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Abstract

This paper combines work done in the areas of Artificial Intelligence, Multimedia Systems and Coordination Programming
to derive a framework for Distributed Multimedia Systems based on asynchronous timed computations expressed in a certain
coordination formalism. More to the point, we propose the development of multimedia programming frameworks based on the
declarative logic programming setting and in particular the framework of object-oriented timed concurrent constraint program-
ming (OO-TCCP). The real-time extensions that have been proposed for the concurrent constraint programming framework are
coupled with the object-oriented and inheritance mechanisms that have been developed for logic programs yielding an integrated
declarative environment for multimedia objects modelling, composition and synchronisation. Furthermore, we show how the
framework can be implemented in the general-purpose coordination language MANIFOLD without the need for using special
architectures or real-time languages.
© 2004 Elsevier B.V. All rights reserved.
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. Introduction

The development of distributed multimedia frame-
orks is a quite common phenomenon in our days.
urthermore, any distributed programming environ-
ent can be viewed as being comprised by two sep-
rate components: a computational part consisting of
number of concurrently executing processes and re-

ponsible for performing the actual work, and a com-
unication/coordination part which is responsible for

∗ Tel.: +357 22 892693; fax: +357 22 892701.
E-mail address:george@cs.ucy.ac.cy (G.A. Papadopoulos).

inter-process communication and overall coordina
of the executing activities. This has led to the de
opment of the so calledfamily of coordination mode
and languages[3,12]which can be used to support
coordinated distributed execution of a number of c
currently executing agents.

The purpose of this paper is to present a framew
for coordinating the distributed execution of mu
media applications exhibiting real-time behavio
However, unlike most of the other approaches tha
primarily based on using special purpose real-time
guages and platforms[2,6–8,13], our model is base
on declarative programming and, in particular, tha
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concurrent constraint programming. More to the point,
we show how thetimedversion of concurrent constraint
programming[15], combined with already existing
techniques supporting object-oriented programming
[5], can be used to produce a framework for multime-
dia programming which we call object-oriented timed
concurrent constraint programming (OO-TCCP). We
then show how a general purpose coordination formal-
ism, namely MANIFOLD[1], can be used to support
the run-time environment that satisfies the real-time
execution requirements of OO-TCCP agents, thus
effectively presenting an implementation of OO-TCCP
in MANIFOLD, or in other words, a coordination
formalism for distributed multimedia applications.

The rest of the paper is organised as follows: The
next section presents OO-TCCP and shows how it can
be used as the basis for multimedia programming. The
following section describes briefly the coordination
language MANIFOLD and shows how OO-TCCP can
be implemented in it. The last section concludes the
paper with a discussion of current and future work.

2. A declarative object-oriented real-time
multimedia programming framework

2.1. Timed concurrent constraint programming

Timed concurrent constraint programming (TCCP),
developed by Saraswat et al.[15], is an extension
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and contrasts the perfect synchrony hypothesis, usually
advocated by real-time languages[6]. These time inter-
valst at the end of which no more positive information
can be detected are termed thequiescentpoints of the
computation.

Thus, the fundamental differences between the
timed and the untimed version of concurrent constraint
programming are that in the timed version: (i) recursion
(and iteration for that matter) are eliminated, and (ii)
no information is carried over (by means of variables)
from one time instance to the next one. These restric-
tions guarantee bounded time response and hence a
real-time behaviour. Note that the basic ideas charac-
terising TCCP are not unique to concurrent constraint
programming and in fact could be introduced into any
asynchronous model of computation. It is precisely this
property that we exploit in the next section to derive an
implementation of the model in terms of a general pur-
pose coordination formalism.

In TCCP an agentA takes one of the following
forms.

A ::= c (post-constraintc to the current store)
|now c then A (if the current store entailsc then
behave likeA)
|now c else A(if c is entailed then behave likeA in
thenexttime instance)
|next A (behave like A in the next time
instance—unit delay)
|abort (abort computation)

,
t fol-
l

w ugh
p
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A t the
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f concurrent constraint programming, itself bein
ombination of constraint logic programming and c
urrent logic programming, with temporal capabilit
long the lines of state-of-the-art real-time langua
uch as ESTEREL, LUSTRE and SIGNAL[2,8], of-
ering temporal constructs and interrupts, and suit
or modelling real-time systems. In TCCP, variab
lay the role ofsignalswhose values from one tim

nstance to another can be different. At any given
tance in time the system is able to detect the pres
f any signals; however, the absence of some s
an be detected only at the end of the time interval
ny reaction of the system will take place at thenext

ime interval. Thus, the behaviour of a process is
uenced by the set of positive information input up
nd includingsome time intervalt and the set of neg
tive information input up to but not includingt. This
as been called thetimed asynchrony hypothesis[15]
|skip (skip)
|A, A (parallel composition)
|p(t1, . . . , tn) (procedure call)

Therefore, ifc is a constraint andA andB are agents
he fundamental temporal construct in TCCP is the
owing combination:

now c then A else B

hose interpretation is as follows: if there is eno
ositive information to entail the constraintc then the
rocess reduces immediately (in the current time

erval) toA and the operations further performed
are also observable immediately; otherwise, if a

nd of the current time interval the store cannot
ail c (i.e. negative information, or in other words,
bsence of some signal has been detected), the
ess reduces toB at the nexttime interval (the work
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performed byB will not be observable in the current
time instance). As implied by the syntax for the agents
above, either of thethen or elseparts can be omit-
ted. By “guarding” recursion within anelse(or next)
part it can be guaranteed that computation within a
time interval is bounded. In fact, reachable states of
the computation in a TCCP program can be identified
at compile time leading to the generation of a finite
state automaton in the same way that this is possible
for state-of-the-art real-time languages[2]. Note that
when moving from one time interval to another all
the positive information accumulated within the cur-
rent time interval are discarded. Thus, the value of a
program’s “variable” varies at different time intervals
and any data must either be kept as arguments to the
relative predicate or be posted as signals at every time
interval.

To recapitulate, at any moment in time a number of
agents are executed concurrently exchanging informa-
tion by means of posting signals to a, possibly only
notionally, common store. Each agent is allowed to
either suspend waiting for some signal to be posted
from some other concurrently running agent, or post
itself signal(s) and/or spawn other agents. Any (mutu-
ally) recursive call will have to wait until the next time
instance. Thus, each (loop-free) agent performs only
a bounded amount of work and eventually the whole
system quiescences. The store is discarded and com-
putation moves on to the next time instance where only
those agents present in theelseandnext constructs are
e the
c
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Timeouts and interrupts in TCCP can be handled
by ado. . . watchingconstruct similar to that found in
languages like ESTEREL but with a slightly different
semantics. In particular,

do A watching c timeout B

executesA and if c becomes true beforeA completes
execution, the process will reduce toB at thenexttime
instance. Since (agent)A can be a number of things,
the above construct is actually defined by a set of rules
rather than a single one, the most important of which
are the following ones.

2.2. From TCCP to OO-TCCP

We now combine the TCCP framework with the
techniques proposed in[5], adapted to satisfy the
constraints imposed by TCCP, to form what is referred
to in this paper asobject-oriented timed concurrent
constraint programming. The main reason why we
chose the framework proposed in[5] to enhance TCCP
with object-orientation is that it is essentially a textual
sugaring for TCCP programs (inheritance, for in-
stance, is based on copy semantics). Other, admittedly
more powerful proposals, usually involve some, even
mild, semantic extensions to the underlying language
formalism (for instance, the way concurrent method
invocations are handled and how they interfere within
stateful objects, etc.). We did not want to introduce such
p ny
i ts of
t
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c age.
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xecuted (any agent still remaining suspended in
urrent time instance is also discarded).

As shown in[15], the above construct can be u
o implement a number of temporal constructs
re usually found in real-time languages such as
EREL, LUSTRE and SIGNAL. In the sequel we sh
nly the basic ones. The construct

whenever c do A = now c then A else (whenever
do A)

uspends until the constraintc can be entailed and th
educes the executing process toA, thus modelling
emporalwait construct. Alternatively, the construc

always A = A, next (always A)

efines a process that behaves likeA at every time in
tance.
owerful formalisms before understanding fully a
nfluence these may have on the temporal construc
he framework. Therefore, OO-TCCP is only anota-
ional extensionto TCCP, but one we feel yields a mo
onvenient as well as powerful programming langu

We illustrate the characteristics of this combi
ramework by means of some examples. Conside
ase of a simple media object that suspends un
onditionC is satisfied and then emits the signalS. In
O-TCCP this object could be coded up as follow

emit(C,S):- whenever C do{S}.

Now a similar objectemit2 that emits signalS1if a
onditionC1 is satisfied and alternatively emits sig
2 if a conditionC2 is satisfied can be coded up

erms of the objectemit as follows.

emit2(C1,C2,S1,S2):- +emit(C1,S1);
+emit(C2,S2).
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where ‘;’ is the (committed) OR-parallel operator
and ‘+’ is the inheritance operator (based on copy
semantics). The above code fragment is equivalent to
the following expanded one.

emit2(C1,C2,S1,S2):- whenever C1 do{S1},
whenever C2 do{S2}.

The OO-TCCP framework can be used as the ba-
sis for developing multimedia programming environ-
ments based on the timed asynchronous paradigm, i.e.
frameworks that essentially exhibit soft real-time be-
haviour; such a framework is reported in[9]. Here,
we show how we can model time-based media in
OO-TCCP.

time media object(Object)+(QualityFactor,
Duration,Encoding,Rate,ScFactor=1,. . . ):-
whenever Object:access

do (now Object:setScFactor:X then
(ScFactor’=X, next self),

now Object:setDuration:Length then
(Duration’=Length, next self),

etc. for the rest of thesetfunction primitives
now Object:getRate then ({Object:rate:

Rate}, next self),
now Object:getEncoding then ({Object:

encoding:Encoding}, next self),
etc. for the rest of theget function primitives

).

bject
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or (ii) it can be a request type of message (implement-
ing effectively theget type of primitive functions) in
which case it posts a signal with the value(s) of the
requested parameter(s). Note that the accompanying
message may be a parameterised one carrying compli-
cated information that should be passed on by the object
to some other agent (e.g. some device driver) for pro-
cessing. We do not explore this scenario any further
here.

We can use the above object class to define a video
and an audio object subclass as follows.

video object(Video)+(QualityFactor=“VHS”,
Duration,Encoding,Rate,ScFactor,Colour,. . . ):-
+ time media object;
whenever Video:access

do (now Video:setColour:C then (Colour’=C,
next self),

etc. for the rest of thesetfunction

primitives particular to this object

now Video:getColour then ({Video:
colour:Colour}, next self),

etc. for the rest of theget function

primitives particular to this object

now Video:play
then (video devicePLAY(Video,. . . ),

lf)

a

The above code defines a time-based media o
omprising a name, which plays effectively the r
f a communication channel, and a set of attrib
uch as quality factor (e.g. VHS or CD depend
n whether it is video, sound, etc.), duration (in s
nds) and rate of presentation (in frames for vide
amples for audio). Note that all the attributes are
ned as implicit arguments; note also that the sca
actor has a default value of 1. The main part of
ode defines its interface where we note that the
ect remains suspended until it receives an initial m
ageObject:access; upon receiving such a messa
ime media object expects the presence of an acco
anying message which can belong to either of two
gories: (i) it can be an updating type of message
lementing effectively theset type of primitive func-

ions) in which case it updates the relevant param
and calls itself recursively at thenexttime instance)
next self),
now Video:stop
then (video deviceSTOP(Video), next se

).

udio object(Audio)+(QualityFactor=“CD”,
Duration,Encoding,Rate,ScFactor,Volume,. . . ):-
+ time media object;
whenever Audio:access

do (now Audio:setVolume:V then
(Volume’=V, next self),

etc. for the rest of thesetfunction

primitives particular to this object

now Audio:getVolume then ({Audio:
volume:Volume}, next self),

etc. for the rest of theget function

primitives particular to this object
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now Audio:play then (audio devicePLAY
(Audio,. . . ), next self),

now Audio:stop then (audio deviceSTOP
(Audio), next self)

possibly other control signals particular
to this object

).

Note that both objects inherit the methods handling
the common signals of their superclass. Note also that
there is a third category of messages, that of control
messages (such asSTART or STOP) in which case
the appropriate device is accessed.

We recall that there are no rigid variables in TCCP
and any bindings to be retained must be posted at ev-
ery time instance. Therefore in all cases where sig-
nal communication is performed, we assume that the
requesting agent can detect the posted signal in the
same time instance; if that is not possible the sig-
nal with the requested information can be kept posted
at every time instance until an appropriate acknowl-
edgment message has been received (here we as-
sume that the synchronisation tolerance of the me-
dia involved allows the materialisation of such a
scenario).

3. Implementing OO-TCCP using the
coordination paradigm

3
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world. A process can be either a manager (coor-
dinator) process or a worker. A manager process
is responsible for setting up and managing the
computation performed by a group of workers. Note
that worker processes can themselves be managers
of subgroups of other processes and that more than
one manager can coordinate a worker’s activities as
a member of different subgroups. The bottom line
in this hierarchy isatomicprocesses which may in
fact be written in any programming language.

• Ports. These are named openings in the boundary
walls of a process through which units of infor-
mation are exchanged using standard I/O type
primitives analogous to read and write. Without loss
of generality, we assume that each port is used for
the exchange of information in only one direction:
either into (input port) or out of (output port) a
process. We use the notation p.i to refer to the port
i of a process instance p.

• Streams. These are the means by which interconnec-
tions between the ports of processes are realised. A
stream connects a (port of a) producer (process) to a
(port of a) consumer (process). We write p.o -> q.i to
denote a stream connecting the port o of a producer
process p to the port i of a consumer process q.

• Events. Independent of channels, there is also an
event mechanism for information exchange. Events
are broadcast by their sources in the environment,
yielding event occurrences. In principle, any
process in the environment can pick up a broadcast

set
vent

rite

t
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i ent.
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.1. The IWIM model and the language
ANIFOLD

MANIFOLD [1] is a control-oriented, event-driv
oordination language. In MANIFOLD there ex
wo different types of processes:managers(or co-
rdinators) and workers. A manager is responsib

or setting up and taking care of the communica
eeds of the group of worker processes it con
non-exclusively). A worker on the other hand
ompletely unaware of who (if anyone) needs
esults it computes or from where it itself receives
ata to process. MANIFOLD possess the follow
haracteristics:

Processes. A process is ablack boxwith well-
defined ports of connection through which
exchangesunitsof information with the rest of th
event; in practice though, usually only a sub
of the potential receivers is interested in an e
occurrence. We say that these processes aretuned in
to the sources of the events they receive. We w
e.p to refer to the event e raised by a source p.

Activity in a MANIFOLD configuration iseven
riven. A coordinator process waits to observe an
urrence of some specific event (usually raised
orker process it coordinates) which triggers it to

er a certainstateand perform some actions. The
ctions typically consist of setting up or breaking
onnections of ports and channels. It then remain
hat state until it observes the occurrence of some
vent which causes thepreemptionof the current stat

n favour of a new one corresponding to that ev
nce an event has been raised, its source gen

ontinues with its activities, while the event occurre
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Fig. 1.

propagates through the environment independently and
is observed (if at all) by the other processes according
to each observer’s own sense of priorities.Fig. 1shows
diagrammatically the infrastructure of a MANIFOLD
process.

The process p has two input ports (in1, in2) and an
output one (out). Two input streams (s1, s2) are con-
nected to in1 and another one (s3) to in2 delivering
input data to p. Furthermore, p itself produces data
which via the out port are replicated to all outgoing
streams (s4, s5). Finally, p observes the occurrence of
the events e1 and e2 while it can itself raise the events
e3 and e4. Note that p need not know anything else
about the environment within which it functions (i.e.
who is sending it data, to whom it itself sends data,
etc.).

The following is a MANIFOLD program computing
the Fibonacci series.

manifold PrintUnits() import.
manifold variable(port in) import.
manifold sum(event)

port in x.
port in y.
import.

event overflow.

auto process v0 is variable(0).
a
a
a

manifold Main()
{

begin:(v0->sigma.x,v1->sigma.y,v1->v0,sigma->
v1,sigma->print).

overflow.sigma:halt.
}

The above code defines sigma as an instance of
some predefined process sum with two input ports
(x,y) and a default output one. The main part of the
program sets up the network where the initial values
(0,1) are fed into the network by means of two “vari-
ables” (v0,v1). The continuous generation of the se-
ries is realised by feeding the output of sigma back
to itself via v0 and v1. Note that in MANIFOLD
there are no variables (or constants for that matter)
as such. A MANIFOLD variable is a rather simple
process that forwards whatever input it receives via
its input port to all streams connected to its output
port. A variable “assignment” is realised by feeding
the contents of an output port into its input. Note
also that computation will end when the event over-
flow is raised by sigma. Main will then get pre-
empted from its begin state and make a transition to
the overflow state and subsequently terminate by exe-
cuting halt. Preemption of Main from its begin state
causes the breaking of the stream connections; the
p tect
t lso
t

-
i es,
w or-
d mine
t LD
a is no
c eed
w e de-
v ing
d ba-
s be-
h ract
m re
i ls
c

uto process v1 is variable(1).
uto process print is PrintUnits.
uto process sigma is sum(overflow).
rocesses involved in the network will then de
he breaking of their incoming streams and will a
erminate.

MANIFOLD contrasts with the “Linda-like” fam
ly of data-drivencoordination models and languag
here computational components intermix with co
ination ones, and coordinator agents see and exa

he data involved in some computation. In MANIFO
ll agents are treated as black boxes and there
oncern as to what they actually compute, or ind
hether they are software processes or hardwar
ices. Thus, this formalism is ideal for coordinat
istributed Multimedia frameworks. However, the
ic MANIFOLD system does not support real-time
aviour. We show below how the OO-TCCP abst
achine can be implemented in MANIFOLD. Mo

nformation on MANIFOLD and coordination mode
an be found in[3,10–12].
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3.2. Implementing the OO-TCCP abstract
machine in MANIFOLD

Although MANIFOLD’s features were designed
with other purposes in mind, we have found them to
be suitable in implementing the run-time environment
required by OO-TCCP. In particular, a MANIFOLD
configuration exhibiting real-time behaviour in the OO-
TCCP sense consists of the following components:

• A MANIFOLD coordinator process (the clock) re-
sponsible for monitoring the status of the coordi-
nated processes, detecting the end of the current time
instance, and triggering the next one. The coordina-
tor process is also responsible for detecting the end
of the computation.

• A set of MANIFOLD coordinated processes, each
one monitoring the execution of some group of
atomic processes. Each such coordinated process
performs a bounded amount of work between the
ticks as dictated by the coordinator process (thus any
loops in such a process “spread over” the next one
or more ticks).

• A set of groups of atomic processes (i.e. processes
written in some language other than MANIFOLD),
each group being monitored by a coordinated pro-
cess. In order for the whole configuration to exhibit
asynchronous real-time behaviour, these atomic pro-
cesses must also produce results in bounded time.
There are two approaches possible here: (i) enforce

ese
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p s of
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M g
t st of
t with
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t he
s ive
t uire-
m

An application featuring timed asynchronous be-
haviour takes the general form:

<application> ::= <coordinator>
<coordinated>+
<atomic>+

The general behaviour of a coordinator (clock) pro-
cess is shown, as a first approximation, below (note that
the construct (A1,. . . ,An) denotes a block where all n
activities will be executed concurrently; there is also a
‘ ;’ separator imposing sequentiality).

manifold Clock()
port in term in, next in.
port out term out, next out.
{
event tick, next phase, endcomp.
begin: (<set up network of initial activated pro-
cesses>;

terminated(void)).
next phase: (raise(tick),

terminated(void)).
end comp: (<perform clean up>;

post(end)).
}

Clock first sets up the initial network of coordinated
processes. It then suspends waiting for either of the fol-
lowing two cases to become true (one way to achieve
suspension in MANIFOLD is by waiting for the termi-
n ver
t

• xecu-
ting
ate

• lock
up.

ase
a uted
f or-
g the
p . We
e one
b by
a

ss is
a

the constraint that there are no loops within th
processes and instead, put these loops in the
spective coordinated processes, or (ii) treat the
asynchronous parallel components that take an
bounded amount of time.

The overall configuration is a hierarchical o
ith the MANIFOLD coordinator process on the to
onitoring a number of MANIFOLD coordinate
rocesses, themselves possibly monitoring group
tomic (non-MANIFOLD) processes. One can reg
ANIFOLD as being the “host language” for writin

he control structures of reactive systems, while mo
he actual computation (data handling, interfaces
ny embedded systems) are done in other more co

ional languages, typically C. This fits nicely into t
pirit of real-time coordination models as we perce
hem and separates the real-time coordination req
ents from the rest of the performed activities.
ation of the special process void which actually ne
erminates):

The coordinated processes have completed e
tion within the current time instance and are wai
for the next clock tick. Clock posts the appropri
event (or signal) and suspends again.
The computation has terminated in which case C
terminates, possibly after performing some clean

Detecting the completion of both the current ph
nd the end of the computation is done in a distrib

ashion, provided some constraints regarding the
anisation and communication protocols between
articipating coordinated processes are imposed
laborate further on the exact nature of the work d
y Clock once we describe the activities performed
coordinated process.
The general behaviour of a coordinated proce

s follows:
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Fig. 2.

manifold Process()
port in term in, next in.
port out term out, next out.
{

begin: (<raise event>;
<wait until input event received>)

input event: (<perform data transfer p1->p2>,
<generate new processes>;
terminated(void)).

tick.Clock: (<perform further actions>;
post(end)).

}

A typical behaviour of a timed asynchronous co-
ordinated process, as understood in the MANIFOLD
world, is to post some events, possibly wait until the
presence of some event in the current time instance is
detected and then react by producing some data transfer
between a group of atomic processes that it itself co-
ordinates (say from p1 to p2), post more events and/or
generate further processes. Upon termination of its ac-
tivities within the current time instance, the process
suspends waiting for the next tick event from the co-
ordinator (Clock) process, in which case it performs
more activities of similar nature, or alternatively, sim-
ply terminates within the current time instance.

We now present in more detail the way detection
of the end of the current phase, as well as the whole
computation, is achieved. Due to space limitations only
t are
s emi-
n con-
c on

short circuits. We recall that the coordinator and each
one of the coordinated processes have (among others)
two pairs of ports: the termin/term out pair is used to
detect termination of the whole computation whereas,
the nextin/next out pair is used to detect termination
of the current clock phase. Upon commencing the com-
putation, the Clock process sets up a configuration like
the one shown inFig. 2 below. This is achieved by
means of the following MANIFOLD constructs:

(C.next out->P1.next in,. . . ,P3.nextout-
>C.next in)
(C.term out->P1.term in,. . . ,P3.term out-
>C.term in)

Any process wishing to further generate other
processes is also responsible for setting up the
appropriate port connections between these newly
created processes. Detecting termination of the whole
computation is done as follows: a process P wishing
to terminate, first redirects the stream connections of
its input and output term ports so that its left process
actually bypasses P. It also sends a message down the
term.in port of its right process. If P’s right process is
another coordinated process the message is ignored;
however, if it happens to be the Clock controller,
the latter sends another message down its term.out
port to its left process. It then suspends waiting for
either the message to reappear on its term.in port (in
w and
c its
l are
s The
he most essential parts of the MANIFOLD code
hown below. The techniques we are using are r
iscent of the ones usually encountered within the
urrent constraint programming community based
hich case no other coordinated process is active
omputation has terminated) or a notification from
eft coordinated process (which signifies that there
till active coordinated processes in the network).
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basic MANIFOLD code realising the above scenario
for the benefit of the Clock controller is shown below.

// Clock code
begin: guard(term in,transport,check term).
check term: (“token” -> term out, post(begin)).
got token: post(begin).
check term: post(end).

A guard process is set up to monitor activity in the
term.in port. Upon receiving some input in this port,
guard posts the event checkterm, thus activating Clock
which then sends token down its term.out port waiting
to get either a gottoken message from some coordi-
nated process or have token reappear again. The related
code for a coordinated process is as follows:

// Coordinated process code
begin: guard(term in,transport,check term).
check term: (<term in->void,

if data in port is “token” raise
(got token)>).

Detecting the end of the current time instance is a
bit more complicated. Essentially, quiescence, as op-
posed to termination, is a state where there are still
some processes suspended waiting for events that can-
not be generated within the current time instance. We
have developed two methods that can detect quiescent
points in the computation. In the first scheme, all co-
o ocess
b nated
p ithin
t nec-
t end
w tary
e us-
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o cence
i cted
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An alternative approach requiring less work that is
also distributable is a modification of the protocol used
to detect termination of the computation. More to the
point, a process wishing to suspend waiting for an event
performs the same activities as if it were about to ter-
minate (i.e. have itself bypassed in the port connections
chain) but this time using the next input/output ports.
A process wishing to raise an event before suspending
(or terminating for that matter) does so, but waits for
a confirmation that the event has been received before
proceeding to suspend (or terminate). A process be-
ing activated because of the arrival of an event, adds
itself back into the next ports chain. Quiescence now
is the point where the Clock detects, as before, that its
next.out port is effectively connected to its own next.in
port, signifying that no event producer processes are ac-
tive within the current time instance. Note that unlike
the case for detecting termination, here the short circuit
chain can shrink and expand arbitrarily. Nevertheless,
it will eventually shrink completely provided that the
following constraints on raising events are imposed:

• Every raised event must be received within the cur-
rent time instance so that no events remain in transit.
An event multicast to more than one process must be
acknowledged by all receiver processes whose num-
ber must be known to the process raising the event;
this latter process will then wait for a confirmation
from all the receiver processes before proceeding
any further.

• pli-
ts,
next
end
eat

to
t ffer-
e hase
C co-
o f the
n

rdinated processes are connected to a Clock pr
y means of reconnectable streams between desig
orts. A process that has terminated its activities w

he current time instance breaks the stream con
ion with Clock whereas a process wishing to susp
aiting for an event e first raises the complemen
vent iwant e. Provided that processes wishing to s
end but also able to raise any events for the bene
ther processes, do so before suspending, quies

s the point where the set of processes still conne
o Clock is the same as the set of processes that
aised iwant e events. The advantage of this sche
s that processes can raise events arbitrarily wit
ny concern about them being received by some o
rocess. The disadvantage however is that it is e

ially a centralised scheme, also needing a good
f run-time work in order to keep track of the pos
vents.
A process must perform its activities (where ap
cable) in the following order: (1) raise any even
(2) spawn any new processes and set up the
and term port connections appropriately, (3) susp
waiting for confirmation of raised events, (4) rep
the procedure.

The code for the Clock controller is very similar
he one managing the term ports, with the major di
nce that upon detecting the end of the current p
lock raises the event tick, thus reactivating those
rdinated processes waiting to start the activities o
ext time instance.

// Clock code
begin: guard(next in,transport,check term).
check term: (“token” -> next out, post(begin)).
got token: post(begin).
check term: (raise(tick), post(begin)).
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The code for a coordinated process is as
follows:

//Coordinated process code
somestate:{begin: (raise(e),

<possibly spawn other
processes>;
terminated(void)).
i got e:

}

<continue>

3.3. Implementing the basic OO-TCCP constructs
in MANIFOLD

The framework presented above can be used to im-
plement the OO-TCCP primitives and, thus, provide
a MANIFOLD-based implementation for OO-TCCP;
below we show the implementation of three very often
used such primitives:

manifold Whenever Do(event e, process p)
{

begin: terminated(void).
e: activate(p).
tick.Clock: {ignore *.

}

m
{

}

m
{

}

Note that ignore * clears the event memory of the
manifold executing this command. By using ignore a
“recursive” manifold can go to the next time instance
without carrying with it events raised in the previous
time instance.

3.4. Coordinating real-time components

The next example illustrates the use of real-time
manifolds in coordinating the activities of concurrently
executing multimedia objects. This is a promising
area for real-time coordination models because they
provide a platform allowing different temporal coor-
dination patterns to be specified (and tested) between
sets of active objects encapsulating media processing
activities[13].

manifold Decompress(process frame, integer
tolerance)
{

begin: (activate(alarm(tolerance)),
frame->Decompressor,
terminated(void)).

tick.Clock: {ignore *.
begin: terminated(void).

decomp.Decompressor:
Decompressor->Display.

timeup.alarm: Disp prev

}

ni-
f g a
v m-
p tes an
a e. It
t s fin-
i dis-
p fying
t ould
h dis-
p n of
e y the
a rm
begin: post(begin).
}.

anifold Always(process p)

begin: (activate(p), terminated(void)).
tick.Clock: post(begin).

anifold Do Watching(process p, event e)

begin: (activate(p), terminated(void)).
e: {begin: terminated(void).

tick.Clock: raise(abort).
}.

tick.Clock: terminated(void).
frame->Display.
terminated(void).}.

The above is a simplified version of some ma
old responsible for decompressing and displayin
ideo frame. Initially, the manifold redirects the (co
ressed) frame to a decompressor process, activa
larm process and waits for the next time instanc

hen checks whether either the decompressor ha
shed executing, in which case the frame is sent to a
lay process, or the alarm has raised an event signi

hat the time during which the decompression sh
ave taken place is over, in which case the manifold
lays again the previous frame. Note that detectio
ither of the two events is done at a pace dictated b
pplication’s Clock manifold and not by, say, the ala
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process (which may well be a true real-time device).
Thus, response by Decompress is not done instanta-
neously from alarm’s point of view but nevertheless
within a small period of time.

3.5. Programming synchronous
algorithms—timed Fibonacci sequence

The final example is a timed version of the Fibonacci
sequence, adapted from the one presented in[15]. It
is by no means the most efficient timed version one
can write in our framework but it has some interesting
features like spawning dynamically new processes
over a number of clock ticks. Recursion is unfolded
and “spread over” two consecutive clock ticks and
each call to a Fib process lasts three clock ticks.

auto process v0 is variable(0).
auto process v1 is variable(1).
auto process print is PrintUnits.
auto process sum(port in i1,i2) is Add.
event v.
manifold Fib0()
{

begin: (raise(v), v0->(->print,->output)).
}

manifold Fib1()
{

b
t
}

m
{

b
v

.

,

tick.Clock: // work at time T+2
(activate(FibN), raise(v),

y->(->print,->output)) }}.
}

At every time instance a new FibN process is cre-
ated. It then waits until it receives the event v signifying
that some other process has created the first of the two
numbers needed to compute the next fibonacci number
(note here that the construct event.*p binds p to the id
of the process raising event). After storing locally the
number, FibN waits for the next time instance and then
gets in the same fashion the second number, spawns a
copy of itself and computes the next fibonacci number.
In the following and final (as far as it is concerned)
time instance, FibN passes the result to its output port
as well as to the printing process, raises the event v for
the benefit of the other FibN processes waiting for the
result, spawns another copy of itself and terminates.

Note that in the spirit of the MANIFOLD model,
processes have a minimal awareness about the activities
performed in their environment; an incarnation of FibN
for instance, passes its result to its output port without
any concern as to whom will get it (aside from the
printing process).

4. Conclusions—related and further work

) ap-
p am-
m ed
c ages
f el-
o style
o im-
p r the
y lvers
t nd
i , we
h d in
a AN-
I ised
a

spe-
c used
f

egin: terminated(void).
ick.Clock: (raise(v), v1->(->print,->output)).

anifold FibN()

egin: terminated(void).
.*p: {process x is variable. // work at time T

begin: (p.output->x,

terminated(void)).
tick.Clock: // work at time T+1
{begin: (activate(FibN), terminated (void))
v.*p: {process y is variable.

begin:((p->sum.i1, x->sum.i2
sum->y);
terminated(void)).
We have presented an alternative (declarative
roach to the issue of developing multimedia progr
ing frameworks, that of using object-oriented tim

oncurrent constraint programming. The advant
or using OO-TCCP in the field of multimedia dev
pment are, among others, the use of a declarative
f programming, exploitation of programming and
lementation techniques that have developed ove
ears, and possible use of suitable constraint so
hat will assist the programmer in defining inter a
ntra spatio-temporal object relations. Furthermore
ave shown how this framework can be implemente
general purpose coordination language such as M

FOLD in ways that do not require the use of special
rchitectures or real-time languages.

Our approach contrasts with the cases where
ialised software and/or hardware platforms are
or developing multimedia frameworks[2,7,13], and
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it is similar in nature to the philosophy of real-time
coordination as it is presented, for instance, in[4,14].
We believe our model is sufficient forsoft real-time
Multimedia systems where theQuality of Service re-
quirementsimpose only soft real-time deadlines.
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