]
B => $Unify[inh vl v4]|
Search Commit [inh FAIL v0 vl v2 Any v3]
- => *Searchl[inh v0 vl v2 v5];
Searchl[inh v0 vl v2 v3)]
=> #Searchl Commit[inh locl:E loc2:E
~“*Searchl [locl v0 vd:Var[lecl] v2]
~*Searchl [loc2 v vbh:Var[loc2] v3]
vl v4 v5];

Searchl Commit {inh locl:E Any SUCCEED Any

vl v4 v5] => *Unify[linh vl v4],
locl:=inh]
Searchl Commit{inh Any loc2:E Any SUCCEED
- vl v4 v5] => *Unify[inh vl v5],

locl:=inh|
Searchl Commit [Any Any Any FAIL FAIL
Any Any Any => *FLIL;
r:Searchl Commit [Any Any Any Any Any Any Any
Any] -> #r;
ENDMODULE Search;

Note how the functionality of otherwise is embedded
mmplicitly in the rules defining search instead of using the
explicit, more inefficient, representation described in the
paper. Note also the optimisation in search Commit where
no local environment is created for =q because it is a safe
system primitive. This optimisation can be extended t0
guards having user defined calls that are known to be safe
(possibly by means of a compile time test).

