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ABSTRACT 
Utility-based adaptation approaches permit to determine the 
“best” suited variant of an application at run-time. Utility policies 
are usually specified in terms of resources and QoS dimensions. 
Although utility policies provide a precise formulation for 
adaptation decision, they are difficult to specify. The developer 
especially needs assistance in the specification of performance 
properties. In this paper, we investigate using a performance 
engineering framework, for the specification of such properties 
and identify several open research issues. 

Categories and Subject Descriptors 
C.4 [Performance of systems]: Modelling techniques,   
D.2.4 [Software/Program Verification]: Validation 

General Terms 
Verification, Performance. 

Keywords 
Self-adaptation, Performance property specification, Analytical 
Modelling 

1. INTRODUCTION 
Ubiquitous computing environments are characterized by frequent 
changes. To retain usability, usefulness, and reliability in such 
environments, systems should adapt to changing conditions [1]. 
The aim of the MUSIC project is to facilitate the development of 
self-adapting component-based applications for mobile users in 
ubiquitous computing environments [2]. We follow an 
architecture-centric approach where architecture models are 
represented at runtime to allow generic middleware components 

to reason about and to control adaptation of applications [3]. 
These architecture models describe the application structure and 
variability, and adaptation information. Rather than describing 
explicitly the adaptation actions to take place in particular 
situations, we adopt a utility-based approach. Utility policies are 
extended goal policies that ascribe a real-value scalar desirability 
to system states [4] (in our case system variants). The adaptation 
middleware thus can compute the utilities of system variants and 
reasons about the actions required to facilitate an adaptation. 
Utility policies express the rationale of an adaptation decision in a 
precise way, and are therefore more appropriate than action or 
goal policies when adaptation triggers and effects interfere, or 
when goals conflict is the case in mobile and ubiquitous 
environments [5]. A drawback though is that they require the 
developer to specify the properties of the system variants, and this 
might be a difficult task. Especially system resource needs (e.g., 
CPU or network) and the impact of resources on performance are 
hard to deal with. To facilitate the developer task in specifying 
such properties, we are investigating a performance engineering 
(PE) framework. In this position paper, we present an existing 
research approach that we propose to refine and extend for 
MUSIC needs and discuss open research issues. 
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2. PROBLEM DESCRIPTION 
Figure 1 illustrates adaptation in a utility-based approach. The 
architecture models specify property predictors allowing the 
adaptation middleware to predict properties of application 
variants in a given context. A utility function is a kind of property 
predictor: it aggregates several properties and take user 
preferences into account. Examples of property predictors and 
utility functions are provided in [3]. The property predictors 
should be correctly specified so that the right adaptation decision 
is applied in response to context changes. This means that 
predicted properties should faithfully approximate the "real" 
offered properties and utilities of application variants. 
MUSIC uses component frameworks to design applications and 
supports compositional variability, allowing application 
reconfiguration at the component level. This requires specifying 
property predictors at the component level. Further, a user often 
runs multiple applications at the same time. This requires 
adaptation reasoning to take into account the combined resource 
needs and utility of the set of active applications. 
Figure 2 illustrates the different composition levels for a set of 
self-adapting applications. At each level, the properties and 
resource requirements should be specified correctly and validated. 
The component level deals with individual or elementary 
components. Resource requirements and properties offered by 
components should be specified correctly.  The application level 
deals with application and possibly composite components. The 
aggregation of resource requirements and properties from 
components to applications may introduce discrepancies and must 
be validated. In addition, the utility of each application model 
must be checked: is the "real" utility similar?  The portfolio level 
deals with a set of applications. The "aggregation" of resource 
requirements, properties and utilities from several applications 
must be validated. The system-and-user level deals with a set of 
applications deployed on a specific platform and made available 
to end-users. When all applications are running on the top of the 
adaptation middleware, subject to context changes and 
experienced by the user, the offered utility should be checked 
against the utility perceived by the user. 
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Figure 2. Composition levels. 

3. MAIN REQUIREMENTS 
Validation and tuning of system properties are generally 
associated to a fine-grained analytical modelling of the system 
performances. However, the description of such an analytical 
model is often time-consuming and error prone for the developer. 
The objective of our work is to leverage the task of the developer 
by providing him/her tools and methods to describe these 
analytical models quickly and efficiently. This means that the PE 

framework should be integrated in the development process. This 
integration consists in extending existing tools with support for 
the particularities of self-adapting systems. 
Thus, the PE framework should provide an integrated support to 
the developer for (1) inferring the analytic model of a component, 
and (2) validating the analytic model using component test-beds 
and context simulations. Finally, this approach should support 
different types of execution platforms due to the large 
heterogeneity of ubiquitous devices. 

4. ANALYTICAL MODELLING 
As a basis for our performance property models we will use 
analytical performance models where equations are used to derive 
properties of interest from observable quantities. We propose to 
use static analytical models for software components and dynamic 
analytical models for hardware resources. We could have selected 
other modelling paradigms [6]. More powerful approaches, e.g., 
layered queuing models [7], allow for contention also at the 
software levels, but then also require getting more parameters and 
become more complex. Approaches based on SPE [8] (Software 
performance engineering) will not have the same component 
focus as our static model. Nevertheless, it would be interesting to 
also explore other modelling paradigms in our component-based 
mobile setting. 
As shown in Figure 3, user workload is separated into work (what 
is done?) which drives a static model and load (how often is it 
done?) which drives the dynamic model. For dynamic 
performance models, resource demands, service times and 
response times are well-defined concepts, e.g., see [9]. The 
resource demands needed by the dynamic model are the product 
of service times and the devolved work from the static model. 
Devolved work is the number of elementary hardware operations 
for the top level work. Service time is the execution time for each 
elementary operation on a hardware resource, excluding 
queueing. Response times for top-level operations are finally 
derived from the dynamic model. A multi-class queuing network 
[9] can be used for the dynamic model, with one class for each 
top-level operation. For an open queuing network model, load is 
represented by arrival rates. 
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Response Times

Load

Service 
Times Resource Demands

 
Figure 3. Overall framework. 

Figure 4 shows the components in the static model for the service 
technician example from [3]. Technicians are responsible for 
inspecting geographically spread technical installations. They use 
PDAs for status and fault report. When changes occur in the work 
environment, applications adapt. For example, the application 
structure might adapt from a thin to a medium or self-reliant 
client; the UI switches between keyboard- or voice-based. 
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The static model defined in [10] and validated by [11] describes 
how work is devolved from user level work through several 
software components and finally onto work on primary hardware 
components. The model example shown in Figure 4 has five 
primary hardware resources, one CPU for the handheld, one CPU 
(or several if needed) for the server, flash memory on the 
handheld, one disk (or several disks) on the server and the 
Internet, which acts as the communication medium. Components 
are linked together in a directed acyclic graph. The links have 
three types. Solid thin links represent transformation and 
processing of information, solid thick links represent persistent 
storage and dotted thin links represent communication. 
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Figure 4 . Static model of Service Technician example. 

The first crucial step in making a static model is to decide on 
which components and links to model. In our model example the 
UI component and the Controller component are combined 
into the UI and Controller component to decrease the 
complexity of the model, and trading off accuracy for cost of 
measurements. In our example, storage of inspection reports could 
be done locally in the Handheld Flash Memory or remotely 
in the Server Disk. Each component offers operations, e.g., 
both the DBMS and the Handheld CPU will have operations. 
For the DBMS, the two operations Store inspection 
report and Retrieve inspection guide are specified, 
and for both CPUs we specify on average Instruction only.  
The accuracy of the model increases with the number of 
operations, but so will also the measurement cost. 

Operations on components which are linked together are related 
with a Complexity Specification Matrix (CSM). Each element in 
the CSM is a function describing the average number of a 
particular low-level operation which is used by a particular high-
level operation. This function will often be simple numbers like 0 
(the low-level operation is not used) and 1 (exactly one low-level 
operation is used for each high-level operation). A more 
sophisticated function may depend on load and data sizes. An 
access to a DBMS will for example depend on the size of the 
requested data. A garbage collection component depends on the 
system load, as there is more garbage collection when the load on 
the system is high, than when it is low. 

To compute the devolved work for an application consisting of 
several components, we use two simple rules. If two links devolve 
work on the same component, their respective CSMs are added 
together. Multiplication is used for combining links coming into a 
component with the links going out from a component [10] [11]. 

In our model example the component UI and Controller 
has the two operations Take picture and Generate 
inspection report. The complexity matrix showing the 
relationship between the top-level operations Take picture 
and Generate inspection report and the low-level 
CPU Instructions will in this case have two elements: 
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In this CSM the element 108 means that the each Generate 
report operation on the average requires 108 CPU instructions. 
If we assume the handheld CPU is running on average 107 
instructions per second, then the service time for each CPU 
instruction is 10-7 seconds. Note a main advantage of this 
framework: it is easy to adjust for differences in CPU speed 
between different processors. Only service times have to be 
adjusted, whereas the static model itself remains unchanged. 
The resource demand for each high-level Generate report 
operation is the product of the number of instructions for each 
Generate report operation and the resource demand, and is 

, i.e., it takes 10 seconds of CPU time to exe-
cute one Generate report operation.  

ss 101010 78 =⋅ −

To compute the resource requirement on the handheld device, we 
also need the CSM between UI and Controller and 
Handheld Flash Memory. The Handheld Flash 
Memory has the two operations RB (Read block) and WB (Write 
block). We assume a block size of 1 MB. The CSM is defined as: 
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We assume each read access requires 0.02 s, and each write 
access requires 0.05 s, therefore each Take picture operation 
will take 0.5 s, while each Generate report operation will 
require .5205.0100002.0100 sss =⋅+⋅  

During peak load the user generates 1 report every 10 minute, and 
will in the same time interval take around 20 pictures. For 
simplicity, and since they are heavily intertwined, we consider the 
Handheld CPU and Handheld Flash memory as one 
resource. The utilisation, U, of this resource becomes: 

153.0
6010

)5210(1)5.01(20
=

⋅
+++

=
s

ssssU  

A utilisation of 0.153 means that the handheld is busy 15.3 % of 
the time. This is not a significant load, but nonetheless small 
queues will contribute to the response time. We assume steady 
state and a random distribution of the load (in practice, the time 
between individual top-level operations will then be exponentially 
distributed). Using a multi-class open queuing network model as 
the dynamic model, then the steady-state, average response time 
for each Generate report operation will be [9]: 

sss
U
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If the storage is distributed to a server, both the load and the 
response times on the handheld will be smaller, but we must in 
addition also add the network and the response time contributions 
from the server (which would be considerably less than for a 
handheld, given much faster processing and storage devices). 
In summary, there are three types of “parameters” or inputs to the 
models in this framework: 1) the load 2) the service times and 3) 
the elements in the CSM. Based on the response times it is 
possible to derive property predictors and utility functions. 

5. TEST-BEDS 
In our PE framework, the objective of using test-beds is twofold: 

1. Test-beds should capture resource demands for the different 
parameters of the static model based on service time 
responses. 

2. Test-beds should also validate the property predictors 
defined in the static model (and computed in the dynamic 
model) by comparing it to measured performances. 

If the former objective can be achieved using existing profiling 
approaches and tools (such as the Eclipse TPTP framework [12]), 
the latter needs to extend current approaches to take into account 
domain-specific property predictors. Thus, our PE framework 
includes test-beds for (1) resource demands evaluation, and (2) 
property predictors validation of components. 
This first type of test-bed gathers data about the observable 
performance related to the execution of a component. The 
resulting information (execution time, list of methods calls, etc.) 
becomes useful to refine the definition of the static model. In [13], 
the authors introduce a workbench and a repository dedicated to 
the gathering of resource demand data. Scenarios are defined for 
identifying resource demands as both operating system 
dependencies (e.g., memory, CPU), and invocation dependencies 
(e.g., libraries). Performance is then evaluated by the test 
environment and stored in a repository, which contains the 
demands per operation and the total demands per execution of 
each scenario. To measure resource demands and eventually to 
specify the CSMs for primary hardware resources could be time-
consuming, but one eventually gets the information one look 
after. However, to characterise the CSMs for intermediate 
components could be a more frustrating experience, because 
enough information may not be readily available making educated 
guessing necessary [13]. 
The second type of test-bed addresses the validation of property 
predictors associated to a component. This includes general 
performance properties, such as response times and domain-
specific QoS properties (e.g., packet-loss rate for streaming 
applications). The latter cannot be modelled, observed and 
validated by traditional performance modelling approaches and 
testing environments. This means that the specification and 
validation of these predictors should be derived from concrete 
observations that are possibly abstracted to higher-level quality 
properties. Thus, it may be necessary to extend domain-specific 
data structure (e.g., video streams) with instruments, such as high-
level metadata, that reify the QoS property model at runtime. For 
example, the quality of a video stream may be converted to 
abstract QoS property levels (low, medium, high).  

6. CONTEXT SIMULATION 
Context simulation contributes to facilitate the capture of dynamic 
properties. We may simulate two kinds of context: 

1. The user work load, allowing one to observe how the load 
influences the performance properties. A solution to this may 
be the CLIF framework (http://clif.objectweb.org/). 

2. The system resources allowing one to observe the effects that 
either result from platform variations or from the 
competition from other applications. 

As for the latter is concerned, we propose to exploit the 
ResourceManager component of the MUSIC Middleware [2] 
which aims at managing the resource instances present in a given 
adaptation domain. The ResourceManager provides uniform 
discovery and configuration interfaces to local lower level 
resources present in a node, such as memory, CPU, and network 
resources. Additionally, in a distributed environment, the 
ResourceManager running on a master node provides information 
about the global resource model and resource situation in its 
adaptation domain, including other available nodes. A node, 
which is also considered as a resource, represents a computational 
entity in the system that may host application components. The 
ResourceManager is designed not only for Resource Discovery 
but also for Observability/Listenability and Configuration. 
Resource’s properties are observable in both pull and push 
schemes and the resource management should be able to manage 
the configuration of certain resources and guarantee a certain 
level of protection when accessing the underlying manageable 
resource.  
The MUSIC resource model supports the modelling of resources 
in a uniform way. A resource must be generic, modelled uni-
formly and its range extensible, supporting adding new resource 
types to cover all resources identified in a given scenario. 

7. RESEARCH CHALLENGES 
The use of analytical modelling for self-adaptive computer 
systems is reported for example in [14]. The modelling of 
performance for a component-oriented software system has been a 
lively research issue for at least one decade (see for example 
[15]). However, to our knowledge, analytical modelling of 
performance properties for mobile and ubiquitous self-adapting 
component-based systems is not addressed in the literature. Some 
of the research challenges will therefore be remaining research 
challenges from component-based performance engineering of 
“vanilla” software, while other research challenges are original 
because of the new environment. In this section we identify some 
open research issues. 
Component-based performance engineering is not normal practice 
in software engineering, both because of remaining research 
challenges and because of its cost in terms of manpower. The 
rigorous formal basis given in this paper should in practice 
therefore be simplified, decreasing its accuracy, but more 
importantly also decreasing its cost. It is however our underlying 
assumption that it is better to simplify a rigorous formal basis than 
to work with an ad hoc approach. 
In the context of self-adapting systems, a main challenge is to 
provide the developers with tools that are easy to use and support 
the specification of accurate models. As our work focuses on 
everyday systems, we may relax the level of accuracy and detail. 
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The selected application variant does not need to be the best, but 
has to be good enough. Also too detailed architectural models 
would lead to frequent adaptation reasoning resulting in much 
overhead. Currently in MUSIC, ports are defined that combine 
several operations into one service, this to simplify the 
specification of property predictors in the architecture models. 
The static models as introduced in Section 4 require the 
description of individual operations. We will investigate whether 
the PE framework can be accommodated to the coarse-grained 
architecture models proposed in MUSIC. 
As MUSIC uses component frameworks facilitating the 
deployment of new component variants and supporting the 
composition of new application variants at run-time, we may not 
be able to specify performance models for complete applications 
at design time. Rather, we need a modular and incremental 
approach supporting the instrumentation of components 
separately. This is also needed by the extended scope of MUSIC 
to service oriented architectures (SOA).  
The cost of the proposed approach is by far dominated by the cost 
of measurements. For each component, we must define the 
platform on which the component executes and characterise the 
resource consumption in terms of this platform (this is done using 
the CSMs). In the case of the service technician example in 
Figure 4, the report may be stored either locally on the handheld 
or on a remote server. In both cases, the CSMs using this platform 
should be equal. What is changing is the CSM in the platform 
itself, i.e., the resource consumption for the server on its resources 
will differ radically from the resource consumption for storing the 
same information on the handheld. However, in the worst case, 
variability will require new CSMs for each platform and thus also 
the need for new measurements. We will investigate this further. 
The more components, the more connections between 
components (and thus the more CSMs), the more elements in each 
CSM, the more complex and costly the approach is. Accuracy 
requires several measurements for each CSM element, and thus 
contributes to complexity. One may assume that mobile 
applications are simpler and that the cost of performance 
modelling is smaller than for “conventional” software. 
Knowledge about the load is usually a critical parameter in PE 
frameworks. As our aim is to compare several variants, we can 
assume that all variants are subject to the same load. An 
approximation about the load is thus probably sufficient. Also in a 
mobile setting, using a handheld, the number of operations is 
probably limited. A new issue though is that the load may be 
influenced by the context changes: the user may use an 
application more often in a particular context. 
To assess the feasibility of the approach and to get more 
experiences of how the simplifications can be done and on how 
accurate the models will be in practice, we need case studies. The 
pilot services developed in the MADAM project [16] that 
provides the foundation for MUSIC, are a good starting point. It is 
further interesting to seek for patterns of the relations betweens 
the components in the static component models. 
Finally, we may consider more tricky issues: (1) Extensions to the 
static model may be required to handle the memory consumption 
for each component itself (i.e., apart from the memory 
consumption for its operations). In addition, memory constraints 
in the primary memory (i.e., to estimate the performance 
implications of using less memory than what is optimally required 

by and application) may be hard to handle analytically by the 
dynamic model. (2) The approach may be relevant for the 
modelling of battery consumption related to the modelling of 
performance, because each elementary operation will consume a 
given amount of energy (We must in addition take into account 
that the energy per elementary operation depends on the clock 
speed, i.e. running a given workload at a high clock speed 
consumes more energy than using a lower clock speed.). Energy 
may also be needed for keeping an idle resource standby. 
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