UNIFYING CONCURRENT LOGIC AND FUNCTIONAL LANGUAGES
IN A GRAPH REWRITING FRAMEWORK

John R. W. Glauert and George A. Papadopoulos

Declarative Systems Project, School of Information Systems,
University of East Anglia, Norwich NR4 7TJ, U.K.
' e-mail: {jrwg/gp} @sys.uea.ac.uk

ABSTRACT

We examine the extension of a concurrent logic language with some capabilities found normally only in
functional languages using the intermediate language approach. In particular, we show how the language
Guarded Horn Clauses (GHC) can be extended with eager and lazy functions, sharing of computations and
higher-order function/predicate applications. This is achieved by superimposing a functional sub-language
having these capabilities on the top of GHC. Both components, the concurrent logic one and the functional
one are compiled down to Dactl, a compiler target language based on generalised graph rewriting. Thus, the
underlying representation enjoys a uniformity which is useful both at the integration and the implementation
level.

KEYWORDS

Logic Programming, Functional Programming, Amalgamation of Logic and Functional Languages, Graph
Reduction (Rewriting), Paralle] Processing.

1. INTRODUCTION

There have been many attempts to amalgamate logic and functional languages ([7]). There are basically
4 approaches: interface existing languages ([18]), extend functional languages with logic capabilities ([19]),
extend logic languages with functional capabilities ([16]), and finally, design new languages based on some
common computational model such as equational theories ([2,20]), or various forms of narrowing ([8]).
Our approach lies somewhere between the last two. On the one hand, we extend the concurrent logic
language GHC ([21]) with lazy evaluation and sharing of computation by superimposing a suitable parallel
functional sub-language on the top of it. On the other hand, however, both the concurrent logic and
functional components are mapped to sets of rewrite rules written in Dactl, a compiler target language based
on generalised graph rewriting. Thus, both components enjoy an underlying uniformity at both the
computational model level (i.e. graph reduction) and the architectural level (suitable reduction machines).

This paper attempts to contribute to current research in this area by:

— illustrating the usefulness of some characteristic features of functional languages such as lazy evaluation
and sharing in a concurrent logic programming framework;

— providing an interaction between the “eager” predicates of a concurrent logic language with the lazy or
eager functions of its functional component which offers the programmer a variety of execution
strategies and explicit control over space-time trade-offs;

— showing how to execute both functions and predicates using graph reduction as a common underlying
execution mechanism, thus enjoying uniformity in data structures (graph nodes representing data
terms), value passing mechanism (matching of redexes and arc redirection modelling variable
instantiation), control mechanism (graph rewriting), and architectural support (reduction machines);

— examining the potential of graph reduction to act as a bridge in unifying logic and functional languages.

The rest of the paper is organised as follows: the next two sections introduce the reader to the enhanced
version of GHC (henceforth referred to as GHC/F) and Dactl. The following two present some examples
showing the expressiveness of our model and describe their implementation in Dactl. The final one provides
some conclusions and related research.

2. GHC/F
A GHC program is a set of (possibly guarded) clauses of the form:
p(tl,t2,.,ti) :- gl(w)smrgm{.) | bP1(.),=.bn(.).
where g1, .., gmnand b1, .., bn are calls to predicates or to the unification primitive ‘=’. A goal of the form
riey o7 =4\ attemnts to redure with all its definineg clauses by unifvine with the heads of these clauses
59

and solving of any guards. If during unification, an attempt is made to instantiate a variable in the call with a
non-variable term in the head, unification suspends until some other process running in parallel with the
goal in question instantiates the variable. Eventually the goal will reduce to the set of goals in the body of
that clause that manages to complete successfully head unification and guard evaluation (if there are more
than one candidates, a single clause will be selected non-deterministically). Note that the guards must satisfy
a safety property that requires them to refrain from instantiating any variables in the environment of the
caller until commitment to their respective bodies. This safety test is done in GHC at run-time and invalves
checking the compatibility of the environment where unification is attempted with the environments of the
variables involved in the unification. The way the run-time test is supported in our model is described
elsewhere ([11]).

Programs in GHC/F consist of clauses of the form shown above, plus (possibly conditional) rewrite
rules of the following form:

LHS => RHS or LHS => RHS :- G | B

where LHs and rHs are function applications and the part ‘: - 6 | B’ is called the conditionwhere ¢ and B

are defined as in GHC. GHC/F supports 3 unification primitives:

‘=" denotes lazy evaluation; x=r (..) will unify x with f (..) without evaluating f (this allows sharing of
computations as we will see below);

=" is the eager assignment primitive; x:=£ (..) will assign x to £ (..) and at the same time fire £; if at the
time of the call x is not a variable, an error will be reported;

‘=:=" is the eager unification primitive; s (..)=:=t (..) will attempt to unify s (..) with t (..) evaluating them

if needed (if either or both represent function applications instead of data terms).

Functions can appear anywhere in the program where data terms are allowed with one exception: they
are not allowed in the head of a clause or as arguments to the functions comprising the LHs of ‘=>’ (free
constructor discipline). Evaluation of functions is done in a combined eager and lazy manner, in the
following sense: A function application attempts to reduce using its defining rewrite rules. The defining
rules are all tried in parallel, and for those of them that have a condition part ‘: - ¢ | B’, G is also evaluated
in parallel. In addition, head matching is also done in parallel. However, function evaluation is done lazily
in a pattern-driven way ([20]). If an attempt is made to match an evaluable argument of a function with a
corresponding non-variable argument in the lhs of a defining rewrite rule, the inner function call is evaluated
enough for matching to proceed. Note that if an attempt is made to instantiate a variable in the function call
with a non-variable term in the lhs of the rewrite rule, matching suspends. Eventually, exactly one rule
should be candidate for reducing the function call (that one for which matching and evaluation of any guard
condition terminates successfully); the call is then reduced to the rhs of the rule, and if the rule is conditional
with a body part B, evaluation of B starts in parallel — this must always succeed. Although evaluation of 1
functions is lazy by default, it is possible to indicate that the values of certain evaluable arguments or 1
function applications are needed (and therefore they could be evaluated eagerly) using the two strict :
unification primitives discussed above. This is similar to strict annotations used in many lazy functional 1
languages ([4,5,13]). We illustrate the use of the above concepts after introducing Dactl.

3. DACTL S

The language Dactl provides a notation for describing computational objects in terms of directed graphs
and for describing programs in terms of pattern-directed graph transformation rules. Dactl may be used as a
vehicle for comparing implementation techniques and computational strategies and also, since it has a well-
defined operational semntics, as an intermediate code for language implementation. Studies at UEA have led
to implementations of GHC and the functional languages Clean ([15]) and Standard ML. Within the Alvey
Flagship project Dact] has been used to implement Parlog ([17]) and Hope+.

The nodes of a Dacil graph are labelled with a symbolwhich indicates that the node plays the role of an
operator at the root of a rule application, a data constructor, or an overwritable. The use of overwritable
nodes which may be modified as a side-effect of a rule application enables the generalised graph rewriting
of Dactl to express many more computations than the conventional graph rewriting used to implement
functional languages. Overwritables may model von Neumann storage cells, semaphores, and the logic
variable (sufficient for concurrent logic languages at least). Each node also has a distinct identifier. From a
node leads a sequence of arcs to successor nodes. Arcs point from an operator node to its arguments, or
from a data constructor or overwritable to its sub-fields.

D DT FrAO M bl bt v

e)

60

A Dactl graph may be represented by listing the definitions of the nodes giving their identifier, symbol,
~ and a sequence of identifiers for the successor nodes. Repetition of identifiers is used to indicate sharing in
a graph ’
a: Append| 1 1],
1: Cons{ on],
(o 1 ’
Nil

3

Symbols are integers or identifiers starting in upper-case, while node identifiers start in lower-case. A node
definition may replace one of the occurrences of the node identifier, and redundant identifiers may be
removed allowing the shorthand form:

a: Append{ 1l:Cons[1 Nil] 1]

Dactl rules contain a patternto be matched and a body, or contractum, to replace the occurrence of the
pattern in the graph, or redex. Patterns are Dactl graphs but may contain pattern operatorsin addition. A
pattern which is a standard graph will match a subgraph with the same form, or one with more sharing in
some cases. The pattern operator ANY may appear in place of a node and will match an arbitrary node. The
operators ‘+’, ‘-’, and ‘&’, may be used to combine patterns: the pattern ‘p1+p2’ matches if either p1 or p2
match; ‘P1- P2’ matches if P1 matches but not p2; and ‘p1&p2’ matches if both p1 and r2 match.

The contractum of a rule contains new graph structure to be built, which may reference nodes matched
by the pattern, and one or more redirections, which indicate (roughly) that the source of the redirection
should be overwritten by the target.

Computation under the Dactl model proceeds by identifying a subgraph matching the pattern of a
rewriting rule and replacing it by the contractum of the rule. If more than one rule matches, an arbitrary
choice may be made about which rule to apply; fairness is not assumed. To control the order of evaluation,
attempts to match the rules against the graph only begin at activenodes. Such nodes are marked with a ‘x’ in
the representation of a Dactl graph. The pattern of a rule contains no such markings, since the matching
process is insensitive to markings, but the contractum may use markings to nominate further nodes at which
rewriting may take place. If multiple active nodes arise they may be considered in any order, or even in
parallel if there is no conflict between possible rewritings.

Nodes may also be created suspended waiting for notification that a successor has been rewritten to a
stable form. This enables a rule to create a dataflow graph in which certain nodes are active and will produce
results which awaken parent nodes once all arguments are available. Suspension is indicated by one or more
‘#” markings. Each notification removes one ‘#’, the node becoming active when the last ‘#’ is removed.
Notification takes place when an active node is considered for rewriting, but not rule matches. This is
typically because the node in question is a constructor or overwritable. This explains the counter-intuitive
form of some Dactl rules in which a node is overwritten by an active constructor; when matching is
attempted, no rule will match, the ‘*’ marking is removed, and notifications will travel up to any suspended
parent node. Arcs which will form notification paths are marked with ‘~’.

The following examples show some rules with markings and the execution sequence for functional
versions of append, and a version using the logic variable.

FAppend [Cons [u x] y] => #Cons[u "“*FAppend [x y]] | {1}
FAppend [Nil y] => *y ; {2}
FAppend [pl p2] => #FAppend{ *pl p2] : {3}

Identifiers with no definition, such as u, x, and y above, are associated with the pattern operator any. The
example is a strict function which rewrites to a data constructor node, cons, which is suspended waiting for
completion of a recursive invocation of the function before notifying the parents of the original node. The
final rule applies if the first argument has not been rewritten to the form of a list. The argument is activated
and the rappend application will be reconsidered when the argument has been rewritten. The separators
between rules are significant. The bar indicates that the first two rules may be tested in parallel, but the
semicolon indicates that neither of these may apply before testing for the third rule. The semicolon has an
effect exactly like the use of the pattern operator ‘-’ to exclude the patterns of the first two rules.

The first rule could be modified in a number of ways to achieve different behaviour:

FAppend [Cons [u xX] y] => *Cons[u FAppend[x y]] 1}
FAppend [Cons [u x] y] => *Cons[u *FAppend[x y]] 1"}

61

JE A . ~p——

Rule {1} is a lazy version since the data constructor is made active and will therefare notify parent nodes of
the original active node immediately. Rule {1} is an eager version; a result is returned immediately, as in
the case of lazy evaluation, but evaluation of the tail of the list proceeds concurrently.

We will illustrate evaluation of a Dactl graph using an example with sharing, indicating the rule applied
at each step:

*FAppend| l:Cons[o:1 n:Nil] 1] => {1}
#Cons| o:1 “s:*FAppend[n 1l:Cons[o n:Nil}]] => {2}
#Cons|[o0:1 "l:*Cons[o n:Nil}]] => {NoMatch}
xCons|[©:1 1l:Cons o n:Nil]] => {NoMatch}

Cons[o:1 1l:Cons[o n:Nil]]
The computation terminates when no active nodes remain.

The following rules illustrate a version of append from logic programming. Here the result of the
rewrite indicates success or failure of a predicate and results are communicated by instantiation of shared

variables.

LAppend [Cons [u x] y r:Var] => *LAppend[x ¥y w:Var], r:=*Cons{u w] } {1}
LAppend [Nil y r:Var] => *SUCCEED, r:=*y | {2}
Lappend [p:Var q r:Var] => #LAppend['p q I] ; {3}

The result of the first rule depends on the success of a recursive use of the predicate. The variable r is
bound to a cons node whose second argument is a new variable which will be instantiated by the recursive
call. The cons node is made active in order to notify any computation suspended waiting for the variable to
be instatiated. The final rule illustrates the case when the critical first argument is not instantiated. The call
suspends waiting for some other computation to instantiate the variable (using one of the first two rules, for
example).

We illustrate these rules in action with two calls to Lappend which share a variable:

*xLAppend [Nil Cons[1 Nil] v:Var}, *LAppend[v Cons[2 Nil] w:Var] => {3}
*LAppend [Nil Cons[1 Nil] wv:Var], #LAppend ["v Cons[2 Nil] w:Var] => {2}
*SUCCEED, v:*Cons[l Nil], #LAppend[v Cons[2 Nil] w:Var] => {NoMatchj}
*SUCCEED, *LAppend[v:Cons[1l Nil] Cons[2 Nil] w:Var] => {1}
*SUCCEED, w:*Cons[1 x], *LAppend[Nil Cons{2 Nil] x:Var] => {2}
*SUCCEED, w:*Cons[l x], X:*Cons[2 Nil], *SUCCEED => {.}

The third step, when there is no match on the value assigned to variable v, reactivates the second Lapgend
predicate.

~ . e -

4. PROGRAMMING IN GHC/F

The way a programmer can take advantage of combinations of lazy and eager evaluation, sharing of
computation, efc. is best illustrated by means of examples.

We start by reconsidering the append program and its representation at the GHC/F level:

append ([U|X],Y) => [U|append(X,Y)].
append ([].,Y) => Y.

t
This program appends two lists lazily; the recursive append in the first rule will be executed only if some I
head or body unification requires its result (pattern-driven). However, the following one g
length ([]) => O. i
length ([|T}) => 1+L :- true | L:=length(T). P
is eager. Note the use of ‘:=" to force the evaluation of the recursive call to 1ength and compare the above é
program with the one that follows
length {[]) => 0. fi
length ([_|T]) => 1l+length(T).
which is lazy. §
The next example computes efficiently the Fibonacci numbers using extra variables for storing N
intermediate results ([14]): | r

62

fib(0. X, _} = 1 true | X:=1.
fib(1,X,Y) => 1 :- true | X:=1, Y:=1.
f£ib (N, X, Y) => fib(N1l,Y,Z) true | N1:=N-1, X:=Y+2Z.

The argument X is used to store the result of the computation. Note that in the last rule, the values for N1 and
x are computed in parallel with the recursive call to Fib. In fact, the above program is more efficient than the
fully lazy version given in [14].

The following is an implementation of the quicksort algorithm

sort(List, Sorted) :- true | gsort(List,Sorted, []).

gsort ([U]X],Sorted h,Sorted t) :- true | Xl:=partition (U, X,X2),
gsort (X1, Sorted h, [U|Sorted]),
gsort (X2, Sorted, Sorted_t).

gsort([].Sorted_h,Sorted t) :- true | Sorted_h=Sorted t.
partition (U, [V[X],X2) => [V|X1] :- U<V | Xl:=partition(U,X,X2).
partition (U, [V[X],X2) => partition(U,X,X2’') :- V=<U | X2:=[V[X2'].
partition(_. {},X2) => [] :- true | X2:=]].

Note here the use of the function par tition that reduces itself to the first sublist while one of its arguments
is instantiated to the second sublist. Note also that gsort is a predicate that concatenates the two sublists in
constant time using difference lists. The above program is one of the most efficient paralle]l versions we
have encountered in the literature so far.

In the next example which is a hamming numbers generator we illustrate the use of sharing and the
handling of infinite data structures. Consider the first version:

hamming () => H :- true | H=[1{merge (times (2,H),merge (times (3,H), times(5,H)))].
merge ([U[X], [VIY]) => [Ujmerge(X,Y)] :- U==V | true.

merge ([U[X], [V]Y]) => [U|merge (U, [V|Y])] :- UKV | true.

merge ([U]X]., [V|Y]) => [Vimerge ([U|X].,Y)] :- VKU | true.

times (U, [V]|Y]) => [U*V|times(U,Y)].

The above version computes lazily the infinite list of hamming numbers. Note the use of ‘=’ that creates
cycles sharing the parts of the list already computed. Although some parallelism exists in the definition of
merge (Where head matching and evaluation of guards is done in parallel), the program is unnecessarily
sequential: uxv can be evaluated in paralle] with the reporting of the cons structure; in addition, merge’s
arguments are known to be needed before merge is actually evaluated. Consider now the following version:

hamming ()} => H :- true | H={1|merge(X2,merge (X3,X5))].
X2:=times(2,H), X3:=times(3,H}, X5:=times(5,H).
merge ((U(X], [V|Y]) => [U|merge(X,Y)] :- U==V | true.
merge ([U[X], [V]Y]) => [Ujmerge (X, [V]|Y])] :- UKV | true.
merge ([U{X], [V|Y]) => [V|merge ({U|X],Y)] :- VKU | true.
times (U, {V|Y]) => [W|times(U,Y)] :- true | mul (U,V,W).

Here, the three calls to times are performed in parallel with the reporting of the cons structure. In addition,
the function u*v has been replaced by the predicate mu1 (u, v, w) which in addition to computing w
immediatelly, it also makes the program more expressive: since predicates use unification, the above
program can also be used to verify whether the elements of a given list are hamming numbers. So the goal
[1.X,3,Y|Z]}=:=hamning () would succeed verifying that 1 and 3 are the first and third hamming numbers,
binding the variables x and v to 2 and 4 respectively and z to some unevaluated expression.

Finally, we show how higher-order programming is supported in our model. The well-known mapping
function can be written both as a function and predicate:

fmap(_, []) =>

f map (F, [U]X]) => ’ [f appl|f map(F,X)] :- true | f appl:=Fe(U).

T map(_, [],Y) :- true | Y=[]. |

T map(R, [U[X].Y) :- true | Y=[V|Y1l], R@(U,V), r_map (R, X,Y1).
63

5 *,

where ‘@’ is a meta-symbol used for function or predicate application. Note that f_map is only partially lazy
since the first element of the list will be computed completely (but only that argument); a completely eager or
lazy version can also be written using the techniques shown above. Finally, we provide the definition of the
folding function:

fold(_,R,{]) => R.
fold (F,A, [U}X]) => fold(F,R,X) :- true | R:=F@(A,U).

Note again here that fo1d is only partially lazy. Thus, the following call
:- fold(F.R,f map (G.,ints1(M,N))).

where ints1 (M, N) produces lazily the list of integers in the range M to N will compute concurrently the
function applications r and ¢ modelling, in effect, a buffer of size one.

Finally, consider the following example:
square (N) => N*N.
hamsql (N) => f map(square,Temp 1) :- true | Temp_l:=first_n_ham(N,hamming()).

first n_ham(0,_) => [].
first_n_ham(N, [H|{T]) => [H|T1] :- N#O | N1:=N-1, Tl:=first n ham(N1,T).

Note that as the head of the list of hamming numbers is passed to £_map the recursive call to first_n_ham
generates the rest of the list in parallel (thus achieving the effects of call-by-opportunity, [4]).

5. MAPPING GHC/F PROGRAMS TO DACTL REWRITE RULES

We show now how the above programs are translated to Dactl. Attention will be paid to the special
features of our computational model. The interested reader is invited to consult references [9,11,15,17,22]
for details of mapping concurrent logic and functional languages to Dactl. We start with the append
program:

Append [Cons[u x] y] => *Cons [u Append[x y]}|
Append [Nil y] => *y|

Append [p1:Var p2] => #Append [pl p2};

Append [pl p2] => #Append[*pl p2];

The third rule is used for suspending the computation if a needed argument has not been instantiated yet.
The final, default, rule fires an unevaluated expression. In general, unconditional rules of the form ‘LHs =>
RHS’ are translated to Dactl as ‘LHs => *rus’. The eager function length is translated as follows:

Length [Nil] => *0|

Length [Cons[ANY t]] => *Add[1 *Length[t]]|]
Length [p:Var] => #Length[p]:

Length[p] => #Length[*pl:

Note that ‘:=’ has, in fact, been eliminated in the Dactl version (it is implicit in the use of the activation
marking ‘»’ in the recursive call to Length in the second rule). In many cases where the three unification
primitives act as control markings on function calls and their arguments or for denoting sharing, a more
concrete representation of them is possible at the Dactl level.

We now turn our attention to the Fibonacci function:
Fib[0 x:Var ANY] => *1, x:=%*1}
Fib[1 x:Var y:Var]=> *1, x:=*1, y:=*1]|
Fib[n: (Int-0-1) x:Var y] => *Fib[*Sub{n 1] y z:Var], x:=*Add[y z]|
Fib{pl:vVar p2 p3] => #Fib{'pl p2 p3];
Fib[pl p2 p3] => #Fib[*pl p2 p3];

Again note here the elimination of ‘: =’ in the rhs of the third rule. Note also the representation of new
variables in the rhs of rules as nodes with the pattern var and Dactl’s flexibility in instantiating them 10
either ordinary values or even evaluable expressions using non-root overwrites.

The same techniques are used in the translation of the quicksort progrém:
Sort[list sorted] => *Qsort[list sorted Nil};:

Qsort[Cons [u x] sorted h sorted t] => #AND[ol “o2],

64

ol:*Qsort[*Partition{u x x2] sorted h Cons{u sorted]],
o2:*Qsort [x2:Var sorted:Var sorted t]l

Qsort[Nil sorted h sorted_t] => *Unify[sorted_h sorted_t]|

Qgsort[pl:Var p2 p3] => #Qsort[“pl1 p2 p3]:

gsort{pl p2 p3] => #0sort[*pl p2 p3];

partition[u Cons([v x] x2] => #Partition Rewrite[gl "g2 u v x x2],
gl:*Less[u v], g2:*Lesseqg(v u]|

partition[ANY Nil x2:Vvar] => *Nil, x2: =*Nil|

partition{pl p2:Var p3] => #Partltlonlpl “p2 p3]:

partition{pl p2 p3] => #Partition[pl ~*p2 p3}: .

partition_Rewrite [SUCCEED ANY u v X x2] => *Cons[v *Partition{u x x2]}]}
Partition_Rewrite[ANY SUCCEED u v x x2:Var] => *Partition{u x x2'],
x2:=*Cons|[v x2':Var];

r:Partition Rewrite [ANY ANY ANY ANY ANY ANY] -> #r;

Note that the progress of executing a parallel and-conjunction of predicates is monitored by and AND
which reports either when all of them complete their execution successfully, or when any of them
fails. Note also that the identical pattern matching in the first two GHC/F rule for Par tition is executed
only once. The last rule for partition Rewrite suspends if some guards have failed while some others are
still executing.
We now turn our attention to the second version of the hamming program:
h:Hamming => *Cons[l Merge[*Times{2 h] Merge[*Times[3 h] *Times[5 h]]]:

Merge[ll:Cons[u x] 12:Cons[v y]] => #Merge Rewrite[gl "g2 "g3 u v x y 11 12],
gl:*Eg[u v}, g2:*Less{u v], g3:*Less[v u];

Merge[pl: (Var+Cons [ANY ANY]) p2: (Var+Cons[ANY ANY])] => #Merge[pl "p2];:

Merge [p1:REWRITABLE p2:REWRITABLE] => #i#Merge[*pl *p2]:

Merge [pl:REWRITABLE p2] => #Merge[*pl p2]|

Merge[pl p2:REWRITABLE] => #Merge[pl ~*p2]:

Merge Rewrite[SUCCEED ANY ANY u v x y 11 12} => *Cons|[u Merge[x
Merge Rewrite[ANY SUCCEED ANY u v x y 11 12] => *Cons[u Merge[x
Merge Rewrite[ANY ANY SUCCEED u v x y 11 12] => *Cons[v Merge[ll
r: Merge_Rewrlte[ANY ANY ANY ANY ANY ANY ANY ANY ANY] -> #r;

vl
1211
vll:

Times[u Cons|v y]] => *Cons[w Times[u y}], *Mul[u v w:Var] |

Times [pl p2:Var] => #Times[pl “p2]:

Times [pl p2] => #Times[pl "“*p2]:

Note here how easily sharing is represented in Dactl. Note also that, in general, conditional rules of the
form ‘LHs => RHS :- true | bi(.),-.bn(.)’ are translated to Dactl as ‘LHS => =*RHS,
*B1[..] .-, *Bn[..] ’; nO AND processes are needed since the b’s are expected to succeed. However, if the
condition had a guard part, an anND process would be used for an and-conjunction there to verify that the
condition is satisfied before commiting to the rhs of the rule.

The translation of the final example is shown below.

Square [n:Int] => *Mul(n n] |
Square[v:iVar] => #Square| v]:
Square [r] => #Square[*r};

Hamsqgl {n] => *F_map [Square *First n ham{n Hamming]]:

First n ham[0 ANY] => *Nil|

First n _ham[n: (Int-0) Cens{h t]] => *Cons[h *First n hamI*Sub[n 1] t1]}
First n_ham{pl: (Var+Int) p2:(Var+List)] => #First n _ham["pl "p2] |
First n_ham{pl:REWRITABLE p2:REWRITABLE] => ##Flrst n_ham["*pl "*p2];
First n ham[pl REWRITABLE p2] => ##First n ham[*pl “p2);

Flrst n ham[pl P2 :REWRITABLE] => ##Flrst n ham[pl “xp2];

We do not show here the 1mp1ementauon of F_map, R_map and Fold which are implemented at a lower level
for efficiency reasons.

We conclude this section with the implementation of ‘=’ (Uni fy) and ‘=:=’ (Funify).
Unify[x x] => *SUCCEED;
Unify{v:Var vr: (Var+REWRITABLE)] => *SUCCEED, v:=vr|

65

——

Unify|[vr: (Var+REWRITABLE) v:Var] => *SUCCEED, v:=vr|

Unify{v:Var t: (ANY-Var-REWRITABLE)] => *SUCCEED, v:=*t|
Unify[t: (ANY-Var- REWRITABLE) v:Var] => *SUCCEED, v:=*t] -
Unify[Cons[hl tl] Cons[h2 t2]] => #AND[*Unify[hl h2] " *Unify[tl t2]];

plus additional rules for decomposing other data structures, comparing ground values, etc. Funi fy is
different in that it forces evaluation of functions; rules 2-5 are replaced by the following ones:

FUnify[vl:Var v2:Var] => *SUCCEED, v1:=v2|
FUnify[v:Var t: (ANY-Var)] => *SUCCEED, v:=*t|
FUnify[t: (ANY-Var) v:Var] => *SUCCEED, v:=*t]|

There is one case that the rules for uni fy do not cover: if, in addition to a call v=f (), where £ (..) isa
function call, some other process is suspended on v waiting for its value, then we should evaluate £ (_.)
even if ‘=’ is lazy. One solution is for the waiting process to change the pattern of the variable from var to
NVar; Unify then will recognize that the value for Nvar must be computed and will fire £ (..). This
complication, however, does not arise very often since most of the uses of calls such as v=r (..) are for
denoting sharing and generally the more concrete representation v: F [..] which eliminates the variable v is
possible at the Dactl level. For simplicity of presentation we have not considered the above case in the
compilation of the above examples to Dactl.

6. PERFORMANCE

We compare three versions of Hamming and Quicksort written in Clean, GHC and GHC/F. The Clean
to Dactl programs have been translated using the compiler described in [15] and they are both lazy. The
GHC to Dactl programs have been translated using the compiler described in [11]; lazy evaluation is
achieved in GHC by using the technique of making the producer, a consumer of a list of unistantiated
variables that will be assigned to the result of the computation. Hamming produces the first 30 elements of
the infinite list, and Quicksort sorts a reversed list of 50 elements.

Langs\Progs Hamming Quicksort
R PC | AvP | MxP R PC | AvP | MxP
Clean 672 | 1018 | 1.14 4 6654 [11357 | 1.11 2
GHC 3471 {1098 | 4.98 30 16879 | 944 |28.85 60
GHC/F 1202 736 | 2.60 9 10255 | 844 |19.77 45

R: Rewrites, PC: Parallel cycles performed, AvP: Activations processed per cycle
(mean value), MxP: Activations processed per cycle (peak value).

R is the number of rewrites performed and can be used to measure the complexity of the task performed by
the Dactl program. PC, the number of parallel cycles performed, assumes the existence of an infinite
number of processors (an option for specifying the number of processors available does exist however).
AvP and MxP, measure the average and maximum numbser of active nodes at each parallel cycle, i.e. how
many processors could be employed if they were available. It is clear that the GHC/F versions are more
efficient than the GHC ones, and at the same time exhibit more paralletism than the Clean versions.

7. CONCLUSIONS AND RELATED RESEARCH

We have presented an extension of a concurrent logic language with some facilities found only in
functional languages. In particular, we showed how true lazy evaluation, sharing of computations and
higher-order programming can be integrated into a concurrent logic programming framework in a useful
way. By “true lazy evaluation” we mean that computation will not be initiated until needed, but once it does,
itis expected to be performed (see, however, the note below on speculative parallelism). This contrasts with
the usual techniques of simulating demand driven computation in a concurrent logic language by reversing
the producer-consumer relationship and using back communication. Although that technique achieves the
desired behaviour, it is still eager as far as the life span of processes is concerned (the producer will remain
suspended throughout the computation waiting for its input stream to be instantiated to another sublist); in
addition, sometimes difficult to estimate boundary conditions must be specified to close the producer-
consumer channels and terminate computation. Finally, the program becomes less clear. Our technique also
contrasts with the sort of lazy evaliation found in languages like LEAF and LPL ([2,12]). These languages
do not support true lazy functions; instead their implementation model supports an atom elimination of
termination rule that refrains from executing processes which do not satisfy certain conditions (their output

66

is not input to some other process, etc.). This requires their implementation model to have a global view of
the state of computation at any time, something that may prove difficult in a highly parallel (or, espedially,
distributed) environment. In our model, however, such a strong coupling between processes is not
required.

In a way our work attempts to approach the subject of amalgamating logic and functional languages
from the opposite direction described in [1]. There, a normal-order language has been extended to cope with
trial unification achieving the effects of committed-choice logic programming. Here we take the other
approach by extending a concurrent logic language with functional capabilities. Our experience shares the
view expressed in [1] that combination of unification and “eager” predicate computation with lazy functional
evaluation is a very powerful computation model which, however, needs care to han.le. Note that in our
model it is the user’s responsibility to make sure that this combination and the use of strict primitives such
as ‘:=" and ‘=:=" does not lead to infinite computations performed (if that is not desirable) or deadlock.
Note also that we allow these strict primitives to be applied to either function calls or any of their arguments
(by flattening them out before applying the primitives to them; similar to the use of strictness annotations).
However, in our model it is the user’s, rather than the compiler’s, responsibility to indicate needness. It is
also worth pointing out that our model supports the notion of irrelevant task ([13]) in the sense that in the
following program

:- £(X), X:=g(0).

£() = 1.
g(Y) => g(Yl) :- true l y1;=y+1

the value 1 will be returned even if the function g carries on executing indefinitely.

Suitable uses of these primitives offer the user a variety of execution strategies namely call-by-need,
call-by-value, call-by-name and call-by-opportunity ([4]), whereas call-by-speculation is offered by default
via the committed-choice or-parallelism of the concurrent logic component (note that for the latter, it is
possible to terminate speculative computation that is known to be useless or irrelevant; this is descibed in
- [17]). Their proper use allows the programmer a useful control over the space-time trade-offs; he may

choose to either pass around a function application £ (x) or evaluate it depending on the size of the data
structure represented by x and the overhead in evaluating . In addition, the stream and-parallelism of the
concurrent logic component provides a natural producer-consumer synchronisation and offers incremental
computation, thus avoiding the need for intermediate data structures. This minimum of three primitives
(indeed, ‘=:=' is not needed since it is a combination of ‘=" and': =") offers the user great flexibility without
making the programs difficult to be read and understood as it is, we believe, the case for other annotations
proposed or the use of special strict and semi-strict functions.

The extension of a concurrent logic language with functional capabilities was also discussed in an earlier
definition of PARLOG ([6]). There, the functions were eager by default (although lazyness in the evaluation
of a function could be indicated by means of annotations). It is not clear whether the functional part allowed
for sharing and cyclic structures and an implementation of it proved difficult and was subsequently
dropped. Here we show how by mapping both the logic and the functional part onto the same intermediate
level (Dactl) using a single computational model (graph rewriting) we can provide a homogeneous and
efficient implementation. Of course, our PARLOG to Dactl implementation could also benefit from a
functional extension of the sort desribed in this paper.

Although the enhancement of GHC with functional capabilities was done in a rather ad hocmanner we
believe we have shown by means of examples how powerful the model can be. Although this has allowed
us to form more general rewriting systems than it may have otherwise been possible (our model, for
example, subsumes the one in [14]), development of formal semantics for the model is considered as an
area of future research. Note also that we do not consider GHC/F as a finished product but as a vehicle for
further research in the area of extending concurrent logic languages with functional czpabilities.

It is worth pointing out that our research group is currently extending the work done in Dactl so thata
number of Dactl-based implementations of parallel logic and functional languages can be supported by the
EDS (European Declarative Systems) machine; an enhanced coarser grain form of graph rewriting
(Extended Graph Rewriting) will be used for that purpose -~ that will attempt to solve the problems
inherent in fine-grain parallelism.

67

(1
(2]
(3]

[4]
[3]
[6]
[71
(8]
9]

[10]

[11]
[12]

[13]

[14]
[15]

[16]
(17}

{18]
[19]
[20]

(21]
[22]

8. REFERENCES

Bige G. and Lindstrom G., Committed Choice Functional Programming, FGCS’88, T yo
Japan, Nov. 28 - Dec. 2, 1988, Vol. 2, pp. 666-674.

Barbuti R., Bellia M., Levi G. and Martelli M., LEAF. a Language which Integrates Logjc,
Equations and Funcuons, in [7], pp. 201-238.

Barendregt H. P., Eckelen M. C. J. D., Glauert J. R. W., Kennaway J, R
Plasmeijer M. J. and Sleep M. R., Term Graph Revwriting, PARLE Eindhoven, The
Netherlands, June 15-19, 1987, Vol. 2, pp. 141-158.

Burton F. W., Functional Programming for Concurrent and Distributed Computing, The Computa
Journal, Vol. 30 5, 1987, pp. 437-450. o

Clack C. and Peyton Jones S. L., Strictness Analysis - a Practical Approach, FPLCA' 85fi
Nancy, France, Sept. 16-19, 1985, LNCS 201, pp. 35-49.

Clark K. L. and Gregory S., PARLOG: A Parallel Logic Programming Language, Raseareh
Report DOC 83/5, Imperial College UK, 1983.

DeGroot D. and Lindstrom G. (eds), Logic Programming: Functions, Relations, and Equatzom
Prentice Hall, 1986.

Dershowitz N. and Plaisted D. A., Logic Programming cum Applicative Programming, IEEE
International Symposium on Logic Programming, Boston, USA, July 15-18, 1985, pp. 54-67.

Glauert J. R. W_, Hammond K., Kennaway J. R. and Papadopoulos G. A., UsingM
to Implement Declarative Languages, CONPAR’88, Manchester, UK, Sept. 12-16, 1988, Vol. 1,
89-94 ;

Glauert J. R. W., Kennaway J. R. and Sleep M. R., Dact: a Computational Mode.
Compiler Targetl.anguageBased on Graph Reduction, ICL Technical Journal, May, 1987, 5(3), P
509-537.

Glauert J. R. W. and Papadopoulos G. A., A Parallel Implementation of GHC, FGCS'
Tokyo, Japan, Nov. 28 - Dec. 2, 1988, Vol. 3, pp. 1051-1058.

Hansson A., Haridi S. and Tarnlund S-A., Properties of a Logic Programming Langu
Logic Programmmg, Clark K. L. and Tarnlund A. (eds), Academic Press, 1982, pp. 267-280.

Hudak P. and Smith L., Para-Functional Programming: a Paradigm for Progr
Multiprocessor Systems, 13th Annual ACM Symposium on the Principles of Programmm‘
Languages, Florida, USA, Jan. 13-15, 1986, pp. 243 254.

Josephs M. B., Functional Programming with Side-Effects, Science of Computer Programming
1986, North- Holland Pp- 279-296.

Kennaway J. R., Implementing Term Rewrite Languages in Dact] CAAP'88, Nancy, an
Mar. 21-24, 1988, LNCS 299, Springer Verlag, pp. 102-116.

Kornfeld W. A., Equality for Prolog, in [7], pp. 279-294.

Papadopoulos G. A., A Fine Grain Parallel Implementation of PARLOG, TAPSOPT 1
Barcelona, Spain, Mar. 13- 19, 1989, LNCS 352, Springer Verlag, pp. 313-327.

Robinson J. A. and Sibert E. E., LOGLISP: Motivations, Design and Implementation, 0 0
Programming, Clark K. L. and Tarnlund A. (eds), Academic Press, 1982, pp. 299-314.

Sato M. and Sakurai T., QUTE: a Functional Language Based on Unification, in [7], PP 1358
156. .

Subrahmanyam P. A. and You J-H., FUNLOG: a Computational Model Integrating
Programming and Functional Programming, in [7], pp. 157-198.
Ueda K., Guarded Horn Clauses, D.Eng. Thesis, University of Tokyo, Japan, 1986.

Papadopoulos G. A., Parallel Implementation of Concurrent Logic Languages Using 9 9 :
Rewnlmg Techniques, Ph.D. Thesis, University of East Anglia, Norwich, UK, December 198

68

