
R. Meersman and Z. Tari (Eds.): OTM 2008, Part I, LNCS 5331, pp. 657–674, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Optimizing the Utility Function-Based Self-adaptive
Behavior of Context-Aware Systems Using User

Feedback

Konstantinos Kakousis, Nearchos Paspallis, and George A. Papadopoulos

Department of Computer Science, University of Cyprus
P.O. Box 20537, 1678 Nicosia, Cyprus

{kakousis,nearchos,george}@cs.ucy.ac.cy

Abstract. The vision of ubiquitous computing is about numerous devices em-
bedded in our every-day environment, designed to serve humans in a non-
obtrusive manner while minimizing the required user attention. These devices
are expected to seamlessly monitor context changes and adapt their behavior
and functionality to maximize the user benefit. However, designing the self-
adaptive logic of such systems is far from trivial. This paper discusses a utility
function-based approach for specifying the adaptive behavior of component-
based context-aware systems. Although this approach allows for completely
autonomous self-adaptive behavior, it also leverages potential user feedback by
adjusting and optimizing its behavior. It is argued that this approach provides
significant improvement to the adaptive behavior of a system while maintaining
the required user attention to a minimum. At the same time, it keeps the com-
plexity involved in the development of such context-aware, self-adaptive appli-
cations to a reasonably low level.

Keywords: Context-aware, Self-adaptation, Utility functions, User feedback.

1 Introduction

With the proliferation of smart-phones and the increasing importance of ubiquitous
computing, it is difficult to overestimate the potential of context-aware, self adaptive
systems. In mobile computing settings, handheld devices are expected to be aware of
their ever changing context and adapt their behavior accordingly. Furthermore, in
ubiquitous computing environments many devices are embedded in the environment
and are expected to provide autonomic behavior by utilizing their knowledge on the
context to adapt their functioning. For all these actions, the main driving and guiding
force is the optimization of the user experience. In other words, the context is sensed
and the adaptations are decided with the purpose of improving the provided utility as
it is perceived by the user in the mobile or ubiquitous computing environment.

However, building systems which can be configured to anticipate and react on the
user needs and wishes is far from trivial. This paper advocates the use of a multi-
dimensional, utility function-based approach for enabling automatic decision-making
in the event of context changes. In this way, several aspects of the decision-making

658 K. Kakousis, N. Paspallis, and G.A. Papadopoulos

process are examined independently, and then combined to reach a decision. We
argue that the way these aspects are combined can be automatically adjusted by
means of asking the user to confirm or reject an adaptation decision and then use the
feedback to tune the way the decisions are made.

In this respect, we propose an approach which attempts to take into consideration
as many choice-affecting aspects as possible. These aspects form a multidimensional
space, and the choice is automatically made based on the overall matching across
these dimensions. It is argued that this approach can offer a reasonable approximation
of the user’s reasoning process, while at the same time requiring only a reasonable
amount of work from the developers. The utility of each aspect contributes to the
overall utility of the system by a factor which is dynamically adjusted based on the
received user feedback. We show that this adjustment can automatically optimize
the context-aware, self-adaptive behavior of the system. Finally, an underlying mid-
dleware system such as MADAM [1] or MUSIC [2] is assumed, in which the devel-
oped applications are component-based and are dynamically planned and composed at
runtime.

The current paper builds upon our previous work on a multi-dimensional adapta-
tion model originally presented in [3]. That work introduced a method for interfacing
humans with context-aware, self-adaptive applications. This paper extends and refines
the results of its successor but, mainly, it also proposes a novel, control theory-based
approach for automatically optimizing the utility functions used to provide the self-
adaptive behavior of the system. This mechanism incorporates user feedback into the
adaptation reasoning loop and uses that input to automatically optimize the multi-
dimensional utility functions which are used to enable its self-adaptive behavior.

The rest of this paper is structured as follows: Section 2 discusses the foundations
regarding context awareness and self-adaptive behavior in mobile and pervasive com-
puting systems. The same section also presents the basic, multi-dimensional reasoning
model. The main ideas of the proposed optimization are then introduced in section 3,
which is followed by a case-study based evaluation of the approach in section 4. The
evaluation of the proposed optimization is performed by means of a simulated ex-
periment presented in the same section. This optimization approach is compared with
related work in section 5 and, finally, section 6 concludes the paper by summarizing
its main contributions and by pointing to our plans for future work.

2 Foundations

Consider a user in a mobile or pervasive computing environment. Such environments
are generally designed to offer services to the users. Such services involve both direct
and indirect user interaction. In both cases it is assumed that the user perceives the
service and has an impression about its utility, i.e. different users might perceive the
utility of the same service differently. In this discussion, the utility refers to a quality
metric, broader than Quality of Service (QoS), which aims to capture the general user
satisfaction with the functioning of a system in a given context. For instance, if a user
prefers one system configuration over another one, then it is assumed that the former
has a higher utility. A more formal definition of the utility is provided in section 2.3.

Optimizing the Utility Function-Based Self-adaptive Behavior of Context-Aware Systems 659

In mobile and ubiquitous computing environments, the context changes frequently.
For this reason, systems targeting this type of environments are designed so that they
can be operated in a set of varying configurations and modes (referred to as variants
in this paper). These variants are designed with the goal of optimizing the utility for at
least a subset of the context space (evidently, when a variant provides no advantages
for any of the context, then it is unnecessary). In the scope of context-aware, self-
adaptive systems the main goal is to provide mechanisms which dynamically and
automatically find and apply the optimal configuration as the context changes. In this
case, we assume that the optimality is computed by means of the user-perceived util-
ity, which must be monitored and evaluated.

In order to enable a more rigorous study of the problem, we present a few defini-
tions for the context, the variants and the utility. These definitions were originally
introduced in [4] and provide the foundation for the proposed optimization.

2.1 Context

In this paper we use Dey’s definition for context, which is one of the most frequently
cited [5]: “Context is any information that can be used to characterize the situation of
an entity. An entity is a person, place, or object that is considered relevant to the
interaction between a user and an application, including the user and application
themselves”.

In practice, context can be divided into several cross-cutting types, or dimensions.
These dimensions can be enumerated (e.g., gender can only be "male" or "female") or
unbound (e.g., time)".In this perspective, the context might be modeled as a multidi-
mensional space in which each relevant context type defines a dimension. Similar
approaches exist in the literature, such as the one presented by Padovitz et al [6].
Analogous to our approach, this work treats context as a cross-application artifact
which needs to be handled at a lower (than the application) level, such as in middle-
ware. The framework is based on the idea, introduced by Zaslavsky [6], which sug-
gests representing a context as an object in a multidimensional Euclidean space,
termed as situation subspace. Each situation subspace is a collection of N attribute-
values, each one of them restricted in an acceptable region.

Contextual information is distinguished between numerical and non-numerical at-
tribute values. Additionally, numerical values can be further categorized as required
and optional, or to values with greater or lesser influence over the context feasibility.

For the manipulation of non-numerical attributes two approaches are found in the
literature. The first one suggests mapping semantic values into numeric values and
treating all kind of contextual information uniformly. The second approach adopts the
relational database model for specifying the values of the attributes and their domains.
To avoid loss of expressiveness, in our description we adopted the first approach.
Therefore, we assume that each context type can be abstracted by a real number, i.e.
ℜ, and a context space of d types can be abstracted as a d-dimensional space ℜd.

Thus, at any time t, the context can be abstracted by a point ct, which defines a
value for each of the d dimensions, i.e. the ct is defined as (ct1, ct2, …, ctd), where cti
indicates the context value at dimension i for the time instance t. We refer to these
points ct as context instances. Furthermore, an acceptable region of values for each
dimension restricts the contextual space that a context instance apprehends. Assuming

660 K. Kakousis, N. Paspallis, and G.A. Papadopoulos

that the context space is comprised by the infinite points in ℜd, the above are more
formally expressed by the definitions (1) and (2) shown below:

Context instance

ct ≡ (ct
1, ct

2, …, ct
d) ∈ ℜd, where ct

i ∈ ℜ ∀ i in [1..d]

restricted by At≡(at
1, at

2, …, at
d) ∈ ℜd , where at

i a set of elements that sat-
isfy a condition (e.g., 0<at

i <1).

(1)

Context space
context space ≡ ℜd, where d represents the number of dimensions of the
context space.

(2)

2.2 Variants

In the literature, there are mainly two approaches for software adaptation: parameter-
based and compositional-based. Furthermore, several aspects of adaptation have been
extensively studied, such as where, when, and how they are applied [7]. In the context
of mobile and ubiquitous computing environments, adaptivity is required to overcome
the variability of these environments. For this reason, systems are designed with adap-
tive properties so that a system can be configured in different ways, i.e. different
component compositions or parameter settings, resulting to different variants. Each
one of these variants is designed to offer maximum utility for specific context condi-
tions. The main characteristic of alternative variants is that they maintain the func-
tional properties of the software system, while possibly varying its extra-functional
characteristics. In this case, the purpose of the context-aware, self-adaptive system
can be seen as the adjustment of its extra-functional properties with the aim of opti-
mizing the user-perceived utility [8].

In order to simplify the analysis of such systems, it is important to assume that (if
needed) the adaptation domain can be transformed to a finite set of configurations by
quantizing their value range, i.e. by mapping ranges of the infinite domain to a finite
number of subsets.

In some cases, these variants are defined a priori by the software developers.
However, in order to provide maximum flexibility and to meet the requirements of
such dynamic environments, variants are often required to be composed dynamically.
For instance, in component-based systems the variants are constructed by examining
the provided and required services, i.e. interfaces, of each component [1]. The exact
set of available variants can thus fluctuate based on the availability of components
and services and also based on the contextual conditions.

Variant
A variant is any parameter-based or compositional-based configuration of
the application, maintaining its original functional properties

(3)

Variants
variants ≡ {variant1, variant2, …, variantN} (4)

Optimizing the Utility Function-Based Self-adaptive Behavior of Context-Aware Systems 661

In this paper we are primarily concerned with component-based applications and
thus, it can be assumed that the system is comprised of either a single application or a
set of applications. However, we consider the utility of each possible application
individually, partly based on the user preferences for each one of them, as it will be
discussed in the next section. The definition of variants is summarized in (3) and (4).
It is worth noting however, that variants can vary dynamically over time, depending
on the availability of components and services, and also based on the status of the
required resources.

2.3 Utility Functions

In this work, utility functions refer to mathematical artifacts mapping the combination
of every context state and variant to a scalar value, typically in the range [0, 1], where
0 indicates minimum, i.e. worst, utility, and 1 indicates maximum, i.e. best, utility.
This approach is quite similar to the notion used in micro-economics where utilities
represent user happiness. The choice of the [0, 1] bounds provides the convenience of
allowing the multiplication of different utilities without exceeding the original bounds
and without having to normalize the result.

The purpose of a utility function is to provide a formal, mathematical method for
computing the utility of an application, as it is perceived by the end-user. In this re-
spect, the utility function is defined as follows:

Given this definition, the problem of decision in self-adaptive context-aware sys-
tems becomes the formation of a computed utility function (Ucomputed) which can
approximate the perceived utility. This approximation is the topic of the following
subsection.

2.4 Multi-dimensional, Utility-Based Model

Most modern mobile phones provide personalization, and manual adaptation, through
profiles, which are user-customizable. For example, a user can configure the “default”
profile of his smart-phone with a custom ring-tone and also by setting the vibration on
and off. This example shows a scenario where the adaptation affects multiple dimen-
sions. For instance, one such dimension is whether there will be a specific ring-tone
played when the phone receives a call or not, and another dimension is whether the
vibration will be activated or not.

 In this paper, we extend this model, to arbitrary numbers and types of dimensions.
We refer to these as adaptation dimensions, and we argue that they can provide the
foundation for specifying context-aware, self-adaptive applications, as it will be
showcased later on. It is however, an essential prerequisite that the adaptation dimen-
sions are high level adaptation aspects, as independent as possible from the contextual

Perceived utility function

A perceived utility function (Uperceived) is a function that for any context point
Ct and any two variants Vx and Vy, it computes arithmetic values (e.g., in the
range of [0, 1]) so that f(ct, vx) ≥ f(ct, vy) if and only if the user prefers vari-
ant Vx to Vy from her point of perception

(5)

662 K. Kakousis, N. Paspallis, and G.A. Papadopoulos

situation. In other words, the preference of a user in favor of an adaptation dimension
should not change radically between nearby context conditions.

To enable this kind of adaptation reasoning, the utility of each application is com-
puted independently for each dimension, and the overall utility is computed as their
weighted sum. Regardless of whether the subject under discussion is an application or
an individual component, its utility over a specific dimension can be more easily
computed in terms of a fitness function. Such functions measure the fitness of particu-
lar variants for specific context conditions. For example, considering the dimension of
the mobile phone sound alert, the fitness function would examine if the variant into
consideration (e.g., sound off) is a good fit for a given context (e.g., in a meeting).
Fitness functions are essentially utility functions covering only a specific aspect of the
adaptation.

In practice, it is not easy to define a perfect utility function, simply because users
are not generally completely aware of how they perceive the optimality of a service,
nor can they describe it. For instance, it is possible for a user to sense that she or he
prefers one variant over another under certain context conditions, without explicitly
knowing why, or even which contextual factors affect their opinion. Furthermore, it is
possible that the user’s perceived utility depends on factors that cannot be explicitly
measured, such as their emotional state.

In this regard, we propose the formalization of utility functions which try to ap-
proximate the functioning of the users’ internal reasoning process. In practice, users
evaluate the utility of a service over numerous aspects. This can be expressed by an
equation as shown in (6), where the fitness function over dimension i is expressed as
Ui. However, in order to implement a realistic adaptation reasoning algorithm which
imitates the user’s perception, we define the computed utility which is an approxima-
tion of the perceived utility as shown in equation (7), and which is computed over a
subset of the dimensions of the perceived utility. For example, a user perceives the
overall utility offered by a video-conference system as a combination of many factors,
but that is simulated by examining his perception over video clarity and latency only,
as defined by equation (7). It is argued that this approach results in a computed utility
which approximates the user perceived one, as defined by equation (8). Furthermore,
it is argued that this approach provides a reasonable and realistic method for enabling
context-aware, self-adaptive behavior.

Finally, it is worth noting that this elementary approach enables adaptation reason-
ing over multiple dimensions, but it is limited in terms of customization. Most nota-
bly, it is expected that different users have different perception for the importance of
each of the examined dimensions, compared to other users. For this reason, the over-
all utility of an application is refined to express the weighted sum of the dimensional
utilities, as shown by equation (9).

As the weights wi are expected to be dependent on the particular user, i.e. because
different users assign different levels of importance on the individual aspects, they
can be adjusted to reflect the preferences of the targeted user. One of the main contri-
butions of this paper is that we demonstrate an automated method for adjusting these
weights, taking into consideration the user feedback at runtime.

Optimizing the Utility Function-Based Self-adaptive Behavior of Context-Aware Systems 663

Uperceived(variantX)≡∑
i

Uiperceived(variantX) (6)

Ucomputed(variantX)≡∑
K

i

Uiperceived(variantX) (7)

Ucomputed(⋅) ≅ Uperceived(⋅) (8)

∑

∑

=

=

⋅
≡

K

i
i

K

i
mjii

mj

w

CVfitnessw
CVUtility

1

1

)),((
),(

(9)

Given this mathematical method for computing utilities, a context-aware, self-
adaptive system can be constructed by means of evaluating the computed utility of
each variant whenever the context changes, and by adapting to the optimal variant as
needed. This approach is further described and evaluated in the following sections.

3 Leveraging User Feedback to Adjust the Utility Functions

Following up on the promise of pervasive computing, we envision a mechanism that
allows the users of context-aware, self-adaptive systems to intervene in the adaptation
control loop when they wish to, with the goal of optimizing its self-adaptive behavior.
As the utility function is essentially the weighted sum of the dimensional utilities of
certain aspects of the adaptation, an optimization can be achieved by means of adjust-
ing these weights. In detail, it is argued that different users have different preferences
over the individual aspects measured by the fitness functions. Thus the effectiveness
of the utility function can be optimized by adjusting the corresponding weights ac-
cording to the individual user needs.

Fig. 1. Adaptation control loop and collection of user feedback

664 K. Kakousis, N. Paspallis, and G.A. Papadopoulos

In this section we present a solution which collects user feedback while it causes
minor distraction, and uses that input to adjust the utility function weights and, conse-
quently, optimize its self-adaptive behavior. A high level view of this approach is
illustrated in the workflow of Fig. 1.

Throughout this paper, it is assumed that the middleware provides automatic man-
agement of context sensing, and asynchronously informs the adaptation reasoning
engine whenever a relevant context change occurs (for an example see [9]). As soon
as such a context change is detected, the adaptation reasoner computes the utility of
all its variants under the new context and decides if an adaptation is required by
checking if the current variant is still the one offering the highest utility.

Initially, the system sets the weights of the utility functions to a default value (e.g.,
the median value which is 0.5 for the used range of [0, 1]). The variant with the high-
est utility score is considered to be the best fit for the given context and is selected by
the system for implementing the upcoming adaptation. This is illustrated in Fig. 1 (left
side), where context changes trigger the adaptation reasoning loop, the result of which
might be an adaptation or not.

At the same time though, the users have the ability to intervene and express their
disagreement with the adaptation decision. We envision this to be implemented by
means of a non-intrusive notification appearing in the status bar of the used device
(e.g., smart-phone or PDA) when an adaptation is decided, allowing the users to get
involved if they wish to, but not requiring them to do so. In the case where a user
mediates and selects a different variant, an event is generated and forwarded to the
adaptation reasoner which uses this input to adjust the utility functions (in a way that
will be explained later on). Eventually, the control loop resumes its normal flow and
continues monitoring for new context changes. This is illustrated by the right (shaded)
side of Fig. 1. Please note that the user is free to completely ignore the notification,
which should expire and disappear after some time.

Mathematically, if we assume that the new context is Contexti and the system se-
lects Variants as the optimal one, then it is implied that the selected variant has a
higher (or at least equal) utility, compared to any other variant (see inequality (10)).
Furthermore, if the user expresses his or her disagreement regarding the system’s
choice and selects an alternative variant, e.g., Variantu, their choice is translated into
the inequality shown in (11), which combined with equation (9) produces the inequal-
ity depicted in (12). D is the dimensionality of the utility function and wd is the weight
of the corresponding dimension d.

Utility (Variants, Contexti) ≥ Utility (Variantx, Contexti), ∀x∈V, x≠s (10)

Utility (Variantu, Contexti) > Utility (Variants, Contexti) (11)

∑
=

<−⋅
D

d
UdSdd VfitnessVfitnessw

1

0)))()(((

(12)

Thus, in principle, the user’s feedback regarding a particular adaptation decision
can be transformed into an inequality constraint. Extending the same reasoning for all
the decisions of the system, it can be inferred that each time a Variantu is selected
among N variants for the context conditions Contexti, N-1 constraints can be defined.

Given this, it is argued that the problem of incorporating the user’s preferences into
the adaptation reasoning process can be transformed to a constrained nonlinear

Optimizing the Utility Function-Based Self-adaptive Behavior of Context-Aware Systems 665

optimization problem [10]. In this kind of problems, the input is a set of equalities and
inequalities formed over a set of unknown real variables. The goal is then to assign
values to the set of unknown variables so that the equalities and the inequalities are
satisfied while at the same time a cost function is maximized or minimized (in this
case the cost functions are assumed to be quadratic).

The transformation is achieved as follows: For each input received by the user
concerning an adaptation decision, we form an inequality as shown in (12). In this
case, the difference of dimensional utility of variants s and u is a known, constant
value and the weights wd are unknown, real variables (which we restrict to [0, 1]).
This inequality provides an additional constraint which in combination with the other
collected constraints define the conditions that the weights must satisfy in order for
the utility functions to produce the desired adaptations when the context changes.

Thus, the problem of optimizing the utility functions to better match the user pref-
erences essentially becomes the computation of a new set of weights wi, so that the
utility function (shown in equality 9) is adjusted accordingly. As the original setting
of weights is considered to be almost optimal, we define a cost (or objective) function
which enables the optimization of the weight variables with the minimum variation of
the values in each optimization step.

In a d-dimensional space, where d is the number of adaptation dimensions, con-
sider w and w’ as two vectors representing two different d-dimensional points of the
space. Minimizing the Euclidean distance between vectors w and w’ provides us with
the ability to fulfill our goal. The vector w defines the current weights for the adapta-
tion dimensions, while w’ represents the set of the unknown weight variables which
we intend to compute. To achieve the minimum fluctuation possible, the objective
function is formulated as the Euclidian distance between the two multi-dimensional
points w and w’, as shown by formula (13).

Since the fitness of a particular variant over a specific dimension d is constant for a
given context state, the difference fitnessd(VS)-fitnessd(VU) is also constant, and for
simplicity it is denoted as Cd,S〈U (where S〈U implies that the user prefers VariantU to
VariantS for the given context). Thus, the mathematical formulation for the optimiza-
tion problem is transformed to the one given in (14).

2
1

2

2
))'((' ∑ =

−≡− D

d dd wwww (13)

minimize
2

'ww − so that ∑ =
<⋅D

d USdd Cw
1 , 0)'(p ∀ constraint S〈U (14)

Mathematical optimization problems, such as the one specified above can be
solved by the use of sequential quadratic Programming methods. In particular we
have used the fmincon function of Matlab’s optimization toolbox which computes a
constrained minimum of a scalar function by starting at an initial approximation and
updating an estimation of the Hessian of the Lagrangian at each iteration [11].

As with any optimization problem, there is no guarantee that a feasible solution ex-
ists for the given constraint set. In this case, a failure to generate weight values that
satisfy the inequalities of the constraints set might be due to a contradiction between
the user’s preferences in favor of a dimension in different context scenes. For this
kind of situations, the system fulfills the user’s wish for the given input, i.e. applies
the selected variant, without however changing the weights.

666 K. Kakousis, N. Paspallis, and G.A. Papadopoulos

If however, the optimization process succeeds, a new adaptation event is generated
and forwarded to the adaptation controller which initiates a new run of the adaptation
control loop using the modified weights.

4 Case Study-Based Evaluation of the Approach

To illustrate the functionality of our approach and also to evaluate its efficiency in
real-life examples, we demonstrate the approach through a case study example. This
case study specifies a scenario describing a typical day of an on-site technician who
uses a smart-phone to assist her with her everyday routine. Her smart-phone is as-
sumed to run an intelligent agenda manager application, exhibiting context-aware,
self-adaptive behavior. These adaptive features of the application include switching
between offline and online synchronization modes, switching between user interac-
tion modes and adjusting the volume level based on the ambient noise.

4.1 Experimental Approach and Setup

In order to experimentally evaluate the proposed approach, we describe a scenario
which defines an adaptive application and a set of pre-defined context conditions.
Furthermore, we define fitness functions to capture the utility of each variant over the
individual dimensions, for any given set of context values. The utility functions are
used to compute the utility of each variant throughout the scenario, and thus to select
the best matching variant. Later on, we incorporate hypothetical user feedback, and
we demonstrate how it is used to adjust the weights used in the utility function and
how it results to automatic accommodation of the user preferences.

Since our approach is based on the multi-dimensional model presented in section
2.4, we start by specifying the relevant adaptation dimensions which the adaptation
reasoning mechanism is based on. For the scope of this scenario, we consider three
adaptation dimensions: Interaction Mode, Audio Volume, and Synchronization Mode.
The first one examines the user’s need for hands-free operation, i.e. when she is driv-
ing, and the system’s ability to provide her this mode. The audio volume dimension
controls the audio volume, for which the user’s need may vary based, for example, on
the ambient noise. Finally, the synchronization mode dimension reflects the user’s
need for synchronizing the agenda with new tasks and events and for downloading
software updates, which has an impact on the battery and network use.

The scenario is comprised of seven scenes, describing different phases in the day
of the technician. In the first scene, the user is at home preparing for the day and uses
the agenda manager to update her of the day’s tasks. New events are downloaded
through the home Wi-Fi network. During the second scene, the user drives towards
her office and the device switches to using the GSM network for updating the agenda.
At the same time the hands free mode is enabled and the agenda’s contents are con-
verted to speech and then spoken through the car speakers. To reach her office, the
engineer drives through a tunnel where GSM connectivity is broken. The manager
adapts accordingly by switching to offline mode, thus deferring the synchronization
of the agenda events. Once the user arrives at office, in the fourth scene, the agenda
utilizes the available high speed WiFi network for downloading events and software

Optimizing the Utility Function-Based Self-adaptive Behavior of Context-Aware Systems 667

updates if needed. Later on, during a local technical meeting, the device automatically
enters the silent mode while continuing the task updates through the slower WiFi
network available in the meeting room. Then in the sixth scene, the user visits a client
site where manual work is needed. At that point, the ambient noise is very high and
the device’s volume is adjusted accordingly. Furthermore, the hands free operation is
enabled freeing the engineer’s hands for manual work. Finally the engineer returns to
the office and, as the battery is running low, the smart-phone switches to a mode for
low consumption performing necessary synchronization only when needed.

To allow the experimental evaluation of the variants’ utility for each of these
scenes, we collect the relevant context information, i.e. types and values, in Table 1.

Table 1. Context values for the seven scenes of the scenario. The acceptable range for all the
monitored context types, except the user.state, is [0, 1] with intermediate step 0.25.

Scene user.state env.noise res.net_bw res.net_cost res.batt
1 home 0.25 0.75 0.25 1.0
2 driving 0.5 0.25 0.75 1.0
3 driving 0.5 0.0 0.0 0.75
4 office 0.25 1.0 0.0 0.75
5 meeting 0.0 0.75 0.0 0.5
6 manual_work 1.0 0.75 0.0 0.5
7 office 0.25 1.0 0.0 0.25

For the purposes of this scenario we consider five main context types: the user’s

state, the environment noise level, the battery level of the device, the network avail-
ability and the network cost.

As it was discussed earlier, we are concerned with component-based applications
and compositional adaptation and thus, it is assumed that the middleware constructs
the set of all the possible variants dynamically, taking as input the set of available
components. The resulting variants specify special compositions of the application, as
well as values of their configurable parameters. To avoid cluttering, we do not discuss
the detailed composition of the variants but rather, we just describe them and present
their properties.

In more detail, the first variant specifies that the agenda is configured to use the
maximum bandwidth available for updates and for synchronization. This mode results
in high battery consumption. Additionally, the hands-free operation is disabled. In the
second variant, the agenda continues to use high bandwidth for updates and synchro-
nization, but the hands-free mode is enabled. Then, in the third variant, the agenda
uses GSM for synchronization, while maintaining the hands-free mode enabled and
the volume adjusted for high ambient noise. Next, in the fourth variant, the agenda
manager operates in the offline mode with the hands-free mode enabled and the vol-
ume adjusted for the car speakers. Further on, in the fifth variant the agenda manager
operates in a low battery consumption mode featuring minimum synchronization and
not providing any hands-free support. Following that is variant six in which the
agenda operates in the minimum synchronization mode again, but configured for
noisy environments. The hands-free operation mode is enabled. Finally, in the last
variant the agenda uses high speed bandwidth for synchronization and provides no
hands free operation. In this case, the battery consumption is high.

668 K. Kakousis, N. Paspallis, and G.A. Papadopoulos

Table 2. The relevant properties of the application variants

Variant # net_sup vol_supp hfree_supp batt_cons GSM_req
1 1.0 0.3 0.0 0.75 false
2 0.75 0.3 0.75 0.75 false
3 0.25 0.4 1.0 0.5 true
4 0.0 0.5 1.0 0.25 false
5 0.25 0.3 0.0 0.0 false
6 0.25 0.8 0.75 0.5 false
7 0.75 0.0 0.0 0.75 false

In order to be able to evaluate the dimensional fitness of the variants dynamically,

each one of these variants explicitly defines a set of properties. In this scenario, we
have identified 5 relevant properties: the network support, the volume support, the
hands free support, the battery consumption and the GSM required property. Note
that in the case where the variants are dynamically formulated as component compo-
sitions, these properties can be dynamically computed by means of combining the
individual component properties. Based on the description of the variants, we have
assigned them the properties illustrated in Table 2.

Table 3. Fitness functions for the three adaptation dimensions

Utilityinteraction-mode =
 1 - |diff(userNeededHandsfree, variant.hfree_supp)|

Utilityaudio-volume =
 1 – |diff(variant.vol_supp, env.noise)|

Utilitysynchronization-mode =
 if (battery_level not critical) then
 0.6*(1 – |diff(variant.net_supp, res.net_bw)|)
 + 0.2*(1 – |diff(variant.batt_cons, res.batt)|)
 + 0.2*(1 – res.net_cost)
 else
 0.2*(1 – |diff(variant.net_supp, res.net_bw)|)
 + 0.7*(1 – |diff(variant.batt_cons, res.batt)|)
 + 0.1*(1 – res.net_cost)

Finally, given the context and the variants domains, we need to define the dimen-

sional utility functions, i.e. the fitness functions, in order to be able to complete the
experimental evaluation of the approach. These functions are responsible for express-
ing the fitness of each variant for a given set of context conditions over each one of
the adaptation dimensions detected at the beginning of Section 4.1. A fundamental
assumption of this approach is that the individual fitness functions are correct, i.e.
given any context conditions, they provide a valid ranking of the studied variants for
the corresponding dimension). The fitness functions are expressed in a mixed form of
mathematical notations and pseudo code, as shown in Table 3.

In this case, the diff function measures the difference between the provided and the
required degree for the particular feature. In practice, this method measures the

Optimizing the Utility Function-Based Self-adaptive Behavior of Context-Aware Systems 669

suitability of the respective variant for a particular aspect as a function of the context.
In the first fitness function, the userNeededHandsfree corresponds to a value denoting
the importance of the hands-free mode according to the user state.

321

332211),(),(),(
),(

www

CVfwCVfwCVfw
CVU mjmjmj

mj ++
⋅+⋅+⋅

= (15)

Finally, as described in Section 3, the middleware is responsible for autonomously
selecting the most suitable variant based on the monitored context. This sort of deci-
sion is made by means of a feedback control loop, as shown in Fig. 1. The utility of
any variant for a given context state is computed by applying the equation of formula
(9) to the three adaptation dimensions identified earlier in Section 4.1. In this case, the
utility of variant Vj under context conditions Cm is computed using the above equation
(15).

4.2 Experimental Results

Given this experimental setup, the evaluation of the dimensional utilities of the seven
variants, for some specific assignments of context values, is straightforward. The
overall utility is computed by estimating the weighted sum of the dimensional utili-
ties, as shown in formula (15).

We aim to include user’s preferences in the adaptation reasoning mechanism by
optimizing the weight values of the adaptation aspects as explained in Section 3. In
order to reveal the potential of the presented solution the same seven-scene scenario is
repeated twice. We consider the first trial as a training session for the system during
which the user has the opportunity to express her disagreement over the system’s
adaptation decisions. These disagreements are internally translated into mathematical
constraints which are then used in the optimization phase. Eventually, the user feed-
back is reflected in the utility function through the adjusted weight values. When the
second trial is executed, the adjusted weights obtained during the previous day’s run,
i.e. training phase, are used in the adaptation reasoning and thus the system decisions
are expected to reflect the user’s preferences.

During the first context scene, while the user is at home preparing for the day’s ac-
tivities, the adaptation reasoner picks a variant that uses maximum bandwidth for
updates and synchronization. Since battery consumption is not an issue and the hands-
free operation is not needed, variant 1 is found to be the best choice. However, the
user expresses her disagreement as she would rather have lower utilization of
the available bandwidth and simple task synchronization without the overhead of the
software updates. She selects variant 7 as she thinks that it is a better choice for her.

The system satisfies the user’s wish and at the same time the optimization method
attempts to modify the weight values appropriately. Given the constraint that variant 7
should get a higher utility score than variant 1 in the first context scene, the optimiza-
tion component adjusts the weights w1, w2 and w3 to 0.5, 0.4435 and 0.5459 respec-
tively. The progress of these three weights, which correspond to the interaction mode,
audio volume and synchronization mode respectively, is depicted in Table 4.

670 K. Kakousis, N. Paspallis, and G.A. Papadopoulos

Table 4. Illustrating the automatic selection of the optimal variant, and the adjustment of the
weights as a result of the user feedback

Scene # Weights Day 1
 w1 w2 w3 System selection User feedback
1 0.5 0.5 0.5 variant 1 variant 7
2 0.5 0.44 0.55 variant 3
3 0.5 0.44 0.55 variant 4
4 0.5 0.44 0.55 variant 1
5 0.5 0.44 0.55 variant 7
6 0.5 0.44 0.55 variant 6 variant 2
7 0.5 0.3 0.6 variant 5
Scene # Weights Day 2
 w1 w2 w3 System selection User feedback
1 0.5 0.3 0.6 variant 7
2 0.5 0.3 0.6 variant 3
3 0.5 0.3 0.6 variant 4
4 0.5 0.3 0.6 variant 1
5 0.5 0.3 0.6 variant 7
6 0.5 0.3 0.6 variant 2
7 0.5 0.3 0.6 variant 5

Later on in scene 2, the user takes her car and drives to the office. During that time,

a GPRS network is available and the system uses it for synchronization. At the same
time the hands free operation is enabled and the volume is adjusted for the car envi-
ronment. Variant 3 is the system’s choice for the second context scene, which is ap-
proved by the user. In this case, the user accepts the system’s decision implicitly, i.e.
by not intervening in the adaptation loop. The same applies in the third scene, where
both the system and the user accept variant 4 as the optimal selection.

In the next two scenes, the user does not intervene to the system’s selection, which
is implicitly interpreted as agreement. While at office, the user enjoys the full utiliza-
tion of the available bandwidth which accelerates the synchronization and update of
the device (variant 1), while during the local technical meeting the silent mode and
the high speed synchronization of variant 7 is agreed to be the best choice.

Conversely, during her visit to the client’s site, the technician disagrees with the
system’s choice. Variant 6 was originally selected due to its great support for noisy
environments and due to its hands-free provision. However, the user is proved to be
mainly interested in maintaining the high speed synchronization rather than adjusting
the volume level perfectly. Thus, variant 2 is selected instead of variant 6. The same
optimization process is followed and the weights of the interaction mode, the audio
volume and the synchronization mode are adjusted to 0.5, 0.3 and 0.6 respectively.
Finally the user agrees with the system’s decision in selecting the low battery con-
sumption mode for the last context scene (variant 5), since the device battery level is
remarkably decreased.

The same seven-scene scenario is repeated a second time, i.e. day 2, but this time
the optimized weight values computed during the first iteration, i.e. day 1, are used. It
turns out that this time, the user agrees with the system’s decisions completely. This is
reasonable as the weights for the adaptation dimensions have been adjusted according
to her preferences already. The user feedback, along with the evolution of the weight
values are depicted in Table 4.

Optimizing the Utility Function-Based Self-adaptive Behavior of Context-Aware Systems 671

5 Related Work

Kokar et al [12] propose a paradigm of software engineering which maps the concepts
of control theory to software engineering of self controlling systems. In this adaptive
software model a QoS subsystem is introduced and is assumed to generate feedback
information. In some cases the feedback is the result of a function which generates
output variables from internal values, while in some other cases external input is
taken (e.g., from the user) and feedback information is generated based on all the
available relevant information. Although control theory-based models can produce
impressive results in software adaptation and reconfiguration, they inherit some main
constraints of control theory. For example in dynamic environments the controller
might not be able to steer the systems towards the desired goal (controllability prob-
lem) or small changes in the input might cause large modifications to the system’s
behavior (stability problem). In addition to that, using traditional formalisms of con-
trol theory, such as differential equations, for controlling software systems is not an
easy task. In an attempt to overcome this complexity, intelligent controllers which use
soft computing techniques, i.e. fuzzy logic, neural-networks, genetic algorithms and
machine learning, have been proposed in the literature but have been applied mainly
to other disciplines than software engineering, such as artificial vision, target identifi-
cation, etc [13].

Ranganathan and Campbell in [14], describe various techniques for the construc-
tion of context-aware agents in ubiquitous computing as well as numerous approaches
for defining their behavior in varying conditions. Among other methods (mainly rule-
based), machine learning approaches [15] are presented enabling agents to train
according to the environmental conditions or the users’ mood. Although machine
learning techniques can monitor the users’ preferences and give valuable feedback to
the system, they require training which in some cases can be quite long in period. This
is against one of the main goals of ubiquitous computing: non-obtrusive user feedback
collection. Additionally, machine learning techniques on smart-phones and other
hand-held devices could be too resource demanding to be accommodated, thus caus-
ing unacceptable slowdowns.

Finally, machine learning techniques are also used by O’ Connor et al in [16] but
this time an application optimization is attempted through the dynamic definition of
self-adapting context. In particular, an application can use feedback from the envi-
ronment to evaluate its contexts and adapt them where necessary in order to eliminate
issues arising with the developer-dependent context definitions (e.g., inaccurate con-
text data that lead to incorrect behavior, or fixed relationships between developer-
defined contexts and sensor data). The Q-Learning algorithm from the reinforcement
learning area is used to learn the optimal action for each context state. Though a pow-
erful approach suitable for releasing developers from the complicated task of defining
the monitored context types, it is application dependent and a new learning process
needs to be processed each time a new application is installed. On the contrary, we
argue that our approach is user centric and optimizes the adaptation behavior of the
system according to the user’s preferences over high-level dimensions uniformly for
all the applications.

Concerning software adaptation, the current state of the art refers to three main ap-
proaches, namely action-based, goal-based and utility-function based [17]. In this

672 K. Kakousis, N. Paspallis, and G.A. Papadopoulos

paper we are concerned with utility function-based approaches, which assign values
(utilities) to adaptation alternatives and which provide higher levels of abstraction by
enabling dynamic determination of the optimal adaptation alternative (variant), typi-
cally the one with the highest utility.

The use of utility functions for enabling context-aware, self-adaptive systems is a
rather novel approach, receiving increasing interest from the software engineering
community. For example, the MADAM project proposes a middleware which uses a
utility-based, architectural approach to adaptation [9]. In this case, the utility func-
tions are also expressed as functions on context, using intermediate property predictor
artifacts. The latter are used to compute reusable parts of the utility function. Fur-
thermore, a similar multi-dimensional utility approach is also described in [18], but
which is however limited to four QoS-specific dimensions.

Unlike the state of the art, our approach breaks the computation of the utility for a
variant into several aspects, covering different cross-cutting dimensions of the adapta-
tion. For instance, the MADAM approach [9] uses a static approach where the con-
text-aware properties of applications are fixed into the composition plans, making the
reuse of individual components significantly harder. Contrary to this, our approach
does not depend on any hard-coded properties in the plans, but rather it dynamically
acquires the relevant properties of each variant at deployment time by accessing its
relevant metadata. This has the significant advantage of facilitating reusability. In
addition to this, one of the main contributions of the presented approach, when com-
pared to similar adaptation methodologies [17, 9 and 18], is the incorporation of the
user’s feedback in the adaptation reasoning mechanism, at runtime rather than stati-
cally in the form of predefined user preferences.

As it is stated in [19], interfacing with humans is one of the main challenges in de-
signing and implementing autonomic computing systems. The results of this paper
target primarily developers of context-aware, self adaptive systems. The proposed
model can also be of significant help as it adopts the Separation of Concerns (SoC)
approach and facilitates reusability of the context-aware and adaptation properties of
the components (and applications), which is a significant gain for the developers.

6 Conclusions and Future Work

Mobile and pervasive computing introduces new and important challenges to the
software developers. Especially with respect to the interaction with users, context-
aware applications are expected to automatically and autonomously adapt to maxi-
mize the overall user satisfaction. In this respect, we have refined a multi-dimensional
adaptation reasoning approach originally introduced in [3], and also we have intro-
duced an optimization technique which allows the automatic adjustment of the self-
adaptive behavior of context-aware systems. This optimization is based on the afore-
mentioned utility function-based approach, where the weight of each dimension of the
adaptation reasoning is adjusted automatically, based on user feedback.

Defining the context-aware, self-adaptive behavior of a system, while allowing it
to adjust and improve its functioning, is still an open research problem. The initial
evaluation of this work was based on a theoretical case study example which has
illustrated the potential of this approach. Future research is also planned in order to

Optimizing the Utility Function-Based Self-adaptive Behavior of Context-Aware Systems 673

evaluate this approach in the context of more complex and realistic scenarios, using
actual devices and real user feedback. Furthermore, we are investigating the possibil-
ity of applying additional techniques, such as reinforcement learning from the field of
artificial intelligence, with the purpose of allowing a context-aware, self-adaptive
system to optimize their adaptation logic even after deployment.

Acknowledgments. This work received partial financial support by the EU as part of
the IST-MUSIC project (6th Framework Programme, contract no. 35166).

References

1. Geihs, K., Barone, P., Eliassen, F., Floch, J., Fricke, R., Gjorven, E., Hallsteinsen, S.,
Horn, G., Khan, M.U., Mamelli, A., Papadopoulos, G.A., Paspallis, N., Reichle, R., Stav,
E.: A Comprehensive Solution for Application-Level Adaptation. Software – Practice and
Experience Journal (to appear, 2008)

2. Self-adapting applications for Mobile Users in Ubiquitous Computing environments
(MUSIC) (accessed on Wednesday) (August 20, 2008),
http://www.ist-music.eu/

3. Paspallis, N., Kakousis, K., Papadopoulos, G.A.: A Multi-dimensional Model Enabling
Autonomic Reasoning for Context-aware Pervasive Applications. In: The Workshop for
Human Control of Ubiquitous Systems (HUCUBIS 2008) in conjunction with the 5th An-
nual International Conference on Mobile and Ubiquitous Systems: Computing, Network-
ing and Services (Mobiquitous 2008), Trinity College Dublin, Ireland. ACM Press, New
York (to appear, 2008) (accepted for publication)

4. Dey, A.K.: Understanding and Using Context. Personal Ubiquitous Computing 5(1), 4–7
(2001)

5. Padovitz, A., Loke, S.W., Zaslavsky, A.: Towards a theory of context spaces. In: Proceed-
ings of the Second IEEE Annual Conference on Pervasive Computing and Communica-
tions Workshops, 2004, March 14-17, pp. 38–42 (2004)

6. Zaslavsky, A.: Adaptability and Interfaces: Key to Efficient Pervasive Computing. In: NSF
Workshop series on Context-Aware Mobile Database Management, Brown University,
Providence, January 24-25 (2002)

7. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Composing Adaptive Soft-
ware. IEEE Computer 37(7), 56–64 (2004)

8. Paspallis, N., Papadopoulos, G.A.: An Approach for Developing Adaptive, Mobile Appli-
cations with Separation of Concerns. In: 30th International Computer Software and Appli-
cations Conference (COMPSAC 2006), Chicago, USA, vol. 1, pp. 299–306. IEEE Com-
puter Society Press, Los Alamitos (2006)

9. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjorven, E.: Using Architecture
Models for Runtime Adaptability. IEEE Software 23(2), 62–70 (2006)

10. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific (1999) ISBN 1-
886529-00-0

11. Chong, E.K.P., Zak, S.H.: An Introduction to Optimization, 2nd edn. John Wiley & Sons
Pvt. Ltd, Chichester (August 2001)

12. Kokar, M.M., Baclawski, K., Eracar, Y.A.: Control Theory-based Foundations of Self-
Controlling Software. IEEE Intelligent Systems and Their Applications 14(3), 37–45
(1999)

674 K. Kakousis, N. Paspallis, and G.A. Papadopoulos

13. Aksit, M., Choukair, Z.: Dynamic, Adaptive and Reconfigurable Systems Overview and
Prospective Vision. In: 23rd International Conference on Distributed Computing Systems
Workshops, pp. 84–89 (2003)

14. Ranganathan, A., Campbell, R.H.: A Middleware for Context-Aware Agents in Ubiquitous
Computing Environments. In: Endler, M., Schmidt, D.C. (eds.) Middleware 2003. LNCS,
vol. 2672, p. 998. Springer, Heidelberg (2003)

15. Alpaydın, E.: Introduction to Machine Learning (Adaptive Computation and Machine
Learning). MIT Press, Cambridge (2004) ISBN 0262012111

16. O’Connor, N., Cunningham, R., Cahill, V.: Self-Adapting Context Definition. In: First In-
ternational Conference on Self-Adaptive and Self-Organizing Systems, SASO 2007, July
9-11, pp. 336–339 (2007)

17. Walsh, W.E., Tesauro, G., Kephart, J.O., Das, R.: Utility functions in Autonomic Systems.
In: International Conference on Autonomic Computing (ICAC), New York, NY, USA,
May 17-18, pp. 70–77. IEEE Computer Society Press, Los Alamitos (2004)

18. Alia, M., Eide, V.S.W., Paspallis, N., Eliassen, F., Hallsteinsen, S., Papadopoulos, G.A.: A
Utility-based Adaptivity Model for Mobile Applications. In: 21st International Conference
on Advanced Information Networking and Applications Workshops (AINAW 2007), Ni-
agara Falls, Ontario, Canada, May 21-23, pp. 556–563. IEEE Computer Society Press, Los
Alamitos (2007)

19. Kephart, J.O.: Research Challenges of Autonomic Computing. In: Inverardi, P., Jazayeri,
M. (eds.) ICSE 2005. LNCS, vol. 4309, pp. 15–22. Springer, Heidelberg (2006)

	Optimizing the Utility Function-Based Self-adaptive Behavior of Context-Aware Systems Using User Feedback
	Introduction
	Foundations
	Context
	Variants
	Utility Functions
	Multi-dimensional, Utility-Based Model

	Leveraging User Feedback to Adjust the Utility Functions
	Case Study-Based Evaluation of the Approach
	Experimental Approach and Setup
	Experimental Results

	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

