
Future Generation Computer Systems 17 (2001) 1023–1038

Configuration and dynamic reconfiguration of components
using the coordination paradigm

George A. Papadopoulos a,∗, Farhad Arbab b

a Department of Computer Science, University of Cyprus, 75 Kallipoleos Str, P.O. Box 20537, CY-1678 Nicosia, Cyprus
b Department of Software Engineering, Centre for Mathematics and Computer Science (CWI), Kruislaan 413,

1098 SJ Amsterdam, The Netherlands

Abstract

One of the most promising approaches in developing component-based (possibly distributed) systems is that of coordination
models and languages. Coordination programming enjoys a number of advantages such as the ability to express different soft-
ware architectures and abstract interaction protocols, support for multi-linguality, reusability and programming-in-the-large,
etc. Configuration programming is another promising approach in developing large scale, component-based systems, with the
increasing need for supporting the dynamic evolution of components. In this paper we explore and exploit the relationship
between the notions of coordination and (dynamic) configuration and we illustrate the potential of control- or event-driven
coordination languages to be used as languages for expressing dynamically reconfigurable software architectures. We argue
that control-driven coordination has similar goals and aims with the notion of dynamic configuration and we illustrate how
the former can achieve the functionality required by the latter. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Coordination languages and models; Software engineering for distributed and parallel systems; Modelling software architectures;
Dynamic reconfiguration; Component-based systems

1. Introduction

It has recently been recognised within the software engineering community, that when systems are constructed
of many components, the organisation or architecture of the overall system presents a new set of design problems. It
is now widely accepted that an architecture comprises, mainly, two entities: components (which act as the primary
units of computation in a system) and connectors (which specify interactions and communication patterns between
the components).

Exploiting the full potential of massively parallel systems requires programming models that explicitly deal with
the concurrency of cooperation among very large numbers of active entities that comprise a single application.
Furthermore, these models should make a clear distinction between individual components and their interaction
in the overall software organisation. In practice, the concurrent applications of today essentially use a set of ad
hoc templates to coordinate the cooperation of active components. This shows the need for proper coordination

∗ Corresponding author. Tel.: +357-2-892242; fax: +357-2-339062.
E-mail addresses: george@cs.ucy.ac.cy (G.A. Papadopoulos), farhad@cwi.nl (F. Arbab).

0167-739X/01/$ – see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0 1 6 7 -7 3 9X(01)00043 -7

1024 G.A. Papadopoulos, F. Arbab / Future Generation Computer Systems 17 (2001) 1023–1038

languages [2,24] or software architecture languages [28] that can be used to explicitly describe complex coordination
protocols in terms of simple primitives and structuring constructs.

Traditionally, coordination models and languages have evolved around the notion of a shared dataspace; this
is a common area accessible to a number of processes cooperating together towards the achievement of a certain
goal, for exchanging data. The first language to introduce such a notion in the coordination community was Linda
with its Tuple Space [1], and many related models evolved around similar notions [2]. We call these models
data-driven, in the sense that the involved processes can actually examine the nature of the exchanged data and act
accordingly.

However, many applications are by nature event-driven (rather than data-driven) where software components
interact with each other by posting and receiving events, the presence of which triggers some activity (e.g. the
invocation of a procedure). Events provide a natural mechanism for system integration and enjoy a number of
advantages such as: (i) waiving the need to explicitly name components, (ii) making easier the dynamic addition of
components (where the latter simply register their interest in observing some event(s)), (iii) encouraging the complete
separation of computation from communication concerns by enforcing a distinction of event-based interaction
properties from the implementation of computation components. Event-driven paradigms are natural candidates for
designing coordination rather than programming languages; a “programming language-based” approach does not
scale up to systems of event-driven components, where interaction between components is complex and computation
parts may be written in different programming languages.

Thus, there exists a second class of coordination models and languages, which is control-driven and state tran-
sitions are triggered by raising events and observing their presence. A prominent member of this family (and a
pioneer model in the area of control-driven coordination) is MANIFOLD [5,9,18], which will be the primary fo-
cus of this paper. Contrary to the case of the data-driven family where coordinators directly handle and examine
data values, here processes are treated as black boxes; data handled within a process is of no concern to the en-
vironment of the process. Processes communicate with their environment by means of clearly defined interfaces,
usually referred to as input or output ports. Producer–consumer relationships are formed by means of setting up
stream or channel connections between output ports of producers and input ports of consumers. By nature, these
connections are point-to-point, although limited broadcasting functionality is usually allowed by forming 1–n re-
lationships between a producer and n consumers and vice versa. Certainly though, this scheme contrasts with the
shared dataspace approach usually advocated by the coordination languages of the data-driven family. A more
detailed description and comparison of these two main families of coordination models and languages can be found
in [24].

In parallel to the development and evolution of the coordination paradigm, the configuration and dynamic re-
configuration paradigm has also evolved considerably. Distributed information systems comprise a number of
components, both hardware and software (and, in fact, even humans can be viewed as part of this apparatus in
approaches such as groupware and collaborative environments). Such a complex and widely dispersed system will
need to evolve dynamically due to changes in user requirements, upgrades of software modules, failure or substitu-
tion of devices, etc. Furthermore, the components making up the system may be COTS (components-of-the-shelf),
legacy systems, etc. adding an extra complexity in managing the dynamic evolution of the whole environment. This
has led to the development of configuration and dynamic reconfiguration languages whose purpose is to provide
suitable abstractions for modelling the initial configuration and subsequent dynamic evolution of these complex
systems. Some classical examples in the literature of the configuration paradigm are Conic/Durra [6], Darwin/Regis
[14], PCL [30], POLYLITH [26], Rapide [10,17] and TOOLBUS [7].

As in the case of coordination, the configuration paradigm also leads naturally to the separation of components
specifying initial and evolving configurations from the actual computational components. Furthermore, there is the
need to support reusable (re-)configuration patterns, allow seamless integration of computational components but
also substitution of them with others with additional functionality, etc. Thus, there is a valid interest to examine any
potential relationship between configuration and coordination, and in particular to what extent we can express the
functionality of the former using the latter and vice versa.

G.A. Papadopoulos, F. Arbab / Future Generation Computer Systems 17 (2001) 1023–1038 1025

In this paper we address the first of the above two goals and we use MANIFOLD to show how it can be used
for developing dynamically evolving configurations of components. The important characteristics of MANIFOLD
include compositionality, inherited from the data-flow model, anonymous communication for both producers and
consumers, evolution of coordination frameworks by observing and reacting to events and complete separation of
computation from communication/configuration and other concerns. These characteristics lead to clear advantages
in large distributed applications. In the process of showing how the coordination paradigm can exhibit configuration
and dynamic reconfiguration capabilities, we note the natural resemblance that most of the configuration languages
have with the control- or event-driven coordination ones. This shows clearly that the latter can also be used for a
role traditionally associated with the former.

The rest of the paper is organised as follows. In the next section we present the coordination language
MANIFOLD and its underlying model IWIM in sufficient detail so that the programming techniques presented
further on can be understood. The following section presents the basic principles of the configuration paradigm
and shows its close relationship with the control-driven coordination one as it is expressed by languages such
as MANIFOLD. The subsequent main section illustrates the usefulness of the framework for developing dy-
namic reconfiguration abstractions by means of discussing the implementation of some typical scenarios. The
paper ends with some conclusions, comparison with related work and short reference to our future
activities.

2. The coordination model IWIM and the language MANIFOLD

MANIFOLD is a coordination language which is control- (rather than data-) driven, and is a realisation of a new
type of coordination models, namely the ideal worker ideal manager (IWIM) one [3]. IWIM is a generic, abstract
model of communication that supports the separation of responsibilities and encourages a weak dependence of
workers (processes) on their environment. Two major concepts in IWIM are separation of concerns and anonymous
communication. Separation of concerns means that computation concerns are isolated from the communication and
cooperation concerns into, respectively, worker and manager (or coordinator) modules. Anonymous communication
means that the parties (i.e., modules or processes) engaged in communication with each other need not know each
other. IWIM-sanctioned communication is either through broadcast of events, or through point-to-point channel
connections that, generally, are established between two communicating processes (who do not know each other’s
identity) by a third party coordinator process. In MANIFOLD there exist two different types of processes: managers
(or coordinators) and workers. A manager is responsible for setting up and taking care of the communication
needs of the group of worker processes it controls (non-exclusively). A worker on the other hand is completely
unaware of who (if anyone) needs the results it computes or from where it itself receives the data to process.
There is no way for a third party process to distinguish a worker from a manager process. This is important
because without any special considerations, a manager process can, recursively, manage worker processes which
themselves are managers of other workers. At the lowest level of such a hierarchy, are the so-called atomic workers
that are in fact computation processes. Computation processes can be written in any conventional programming
language. Coordinator processes are clearly distinguished from the others in that they are written in the MANIFOLD
language.

MANIFOLD encourages a discipline for the design of concurrent software that results in two separate sets of
modules: pure coordination, and pure computation. This separation disentangles the semantics of computation
modules from the semantics of the coordination protocols. The coordination modules construct and maintain a
dynamic data-flow graph where each node is a process. These modules do no computation, but only change the
connections among various processes in the application as prescribed, which changes only the topology of the graph.
The computation modules, on the other hand, cannot possibly change the topology of this graph, making both sets
of modules easier to verify and more reusable. The concept of reusable pure coordination modules in MANIFOLD
is demonstrated, e.g., by using (the object code of) the same MANIFOLD coordinator program that was developed

1026 G.A. Papadopoulos, F. Arbab / Future Generation Computer Systems 17 (2001) 1023–1038

for a parallel/distributed bucket sort algorithm, to perform function evaluation and numerical optimisation using
domain decomposition [4,11].

MANIFOLD possesses the following characteristics:

• Processes. A process is a black box with well-defined ports of connection through which it exchanges units of
information with the rest of the world. A process can be either a manager (coordinator) process or a worker.
A manager process is responsible for setting up and managing the computation performed by a group of
workers. Note that worker processes can themselves be managers of subgroups of other processes and that more
than one manager can coordinate a worker’s activities as a member of different subgroups. The
bottom line in this hierarchy is atomic processes, which may in fact be written, in any programming
language.

• Ports. These are named openings in the boundary walls of a process through which units of information are
exchanged using standard I/O type primitives analogous to read and write. Without loss of generality, we assume
that each port is used for the exchange of information in only one direction: either into
(input port) or out of (output port) a process. We use the notation p.i to refer to the port i of a process
instance p.

• Streams. These are the means by which interconnections between the ports of processes are realised. A stream
connects a (port of a) producer (process) to a (port of a) consumer (process). We write p.o → q.i to denote a
stream connecting the port o of a producer process p to the port i of a consumer process q.

• Events. Independent of channels, there is also an event mechanism for information exchange. Events are broadcast
by their sources in the environment, yielding event occurrences. In principle, any process in the environment can
pick up a broadcast event; in practice though, usually only a subset of the potential receivers is interested in an
event occurrence. We say that these processes are tuned in to the sources of the events they receive. We write
e.p to refer to the event e raised by a source p.

Activity in a MANIFOLD configuration is event-driven. A coordinator process waits to observe an occur-
rence of some specific event (usually raised by a worker process it coordinates) which triggers it to enter a
certain state and perform some actions. These actions typically consist of setting up or breaking off connec-
tions of ports and channels. It then remains in that state until it observes the occurrence of some other event,
which causes the preemption of the current state in favour of a new one corresponding to that event. Once
an event has been raised, its source generally continues with its activities, while the event occurrence prop-
agates through the environment independently and is observed (if at all) by the other processes according to
each observer’s own sense of priorities. Fig. 1 shows diagrammatically the infrastructure of a MANIFOLD
process.

Fig. 1. Control structures of a MANIFOLD process.

G.A. Papadopoulos, F. Arbab / Future Generation Computer Systems 17 (2001) 1023–1038 1027

As an example, we present the implementation of the dining philosophers problem in MANIFOLD. In this
implementation, we model philosophers and forks as separate process types: manifolds Philosopher and Fork,
as shown in the listing, below.

1 #define WAIT (preemptall, terminated (self))
2
3 event request, done.
4 manner Eat (process, process, process) import.
5 manner Think (process) import.
6 manner GetTicket () import.
7 manner ReturnTicket () import.
8
9 export Fork()

10 {
11 begin: while true do {
12 begin: WAIT.
13
14 request. �phil & �ready. �phil: {
15 save �.
16 begin: (raise(ready), WAIT).
17 done.phil: .
18 }.
19 }.
20 }
21
22 export Philosopher ()
23 {
24 event ready.
25
26 begin: while true do {
27 begin: Think (self);
28 GetTicket ();
29 (raise (request, ready), WAIT).
30
31 ready. �lfork & ready. �rfork: Eat (self, lfork, rfork).
32
33 end: raise (done);
34 ReturnTicket ().
35 }.
36 }

Line 1 in the listing defines WAIT as a preprocessor macro. What WAIT expands into is in fact a common
programming idiom that hangs the executing process, waiting for an event from any of its known event sources to
cause a state transition.

Line 3 defines request and done as events in the global scope of this source file. Any module within this
source file that uses either of these identifiers without redefining it refers to the corresponding event defined on this
line.

Line 4 declares the prototype of a subprogram (manner) called Eat that takes three process-type parameters. The
keywordimport states that the body of this subprogram is defined in another source file. In reality, this subprogram

1028 G.A. Papadopoulos, F. Arbab / Future Generation Computer Systems 17 (2001) 1023–1038

may be a piece of MANIFOLD code in the other source file, or it may be, e.g., a C function. We do not care about
the details of Eat: whenever a philosopher manages to obtain the two forks it requires to eat, it calls Eat to engage
in “eating” and passes its own identity plus the identities of its two forks as its parameters (line 31). Similarly, line
5 defines Think as another imported subprogram, which is used by a philosopher to do its “thinking” (line 27).

Lines 6 and 7 declare two other imported manners that together implement a “dining ticket” mechanism used to
prevent deadlocks (lines 28 and 34). These manners can easily be written in MANIFOLD, but we skip their detail
here.

The only way an instance of Fork can make a transition out of its WAIT state (line 12) is if it observes two event
occurrences from the same process, one of which must be an occurrence of the event request. The request
event is defined in this source file and because it does not have the extern attribute, this event is not known
in any other source file in any application. Within this source file, request can be raised only by instances of
Philosopher (line 29). Thus, the source of the request event occurrence (on line 14) can only be an instance
of Philosopher. The identity of this Philosopher instance will be bound to the identifier phil, due to the
�phil construct in the label of this state. This binding restricts the event occurrences that can match the rest of the
label: �ready can match any event raised by the same source, phil, that has also raised request. The only thing
that can possibly match �ready on line 14 is an occurrence of ready raised by an instance of Philosopher
on line 29. Note that there can be two pairs of event occurrences raised by different instances of Philosopher,
in which case, a Fork instance picks one pair non-deterministically.

After transition, a Fork instance raises the same ready event it has received, and waits for another event (line
16). Although the ready event is broadcast by Fork, because each philosopher has its own private ready event
(see below), no one other than the philosopher who raised it and caused a transition in Fork to line 14 can react to
it. Once a Fork instance is in this WAIT state (line 16), no event occurrences other than an occurrence of the event
done from phil (i.e., the same instance of Philosopher that caused the transition to line 14) can cause it to
make a state transition; this is due to the save statement on line 15.

To an instance of Philosopher, receiving its own private ready event means that one of the forks it is
potentially entitled to use is now exclusively at its disposal. In return, the Philosopher instance must raise the
event done to inform the forks it has used to “eat” that it is done with them. Thus, a committed Fork ends its wait
in each iteration (line 17) when it receives an occurrence of done raised by the same philosopher it had committed
itself to on line 14. At this point, the next iteration starts.

Because the event ready is declared inside the body of Philosopher (line 24), every instance of Philoso-
pher will have its own unique, private ready event. Analogous to Fork, an instance of Philosopher enters
an infinite loop upon its activation (lines 26–35). In each iteration of this loop, a Philosopher instance first does
its thinking (line 27), then waits to obtain a dining ticket (line 28), and finally, declares its intention to eat by raising
the events request and its private ready, and goes into a wait state. If and when two instances of Fork declare
their exclusive commitment to this Philosopher instance, it will have two occurrences of its own ready event
raised by them in its event memory. This allows it to make a transition to the state on line 31, where the identities
of the two forks will be bound to lfork and rfork. Now the Philosopher instance eats, and once done, it
raises the event done to release its committed forks (line 33), returns its dining ticket (line 34), and goes on to its
next iteration.

There will be 11 processes running in this application: an instance of Main, five instances of Philosopher,
and five instances of Fork. Each of these 11 processes will actually be a light-weight process (preemptively
scheduled thread) in some task instance (heavy-weight process). The actual number of task instances that house
these processes can range from 1 to 11, and they can run on the same actual (single or multi-processor) host or on
several (homogeneous or heterogeneous) such hosts over a network. None of this detail is relevant at the level of the
source code, and the same compiler produced object code can be linked with different specifications in the mlink
and config input to tailor the desired run-time configuration.

The Main program, shown below, simply creates and activates five instances of Philosopher and five in-
stances of Fork, and arranges them in a circular configuration around the virtual table. Main accomplishes these

G.A. Papadopoulos, F. Arbab / Future Generation Computer Systems 17 (2001) 1023–1038 1029

introductions by making each instance of philosopher and fork sensitive to the events raised by the other processes
it must know.

Main()
{
auto process phil1 is Philosopher ().
auto process phil2 is Philosopher ().
auto process phil3 is Philosopher ().
auto process phil4 is Philosopher ().
auto process phil5 is Philosopher ().
auto process fork1 is Fork ().
auto process fork2 is Fork ().
auto process fork3 is Fork ().
auto process fork4 is Fork ().
auto process fork5 is Fork ().
begin: ((phil1->,phil2->)->fork1,

(phil2->,phil3->)->fork2,
(phil3->,phil4->)->fork3,
(phil4->,phil5->)->fork4,
(phil5->,phil1->)->fork5).

end: .
}

More information on MANIFOLD can be found in [18]; note that MANIFOLD has already been implemented
on top of PVM and has been successfully ported to a number of platforms including Sun, Silicon Graphics, Linux,
and IBM AIX, SP1 and SP2. The language has been used successfully for, among others, coordinating parallel
and distributed applications [4,11,23,25], modelling activities in information systems [22] and expressing real-time
behaviour [15,21].

3. Basic concepts of the configuration paradigm and relationship with coordination

The basic principles of configuration programming have been summarised in [13] as follows: (i) The configuration
language used for structural description should be separate from the programming language used for basic component
programming. (ii) Components should be defined as context independent types with well-defined interfaces. (iii)
Using the configuration language, complex components should be definable as a composition of instances of
component types. (iv) Change should be expressed at the configuration level, as changes of the component instances
and/or their interconnections.

Furthermore, [8] outlines the responsibilities of configuration languages which are: (i) grouping of processes into
components; (ii) parameterising and instantiating components; (iii) establishing configuration of a set of components
as communication between them; (iv) expressing constraints that specify when configurations and any evolutions of
them are permissible. Finally, in [12], while describing another configuration mechanism based on I/O abstractions,
a number of desirable properties that configuration models should possess are listed. These properties are active
and reactive communication, connection-oriented and user-specifiable configuration and support for a variety of
communication schemes such as implicit, direct, multi-way, and use of continuous streams.

An even superficial examination of some of the most well-known configuration languages [6,10,12,14,16,17,26,
29,30] reveals that most of them are based on some common notions, namely: (i) Components, as the basic building
blocks for process descriptions. More often than not components in configuration languages are treated as black
boxes whose internals are of no interest at the configuration level. (ii) Ports, as the interaction mechanism of

1030 G.A. Papadopoulos, F. Arbab / Future Generation Computer Systems 17 (2001) 1023–1038

components with their environment and realised as well-defined “openings” (input or output) on the boundaries of
components. (iii) Connectors, as the mechanism for communication between components and realised by means
of channels or streams connecting output ports to input ports and vice versa. The above features are coupled with
some mechanism for establishing reconfiguration scenarios and when it is safe for some configuration to evolve to
another one (for more detailed discussions on these topics see, among others, [8,13,14,16,24,29]).

It is therefore clear from the above discussion that the configuration paradigm has many common features with
the control-driven coordination one. And, furthermore, those coordination languages such as MANIFOLD have the
potential to also play the role of configuration ones. In the next section we further elaborate on this approach by
showing how MANIFOLD can express some typical configuration scenarios.

4. Configuration and dynamic reconfiguration in MANIFOLD

In this main section of the paper we show how control- or event-driven coordination languages, such as MAN-
IFOLD, can express configuration and dynamic reconfiguration properties, by modelling two classical scenarios.
Our first case study is the set up and evolution of a community of distributed components associated with each other
by means of forming a ring. The second one is the well-known patient monitoring system.

4.1. Principles of configuration in distributed systems: evolution of a token ring

The scenario, which was initially presented in [19], is as follows: a set of components accesses a common resource,
each at a time. The components are connected in a cyclic manner, with a token continuously visiting each component
in turn (for a specified period of time). While a component has hold of the token, it can access the common resource.
Furthermore, it should be possible for this initial set up to evolve, in the sense that new components may dynamically
enter the cycle or existing ones removed from it. Such evolutions should be done with a minimum of disruption in
the activities of the configuration.

Our solution to this scenario is presented below, followed by detailed explanation:

event join, joined, join broken, break.
manner connect2 (process p1, p2)
{ begin: p1->p2. }
manner connect3 (process p1, p2, p3)
{ begin: p1->p2->p3. }.
manifold Component (manifold AccessResource (event))
{
port in time slice, pid.
event end access, token arrived, ok join, begin, release, leave.
priorityleave<end access.
variable prev, next, token, coordinator.
process shared resource is AccessResource (leave).
/� Join the token ring �/
begin: (raise (join), guard (input, full, ok join), WAIT).
ok join: { process p1 deref tuplepick (input,1).

process p2 deref tuplepick (input,2).
begin: (connect (p1,self,p2), raise (joined), prev=p1, next=p2,

guard (input, full, token arrived)).
begin1: WAIT.

/� get token and access shared resource �/

G.A. Papadopoulos, F. Arbab / Future Generation Computer Systems 17 (2001) 1023–1038 1031

token arrived: token=input;
(if (token==‘‘server’’
then (activate (shared resource),

alarm (time slice,end access),
post (begin1)),

/� become responsible for adding to the ring new components �/
(if (token==‘‘coordinator’’
then (coordinator=true, alarm(random,release),

post(begin1)).
/� release shared resource and forward token to the next process �/

end access|end.shared resource: (deactivate (shared resource),
‘‘server->next’’
post (begin1)).

/� pass responsibility of adding new processes to the next process �/
release: (‘‘coordinator->next’’, coordinator=false,

post (begin1)).
/� adding a new process in the ring �/

join.�p: if (coordinator==true)
then { save �

begin: ((<<&self,next»->p, WAIT.
joined. p: .
};
post (begin1).

else post (begin1).
/� leave a configuration �/

leave: raise (join broken),
if (coordinator==true)
then (‘‘coordinator->next, coordinator=false,
&next->prev.pid,&prev->next.id, WAIT).

break.prev: halt.
/� re-arrange links after a process has left the configuration �/

join broken.next: { process p deref pid.
begin: (connect2 (self, p), raise (break),

post (begin1)). }.
join broken.prev: prev=pid.

}
}

The general idea of the solution we propose is as follows. Every component already a member of the configuration
is aware of the identity of the two components with which it is connected in a circular order. Two tokens travel
through this apparatus, visiting in turn each component in the ring: the first, allows the component which has it to
access the shared resource for as long as it holds the token; the second, effectively elevates the component which has
it to the level of being, temporarily, the coordinator responsible for adding new components in the apparatus. The
first token is held by a component for a pre-specified period of time (time slice) whereas the second one remains with
a component for some random period of time before moving on to the next one. In that respect, new components
are added in a random way around the ring and the overhead of modifying the existing connections distributes over
all the existing components. However, the responsibility of a component removing itself from the ring remains with
the component itself.

1032 G.A. Papadopoulos, F. Arbab / Future Generation Computer Systems 17 (2001) 1023–1038

More to the point, at the beginning a component wishing to join the token ring raises the event join and then
suspends waiting to receive in its default input port a pair of process ids between which it will insert itself. This
is achieved by inserting a guard in its input port which will generate the event ok join once the pair of process
ids has arrived there. The event join is observed by all processes in the ring but only the one currently being the
coordinator will react to it. In particular, this process will have already received the token “coordinator” and
will have set its boolean variable coordinator to true. The coordinator will then send the pair (self, next)
with the process ids of itself and the next process in the ring to the component wishing to join the set up. It then
suspends and will not perform any other operation (including removing itself from the ring) until it receives from
the first process the event joined confirming that that process has indeed joined in.

Once the process P wishing to join the ring has received the pair of process ids P1 and P2, it spawns the manner
(i.e. parameterised manifold) connect which sets up the new links by creating stream connections between the
output port of P1 and the input port of P on the one hand, and between the output port of P and the input port of P2
on the other hand. It then raises the event joined letting everyone know that it is now a member of the token ring.

Once a member of the token ring, a component sets another guard in its default input port waiting to receive either
of the two tokens. If it receives the token “server”, it accesses the shared resource by activating the atomic process
shared resource, an instance of the manifold Access Resource. The process shared resource will
keep accessing the shared resource for the time interval indicated in the value passed to its input port time slice.
Once this time interval has elapsed the primitive alarm will raise the event end access which will cause the
termination of the process shared resource and the forwarding of the token server to the next process in
the ring.

If a component receives the token “coordinator” then for a random period of time it is responsible for handling
requests by external to the ring processes to enter it and become members of it. This is done as described above.
Once this random period of time has elapsed, the primitive alarm will raise the event release which will cause
the token coordinator to be forwarded to the next process in the ring, passing along also the responsibilities of
handling further requests for new memberships to the ring.

Finally, if the agent shared resource has no further need of accessing the shared resource, it generates the
event leave. This causes the manifold controlling shared resource to raise the message join broken in
order to inform the affected components that it is about to leave the ring. The affected components of a component
P that want to leave are the ones on its left and right, say P1 and P2, with which it holds stream connections. P will
send to P1 the process id of P2, will also send to P2 the process id of P1 and will then suspend waiting for the event
break. If a process P1 detects the raising of join broken from its immediate forward neighbour (whose id is
always stored in the variable next) it then connects its own output port (which until now is connected to the input
port of P) to the input port of P2 and raises the event break. If a process P2 detects the raising of join broken
from its immediate previous neighbour (whose id is always stored in the variable prev) it simply updates the prev
variable to point now to the new immediate previous process (whose id has been provided by P via the pid input
port). Once the process P detects the presence of the event break, it knows that it can safely halt. Note that if the
component that wants to leave the ring is the coordinator, the token “coordinator” is passed immediately to the
next process. Similar problems do not arise with the case of the token “server” because this is controlled by the
same process (shared resource) which will decide when to leave.

Note that the configuration and reconfiguration aspects of the scenario are separated from the computational
concerns of the application, i.e. what exactly shared resource does or what short of shared resource is being
accessed. Furthermore, the code itself ofshared resourcemay be substituted by another computational module
without affecting the apparatus. The inclusion of a new member into the ring is a mostly distributed activity with all
processes sharing from time to time this responsibility of house keeping (more sophisticated and fair scenarios are
also possible to have). The removal of a member is a purely distributed process affecting only the three components
involved in it. By virtue of MANIFOLD’s event system and state transition semantics, any race conditions that may
arise due to a process being at the same time a coordinator but also wanting to leave the system are handled by the
system and the declared priority on handling events (with leave having the lowest priority).

G.A. Papadopoulos, F. Arbab / Future Generation Computer Systems 17 (2001) 1023–1038 1033

4.2. A case study in dynamic reconfiguration: the patient monitoring system

In this section we apply control- or event-driven coordination techniques to model a classical case in dynamic
reconfiguration, namely coordinating activities in a patient monitoring system [30]. The basic scenario involves a
number of monitors — one for every patient — recording readings of the patient’s health state, and managed by a
number of nurses. A nurse can concurrently manage a number of monitors; furthermore, nurses can come and go
and thus an original configuration between available nurses and monitors can subsequently change dynamically.
A monitor is periodically asked by its supervising nurse to send available readings for the corresponding patient,
and it does so. However, a monitor can also on its own send data to the nurse if it notices an abnormal situation. A
nurse is responsible for periodically checking the patient’s state by asking the corresponding monitor for readings;
furthermore, a nurse should also respond to receiving abnormal data readings. Finally, if a nurse wants to leave, s/he
notifies a supervisor and waits to receive permission to go; the supervisor will send to the nurse such a permission
to leave once all monitors managed by this nurse have been re-allocated to other available nurses. We start our
presentation with the code for a monitor:

manifold Monitor
{
port output normal, abnormal.
stream reconnect BK input -> �.
stream reconnect KB normal -> �.
stream reconnect KB abnormal -> �.
event abnormal readings, normal readings.
priority abnormal readings>normal readings.
auto process check readings is AtomicMonitor(abnormal readings) atomic.
begin: (guard (input,full, normal readings), WAIT).
abnormal readings: &self->abnormal; check readings->abnormal;

post (begin).
normal readings: &self->normal; check readings->normal;

post (begin).
}

AMonitormanifold comprises three ports: the defaultinput port and two output ports, one for sending normal
readings and another one for sending abnormal readings. The channels connected to these ports from the responsible
nurses have been declared to be BK (break-keep) for the input port and KB (keep-break) for the two output ports,
signifying the fact that in the case of a nurse substitution the data already within the channels to be transmitted to
or from the monitor will remain in the corresponding channel until some other nurse has re-established connection
with the monitor. Two local events have been declared, normal readings for the case of handling periodical
data readings and abnormal readings for handling the exception of detecting abnormal readings. Note that,
for obvious reasons, the priority of the latter has been declared to be higher than that of the former. In the case that
both events have been raised (e.g. immediately after a periodic reading an abnormal situation has been detected), the
monitor will serve first abnormal readings (if priority had not been specified, the language would have made
a non-deterministic choice). Finally, note that Monitor collaborates closely with the process check readings,
an instance of the predefined atomic manifold AtomicMonitor. Atomic manifolds (and associated processes)
are ones written in some other language (typically C or Fortran for the case of the MANIFOLD system). In this
case, AtomicMonitor can be seen as the device driver for the monitor device.

Initially, Monitor sets a guard to its input port, which will post the event normal readings upon detecting
a piece of data in the port. This piece of data is interpreted by monitor as being a periodic request by the
nurse (responsible for this monitor) to get the data readings. It then suspends and waits for a notification (by

1034 G.A. Papadopoulos, F. Arbab / Future Generation Computer Systems 17 (2001) 1023–1038

means of the corresponding event being posted) by either the guard to send periodic data readings or the process
check readings that some abnormal situation has been detected. Upon detecting the presence of either of the
two involved events, Monitor changes to the corresponding state, and sends to the respective output port first its
own id (&self) followed by the actual data readings as provided by check readings. It then loops back to the
first (waiting) state, by posting the event begin. It is important to note that Monitor works quite independently
from its environment. For instance, it neither has knowledge or concern about which nurse (if anyone at all!) is
receiving the data it sends nor is it affected by any changes in the configuration of the nurses’ set up. The code for
a nurse is shown below:

manifold Nurse
{
port in normal, abnormal.
stream reconnect KB normal -> �.
stream reconnect KB abnormal -> �.
stream reconnect BK output -> �.
event got abnormal, got normal, read data, leave, ok go.
priority got abnormal>got normal.
auto process wakeup is WakeUp (read data,leave).
auto process process data is ProcessData.
begin: (guard (abnormal,full,got abnormal), guard (normal,full,got normal),

guard (abnormal, a disconnected, ok go), WAIT).
read data: (‘‘SEND DATA’’->output, post (begin)).
got abnormal: process monitor deref abnormal.

(monitor.abnormal->process data, post(begin)).
got normal: process monitor deref normal.

(monitor.normal->process data, post (begin)).
leave: (raise (go), post (begin)).
ok go: .
}

A nurse has two input ports and one output port, a mirror image of how a monitor is defined. It collaborates with
two atomic processes: wakeup is responsible for periodically asking the nurse to order a monitor to send data and
process data does the actual processing of data. Furthermore, wakeup also monitors how long a nurse can be
on duty. After setting guards into the two input ports (the second guard for abnormal is explained below), nurse
suspends waiting for either wakeup to ask her for periodic readings or some monitor to send her abnormal data
readings. In the former case, nurse sends a notification to all the monitors that it controls and upon receiving back
data it forwards them to process data. In either of the two cases, a monitor will first send its own id which is
then being dereferenced (by means of the deref primitive) to yield a process reference for the monitor in question.
This id is then used to connect the monitor’s appropriate output port to the input port of process data so that the
readings can be transmitted. This process is being repeated until wakeup lets the nurse know that it can now ask
permission to leave. The nurse raises the event go (note here that an event can either be “posted” in which case its
presence is known only to the manifold within which it was posted, or “raised” in which case its presence is known
only outside the manifold within which it was raised), and waits for a notification that it is allowed to leave. Note
here that until such a notification has been provided, the nurse is still responsible for its monitors. The requested
notification will be provided implicitly by noting that one of the nurse’s input ports has now no connections to a
monitor. This will be detected because of the presence of the second guard in the abnormal input port with the
directive a disconnected. The nurse can then leave the system.

A number of abstractions have been introduced in the modelling of the nurse, which are of importance to a
dynamic configuration paradigm. A nurse is unaware of the number of monitors it supervises. Thus, monitors can

G.A. Papadopoulos, F. Arbab / Future Generation Computer Systems 17 (2001) 1023–1038 1035

be added or deleted from its list of responsibility without affecting the pattern of the nurse’s behaviour. Also, the
decision on whether a nurse should leave (which can be as simple as noting when a specified time interval has passed
or as complicated as taking into consideration additional parameters such as specialisation of work, priorities in
types of duty, redistribution of workload, etc.), is encapsulated into different components which, as in the case of
the number of monitors, they do not affect the basic pattern of behaviour for the nurse. Furthermore, the actual
processing of data, which can vary depending on the type of monitor or the patient’s case, is also abstracted away.
All in all, the policies that define the nurses’ behaviour have been separated from the actual work to be done, and they
can therefore be changed easily, dynamically, and without affecting the interaction patterns between the involved
components. We end our example with the code for the supervisor:

manifold Supervisor
{
event get modify.
begin: (guard (input,full,get modify), terminated (self)).
go.�nurse: &nurse->set up, post (begin)).
get modify: process new nurse deref tuplepick (input,1).

process mon1 deref tuplepick (input,2).
process mon2 deref tuplepick (input,3).
process mon3 deref tuplepick (input,4).
new nurse -> (-> mon1, -> mon2, -> mon3),
(mon1.abnormal->new nurse.abnormal,
mon1.normal->new nurse.normal
mon2.abnormal->new nurse.abnormal,
mon2.normal->new nurse.normal
mon3.abnormal->new nurse.abnormal,
mon3.normal->new nurse.normal,
activate (new nurse), post (begin)).

}

The Supervisor manifold is responsible for monitoring a number of nurses. It collaborates closely with the
atomic process setup, which maintains and enforces the policy of the environment with respect to issues such as
how many nurses should be active concurrently, how many monitors each nurse should be responsible for, how can
the workload of monitor responsibility be distributed evenly to the available nurses, the minimum and maximum
amounts of time each nurse should be working before asking to be relieved from duty, etc. Upon receiving a request
by some nurse to be allowed to leave, Supervisor passes the id of that nurse to setup which, among other
things, keeps record of which monitors each nurse is responsible for. A new nurse to take over is found and its id
along with the ids of the monitors to handle is passed back to Supervisor; the latter then sets up the stream
connections between the new nurse and the monitors and activates the new nurse (for the sake of brevity here we
have assumed a simple scenario where the old nurse is responsible for three monitors, all of which are passed to the
new nurse; this of course does not have to be the case). The transferring of the streams connecting the monitors to
the new nurse causes the disconnection of the input ports of the old nurse from the whole apparatus. We recall that
the nurse has set up a guard process at its input ports which will get activated when it detects such a disconnection;
upon the disconnection of its input port abnormal from all monitors involved, the old nurse leaves the system and
its associated process terminates execution gracefully.

As we have highlighted above, the policies of the system regarding the functionality of its components have
been clearly separated from configuration concerns. In addition to dynamically adding and deleting components or
changing their inter-communication patterns, we are therefore also able to dynamically modify their functionality
— in particular, upgrade it or enhance it. For instance, assume that at some stage it may be necessary to enhance the
system with a data logger which preserves the periodic readings of the patients’ state in order to create a medical

1036 G.A. Papadopoulos, F. Arbab / Future Generation Computer Systems 17 (2001) 1023–1038

history database. This requires the actual introduction of the data logger process into the system, which we assume
that it has to be part of the functionality of process data; thus the latter instance must be substituted with a
higher version. The code below shows how the Nurse manifold can be modified to be able to accomplish such an
upgrade:

manner handle data (port out monitor, process data pr)
{
begin: monitor->date pr.
}
manifold Nurse
{
port in normal, abnormal.
stream reconnect KB normal -> �.
stream reconnect KB abnormal -> �.
stream reconnect BK output -> �.
event got abnormal, got normal, read data, leave, ok go.
priority got abnormal>got normal.
auto process wakeup is WakeUp (read data,leave).
auto process process data is ProcessData.
auto process pr data is variable.
pr data=process data..
begin: (guard (abnormal,full,got abnormal), guard (normal,full,got normal),

guard (abnormal,a disconnected,ok go), WAIT).
read data: ‘‘SEND DATA’’ → output,post(begin)).
got abnormal: process monitor deref abnormal.

(handle data (monitor.abnormal,pr data), post(begin)).
got normal: process monitor deref normal.

(handle data (monitor.normal,pr data), post(begin)).
upgrade.�system: (system->pr data, post(begin)).
leave: (raise (go), post (begin)).
ok go: .
}

In the above modified version of Nurse we have introduced the use of the manner handle data (we recall
that a manner is a parameterised manifold) which effectively abstracts away the detail of which particular process
is used to handle the data sent by a monitor. Within Nurse we have introduced a variable pr data which at any
time holds a reference to the current version of the program processing the data. We have also introduced a new
state, which will be activated upon Nurse observing the raising of the event upgrade by some other process.
Nurse will then connect to the output port of that process, get a process id for the new version of the data handling
process, and update the variable pr data. Thus, every time the manner handle data is called, will forward
the data from the monitor to the most current version of the data handling process (we assume here that by using
techniques similar to the ones illustrated above, process data and any other similar process can detect that it is
not needed anymore and terminate itself gracefully). This updating can of course be done as often as it is needed.

5. Conclusions — related and further work

In this paper we have examined the potential for control- or event-driven coordination languages to address the
needs of the configuration paradigm. We have shown that configuration and dynamic reconfiguration languages are

G.A. Papadopoulos, F. Arbab / Future Generation Computer Systems 17 (2001) 1023–1038 1037

based on features, which are quite similar with the family of coordination languages in question. We have further
demonstrated the ability of a typical member of the control-driven coordination languages, namely MANIFOLD,
to act as configuration language.

In [27] there is an interesting comparison between configuration and coordination. That paper claims that these
two concepts are central in the design and implementation of middleware systems; it further defines configuration as
the establishment of the structure of a system and coordination as the interaction between the components forming
the system. We believe we have shown that languages such as MANIFOLD can naturally integrate both these aspects
into the same language formalism.

Note that in MANIFOLD, unlike in many other coordination models and languages, a component is oblivious
not only to bindings produced by other components but also to whether or not communication is taking place
at all or what type of communication this is. This frees the programmer from having to establish when it is the
best moment to send and/or receive messages. And of course, the language enjoys the ability for dynamic system
reconfiguration without the need to disrupt services or the components having mutual knowledge of structure or
location — point-to-point or multi-cast communications can be configured independently of the computation activity
and mapped appropriately onto the underlying architecture.

Furthermore, the stream or channel connections that MANIFOLD supports as the basic mechanism for communi-
cation between computation components, provide a natural abstraction for supporting continuous datatypes such as
audio or video and make this coordination model and its associated language ideal for configuring the activities in,
say, distributed multi-media environments [15,20]. We are currently exploiting this characteristic of MANIFOLD
in a recently commenced research project where the language will be used to manage and coordinate, among other
activities, the data produced or consumed by media servers.

Finally, MANIFOLD advocates a liberal view of dynamic reconfiguration and system consistency. Consistency in
MANIFOLD involves the integrity of the topology of the communication links among the processes in an application,
and is independent of the states of the processes themselves. Other languages [13,14,30] limit the dynamic reconfig-
uration capability of the system by allowing evolution to take place only when the processes involved have reached
some sort of a safe state (e.g. quiescence). Yet other models rely on the support of atomic transactions by the underly-
ing system to guarantee that dynamic evolutions will not reach inconsistent states [29]. MANIFOLD does not impose
such constraints; rather, by means of a plethora of suitable primitives, it provides programmers the tools to establish
their own safety criteria to avoid reaching logically inconsistent states. Furthermore, primitives such as guards,
installed on the input and/or output ports of processes, inherently encourage programmers to express their criteria in
terms of the externally observable (i.e., input/output) behaviour of (computation as well as coordination) processes.

Acknowledgements

This work has been partially supported by the INCO-DC KIT (keep-in-touch) program 962144 “Developing soft-
ware engineering environments for distributed information systems” financed by the Commission of the European
Union.

References

[1] S. Ahuja, N. Carriero, D. Gelernter, Linda and friends, IEEE Comput. 19 (8) (1986) 26–34.
[2] J.-M. Andreoli, C. Hankin, D. Le Métayer, Coordination Programming: Mechanisms, Models and Semantics, World Scientific, Singapore,

1996.
[3] F. Arbab, The IWIM model for coordination of concurrent activities, in: Proceedings of the First International Conference on Coordination

Models, Languages and Applications (Coordination’96), Cesena, Italy, April 15–17, 1996, Lecture Notes in Computer Science, Vol. 1061,
Springer, Berlin, pp. 34–56.

[4] F. Arbab, C.L. Blom, F.J. Burger, C.T.H. Everaars, Reusable coordinator modules for massively concurrent applications, Softw.: Pract.
Experience 28 (7) (1998) 703–735.

1038 G.A. Papadopoulos, F. Arbab / Future Generation Computer Systems 17 (2001) 1023–1038

[5] F. Arbab, I. Herman, P. Spilling, An overview of MANIFOLD and its implementation, Concurrency: Pract. Experience 5 (1) (1993) 23–70.
[6] M.R. Barbacci, C.B. Weinstock, D.L. Doubleday, M.J. Gardner, R.W. Lichota, Durra: a structure description language for developing

distributed applications, Softw. Eng. J. IEE 8 (2) (1993) 83–94.
[7] J.A. Bergstra, P. Klint, The TOOLBUS coordination architecture, in: Proceedings of the First International Conference on Coordination

Models, Languages and Applications (Coordination’96), Cesena, Italy, April 15–17, 1996, Lecture Notes in Computer Science, Vol. 1061,
Springer, Berlin, pp. 75–88.

[8] J.M. Bishop, Languages for configuration programming: a comparison, UP–CS Technical Report, 1994.
[9] M.M. Bonsangue, F. Arbab, J.W. de Bakker, J.J.M.M. Rutten, A. Scutella, G. Zavattaro, A transition system semantics for the control-driven

coordination language MANIFOLD, Theoret. Comput. Sci. 240 (1) (2000) 3–47.
[10] C. Chen, J.M. Purtilo, Configuration-level programming of distributed applications using implicit invocation, IEEE TENCON’94, Singapore,

August 22–26, 1994, IEEE Press, New York, pp. 43–49.
[11] K. Everaars, F. Arbab, B. Koren, Dynamic process composition and communication patterns in irregularly structured applications,

Concurrency: Pract. Experience 12 (2–3) (2000) 157–174.
[12] K.J. Goldman, B. Swaminathan, T.P. McCartney, M.D. Anderson, R. Sethuraman, The programmer’s playground: I/O abstractions for

user-configurable distributed applications, IEEE Trans. Softw. Eng. 21 (9) (1995) 735–746.
[13] J. Kramer, Configuration programming — a framework for the development of distributed systems, in: Proceedings of the IEEE International

Conference on Computer Systems and Software Engineering (COMPEURO’90), Israel, May 1990, IEEE Press, New York.
[14] J. Kramer, J. Magee, A. Finkelstein, A constructive approach to the design of distributed systems, in: Proceedings of the 10th International

Conference on Distributed Computing Systems (ICDCS’90), Paris, France, May 26–June 1, 1990, IEEE Press, New York, pp. 580–587.
[15] T.A. Lemniotes, G.A. Papadopoulos, Real-time coordination in distributed multimedia systems, in: Proceedings of the 14th International

Parallel and Distributed Processing Symposium (IPDPS 2000), Eighth International Workshop on Parallel and Distributed Real-time Systems
(WPDRTS 2000), Cancun, Mexico, May 1–2, 2000, Lecture Notes in Computer Science, Vol. 1800, Springer, Berlin, pp. 685–691.

[16] O. Loques, A. Sztajnberg, J. Leite, M. Lobosco, On the integration of configuration and meta-level programming approaches, Reflection
and Software Engineering, Lecture Notes in Computer Science, Vol. 1826, Springer, Berlin, 2000, pp. 191–210.

[17] D.C. Luckham, Specification and analysis of system architecture using Rapide, IEEE Trans. Softw. Eng. 21 (4) (1995) 336–355.
[18] MANIFOLD home page. URL: http://www.cwi.nl/∼farhad/manifold.html.
[19] N.H. Minsky, V. Ungureanu, W. Wang, J. Zhang, Building reconfiguration primitives into the law of a system, in: Proceedings of the Fourth

International Conference on Configurable Distributed Systems, MD, USA, May 6–8, 1998, IEEE Press, New York.
[20] S. Mitchell, H. Naguib, G. Coulouris, T. Kindberg, Dynamically reconfigurable multimedia components: a model-based approach, in:

Proceedings of the Eighth ACM SIGOPS European Workshop, Sintra, Portugal, September 7–10, 1998, ACM, New York, pp. 40–47.
[21] G.A. Papadopoulos, F. Arbab, Coordination of systems with real-time properties in MANIFOLD, in: Proceedings of the 20th Annual

International Computer Software and Applications Conference (COMPSAC’96), Seoul, Korea, August 19–23, 1996, IEEE Press, New
York, pp. 50–55.

[22] G.A. Papadopoulos, F. Arbab, Control-based coordination of human and other activities in cooperative information systems, in: Proceedings
of the Second International Conference on Coordination Models and Languages, September 1–3, 1997, Berlin, Lecture Notes in Computer
Science, Vol. 1282, Springer, Berlin, pp. 422–425.

[23] G.A. Papadopoulos, F. Arbab, Coordination of distributed activities in the IWIM model, Int. J. High Speed Comput. 9 (2) (1997) 127–160.
[24] G.A. Papadopoulos, F. Arbab, Coordination models and languages, in: M.V. Zelkowitz (Ed.), Advances in Computers, Vol. 46, Academic

Press, New York, August 1998, pp. 329–400.
[25] G.A. Papadopoulos, Distributed and Parallel Systems Engineering in MANIFOLD Parallel Computing (special issue on Coordination),

Vol. 24, No. 7, Elsevier, Amsterdam, 1998, pp. 1107–1135.
[26] J.M. Purtilo, The POLYLITH software bus, ACM Trans. Programming Languages Syst. 16 (1) (1994) 151–174.
[27] M. Radestock, S. Eisenbach, Component coordination in middleware systems, in: Proceedings of the IFIP International Conference on

Distributed Systems Platforms and Open Distributed Processing (Middleware’98), Lake District, UK, September 15–18, 1998, Springer,
Berlin, pp. 225–240.

[28] M. Shaw, R. DeLine, D.V. Klein, T.L. Ross, D.M. Young, G. Zelesnik, Abstractions for software architecture and tools to support them,
IEEE Trans. Softw. Eng. 21 (4) (1995) 314–335.

[29] S.K. Shrivastava, S.M. Wheater, Architectural support for dynamic reconfiguration of large scale distributed applications, in: Proceedings
of the Fourth International Conference on Configurable Distributed Systems (CDS’98), MD, USA, May 4–6, 1998, IEEE Press, New York.

[30] I. Sommerville, G. Dean, PCL: a language for modelling evolving system architectures, Softw. Eng. J. IEE 11 (2) (1996) 111–121.

George A. Papadopoulos is an Associate Professor in the Department of Computer Science at the University of Cyprus in Nicosia, Cyprus. His
current research interests are in the areas of component-based software engineering, parallel and distributed systems, programming languages
and cooperative information systems in which he has over 50 publications. He is a recipient of the 1995 ERCIM Human Capital Mobility award.
More information about him can be found at his personal web page http://www.cs.ucy.ac.cy/∼george.

Farhad Arbab is a Senior Researcher in the Department of Software Engineering at CWI, the Netherlands. His research areas are software
engineering, parallel and distributed systems and programming languages.

