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Abstract

Modern Electronic Commerce environments are heavily web-
based and involve issues such as distributed execution,
multiuser interactive access or interface with and use of
middleware platforms. Thus, their components exhibit the
properties of communication, cooperation and coordination as
in CSCW, groupware or workflow management systems. In
this paper we examine the potential of using coordination
technology to model Electronic Commerce activities and we
show the benefits of such an approach. Furthermore, we
argue that control-oriented, event-driven coordination models
(which enjoy some inherent properties such as security) are
more suitable for Electronic Commerce than data-driven ones
which are based on accessing an open shared communication
medium in almost unrestricted ways.
Keywords: Coordination Models and Languages; Web-based
Applications; Electronic Commerce.

1 . Introduction

Modelling of activities within an information system or
between different information systems has become a complex
task. Performing these activities (often known as groupware,
workflow, electronic commerce and enterprize reengineering)
is often done in conjunction with computer-based cooperative
environments such as electronic mail, voice and video
teleconferencing, electronic classrooms, etc. In addition, the
emergence of the World Wide Web as the main medium, not
only for passive presentation of information but also for
active cooperation between different agents collaborating in a
single task, further enhances some properties of those
activities such as distribution and openess. Typical examples
of such complex-in-nature activities range from finding
suitable time-slots and locations for group meetings, to
performing administrative procedures (e.g. organising
conferences), to carrying out reviews of draft documents, to
developing distributed web-based electronic commerce
applications (e.g. reserving flight seats and hotel rooms by
means of dedicated WWW servers). Modelling these activities
has become a task which is often impossible to perform by
single individuals, requiring groups of people, sometimes
distributed over different organisations, countries, etc.

Recently, we have seen a proliferation of so-called
coordination models and their associated programming
languages ([2,6,15]). Coordination programming provides a
new perspective on constructing computer software. Instead
of developing a computer program from scratch, coordination
models allow the gluing together of existing components.
Coordination, as a science in its own right whose role goes
beyond computer programming, has also been proposed
([10]). More to the point, it is argued that coordination has a
number of advantages over traditional process models, such as
explicit representation of organisational goals, constraints and
dependencies (as opposed to “compiled” process descriptions),
opportunistic selection of required mechanisms given current
coordination requirements (as opposed to having fully-defined
processes ahead of time), and sensitivity to exception
handling as well as the ability to adapt dynamically (as
opposed to having processes with rigid, well-defined
behaviour).

In this paper we use the generic coordination model
IWIM (Ideal Worker Ideal Manager) and a specific control-
oriented event-driven coordination language (MANIFOLD)
based on IWIM ([3,4]) to model Electronic Commerce
activities. Electronic Commerce makes heavy use of all
aspects related to coordination technologies, namely
communication (between, say, sellers and potential
customers), cooperation (as in the case of brokering) or
coordination (as in the case of distributed auction bidding).
Furthermore, web-based Electronic Commerce environments
are inherently distributed and require support for security
measures. IWIM and its associated language MANIFOLD are
based on point-to-point communication and are therefore
inherently secured coordination systems, as opposed to the
category of Shared Dataspace coordination models which are
inherently weaker in security aspects (see the following
section).

The rest of this paper is organised as follows: in section
2 we briefly compare the two main approaches to developing
coordination models and languages. In section 3 we describe
the coordination model IWIM and its associated language
MANIFOLD. In section 4 we use MANIFOLD to model
Electronic Commerce activities, and, finally, in section 5 we
present some conclusions, and related and further work.



2 . Data- vs control-driven coordination 
models and languages

Over the past few years a number of coordination models
and languages have been developed ([2,6,15]). However, the
first such model, which still remains the most popular one,
is Linda ([1]). In Linda, the underlying view of the system to
be coordinated (which is usually distributed and open) is that
of an asynchronous ensemble formed by agents where the
latter perform their activities independently from each other
and their coordination is achieved via some medium in an
asynchronous manner. Linda introduces the so-called notion
of uncoupled communication whereby the agents in question
either insert to or retrieve from the shared medium the data to
be exchanged between them. This shared dataspace is referred
to as the Tuple Space and information exchange between
agents via the Tuple Space is performed by posting and
retrieving tuples. Tuples are addressed associatively by
suitable patterns used to match one or more tuples. In
general, the tuples produced do not carry any information
regarding the identity of their producers or intended
consumers, so communication is anonymous.

Although Linda is indeed a successful coordination
model, it has some potentially serious deficiencies (at least
for some applications such as Electronic Commerce) which
penetrate to all other related models that are based on it.
These deficiencies are:
• It is data-driven. The state of an agent is defined in terms

of what kind of data it posts to or retrieves from the Tuple
Space. This is not very natural when we are interested
more in how the flow of information between the
involved agents is set-up and how an agent reacts to
receiving some information, rather than what kind of data
it sends or receives.

• The shared dataspace through which all agents
communicate may be intuitive when ordinary parallel
programming is concerned (offering easy to understand and
use metaphors such as the one of shared memory), but we
believe that it is hardly intuitive or realistic in other cases,
such as for modelling organisational activities. People in
working environments do not take the work to be done by
others to common rooms where from other people pass by
and pick the work up! It is true that sometimes there is
selective broadcasting (e.g. in providing a group of people
doing the same job with some work and letting them sort
out the workload among themselves) but the unrestricted
broadcasting that the Tuple Space and its variants suggest
and enforce is hardly appropriate and leads to unneccesary
efficiency overheads.

• Furthermore, and perhaps more importantly, the use of
such a widely public medium as the Tuple Space and its
variants, suffers inherently from a major security problem
which gives rise to problems in at least three dimensions
related to the fate of the data posted there: (i) they can be
seen and examined by anyone; (ii) they can be removed by
the wrong agent (intentionally or unintentionally); and
even worse, (iii) they can be forged without anyone
noticing it. The repercussions of these deficiencies in
modelling information systems are rather obvious and
need not be discussed any further. It suffices to say, as an
example directly related to the context of this paper, that

we would not want to broadcast to the tuplespace our
credit card number hoping that it will be picked up by the
intended recipient.
Some of the above problems have already been of

concern to researchers in the area of shared-dataspace-based
coordination models and solutions have been sought
([7,11,15]). Nevertheless, implementing these solutions
requires quite some extra effort and effectively leads to the
design of new coordination models on top of the “vanilla”
type ones; these new models are often counter-intuitive and
relatively complex when compared with the inherent
philosophy of their underlying basic model.

3 . The IWIM model and the language 
MANIFOLD

MANIFOLD ([4]) is a coordination language which, as
opposed to the Linda family of coordination models described
in the previous section, is control- (rather than data-) driven,
and is a realisation of a new type of coordination models,
namely the Ideal Worker Ideal Manager (IWIM) one ([3]). In
MANIFOLD there are two different types of processes:
managers (or coordinators) and workers. A manager is
responsible for setting up and taking care of the
communication needs of the group of worker processes it
controls (non-exclusively). A worker on the other hand is
completely unaware of who (if anyone) needs the results it
computes or from where it itself receives the data to process.
MANIFOLD possess the following characteristics:
• Processes. A process is a black box with well defined

ports of connection through which it exchanges units of
information with the rest of the world. A process can be
either a manager (coordinator) process or a worker. A
manager process is responsible for setting up and
managing the computation performed by a group of
workers. Note that worker processes can themselves be
managers of subgroups of other processes and that more
than one manager can coordinate a worker’s activities as a
member of different subgroups. The bottom line in this
hierarchy is atomic processes which may in fact be written
in any programming language.

• Ports. These are named openings in the boundary walls of
a process through which units of information are
exchanged using standard I/O type primitives analogous to
read and write. Without loss of generality, we assume that
each port is used for the exchange of information in only
one direction: either into (input port) or out of (output
port) a process. We use the notation p.i to refer to the
port i of a process instance p.

• Streams. These are the means by which interconnections
between the ports of processes are realised. A stream
connects a (port of a) producer (process) to a (port of a)
consumer (process). We write p.o -> q.i to denote a
stream connecting the port o of a producer process p to
the port i of a consumer process q.

• Events. Independent of streams, there is also an event
mechanism for information exchange. Events are broadcast
by their sources in the environment, yielding event
occurrences. In principle, any process in the environment
can pick up a broadcast event; in practice though, usually
only a subset of the potential receivers is interested in an
event occurrence. We say that these processes are tuned in



to the sources of the events they receive. We write e.p to
refer to the event e raised by a source p.
Activity in a MANIFOLD configuration is event driven.

A coordinator process waits to observe an occurrence of some
specific event (usually raised by a worker process it
coordinates) which triggers it to enter a certain state and
perform some actions. These actions typically consist of
setting up or breaking off connections of ports and channels.
It then remains in that state until it observes the occurrence
of some other event which causes the preemption of the
current state in favour of a new one corresponding to that
event. Once an event has been raised, its source generally
continues with its activities, while the event occurrence
propagates through the environment independently and is
observed (if at all) by the other processes according to each
observer’s own sense of priorities. Figure 1 below shows
diagramatically the infrastructure of a MANIFOLD process.

The process p has two input ports (in1, in2) and an
output one (out). Two input streams (s1, s2) are connected
to in1 and another one (s3) to in2 delivering input data to
p. Furthermore, p itself produces data which via the out
port are replicated to all outgoing streams (s4, s5). Finally,
p observes the occurrence of the events e1 and e2 while it
can itself raise the events e3 and e4. Note that p need not
know anything else about the environment within which it
functions (i.e. who is sending it data, to whom it itself sends
data, etc.).

The following is a MANIFOLD program that computes
the Fibonacci series.

manifold PrintUnits() import.
manifold variable(port in) import.
manifold sum(event)
  port in x.
  port in y.
  import.
event overflow.

auto process v0 is variable(0).
auto process v1 is variable(1).
auto process print is PrintUnits.
auto process sigma is sum(overflow).

manifold Main()
{
 begin:(v0->sigma.x, v1->sigma.y,v1->v0,
        sigma->v1,sigma->print).
 overflow.sigma:halt.
}

The above code defines sigma as an instance of some
predefined process sum with two input ports (x,y) and a
default output one. The main part of the program sets up the
network where the initial values (0 ,1) are fed into the
network by means of two “variables” (v0 ,v1 ). The
continuous generation of the series is realised by feeding the
output of sigma back to itself via v0 and v1. Note that in
MANIFOLD there are no variables (or constants for that
matter) as such. A MANIFOLD variable is a rather simple
process that forwards whatever input it receives via its input
port to all streams connected to its output port. A variable
“assignment” is realised by feeding the contents of an output
port into its input. Note also that computation will end when

the event overflow is raised by sigma. Main will then
get preempted from its begin state and make a transition to
the overflow  state and subsequently terminate by
executing halt. Preemption of Main from its begin state
causes the breaking of the stream connections; the processes
involved in the network will then detect the breaking of their
incoming streams and will also terminate.

pin1

in2

out

s1

s2

s3

s4

s5

e1 e2

e3 e4

Fig. 1

4 . Modelling Electronic Commerce 
activities in MANIFOLD

In this section we show how a control-based event-driven
coordination model like MANIFOLD can be used to model
transactions for Electronic Commerce. We start with some
simple cases (namely advertising and advising) and we end up
with a more complicated scenario (an actual sell-buy
transactions). In the process we take the opportunity to
introduce some additional features of MANIFOLD.

The following MANIFOLD coordinator models an
advertisement scenario; more to the point the coordinator
Advertiser raises an event signifying its intention to
offer a product and additionally it provides the product’s
description for any potential buyer to examine.

event sell_house.

manifold Advertiser()
{
 begin: (raise(sell_house),
         <<House_Description>> -> output).
}

Note that Advertiser  places a tuple with the
description of the house to its output port; any potential
buyer can connect to Advertiser.output and retrieve
the description. This will become apparent below when we
describe a fully fledged transaction.

The next example involves the coordinator Advisor
which can be seen as playing the role of an intermediary
between a seller and a potential buyer. The idea here is that
Advisor will first examine the specifications of an offered
product (typically such an offer will be coming from an



Advertiser) and will contact the potential buyer only if
the specifications satisfy the buyer’s needs.

manifold Advisor (process buyer)
{
 auto process advise is CheckSpecs(buyer.specs).

 begin: terminated(self).
 sell_house.*advertiser:
    { begin: (getunit(advertiser) -> advise,
              terminated(self)).
      recommend.advise: getunit(advertiser) ->
    }.
 next: post (begin).
}

Advisor  takes as a parameter a potential buyer;
initially it is suspended waiting for the raising of the signal
(such a suspension is achieved by means of the construct
terminated(self)). Upon observing the raising of the
event sell_house  (from some process of type
Advertiser), it retrieves the specification of the offered
sale and passes it on to the atomic process advise (an
instant of CheckSpecs  - such an atomic process is
implemented in some other than the MANIFOLD language).
The advise process verifies the specification produced by
advertiser  against the requirements of buyer .
Advisor then suspends waiting for advise to decide as to
whether buyer may be interested in the offered sale; if this
is the case, it connects advertiser to buyer for the rest.
If advise decides that the offer is not appropriate, it raises
next instead, which starts the wait for another offer.

We now present a more complicated transaction. In
particular, we consider the case of a general scenario whereby
sellers and potential buyers are exchanging control and data
information as follows:
• A seller can raise the event offer_service whereby it

informs the market of some product that it is able to offer
(for simplicity, we assume here that the seller in question
can offer just one product whose nature is self-evident by
the event that is being raised — this, certainly, need not
be the case, and the seller may be offering more than one
product). In addition to raising this event, the seller places
the tuple <<Prod_Desc>> with detailed description of
the offered ptoduct to its default output port.

• A potential buyer detects the raising of the event, and if
interested, uses the id of the event’s sender to connect to
the seller’s output port in order to retrieve the detailed
description of the offered product (here we use the atomic
process propose, an instant of CheckDescr, which
decides as to whether there is interest in continuing the
transaction activities). Then, if it decides to buy, it raises
the event i_am_interested (again for simplicity we
assume that the event’s meaning is self-evident in the
sense that no other seller exists and there can be no
confusion as to the intention of the potential buyer — we
point out once more that this need not be the case and our
model can handle arbitrarily complex transaction patterns).

• Upon detecting the presence of the event
i_am_interested, the seller uses the event’s source
id to connect to the default input port of the potential
buyer and place there his detailed offer (including, perhaps,
discounts, special prices, etc.).

• The potential buyer decides as to whether he wishes to
complete the transaction or abort it (here we use the
atomic process CheckSpecs process introduced above
while describing Advisor) and sends the appropriate
accept or reject message to the seller, in the former case
possibly along with some further information (e.g. his
credit card number).

• If a reject message is sent, the transaction process is
aborted. If, instead, an accept message is sent (possibly
along with some verification information), the buyer
sends the product to the user. Finally, the user sends the
buyer the required amount of money.
The above scenario is presented graphically below. It is

interesting to point out that figure 2 comes very close to
being the visual coordination program that would be written
in the visual interface of MANIFOLD, namely Visifold ([5]).
This suggests the use of visual programming in modelling
Electronic Commerce scenarios.

We should stress the point that, by virtue of the IWIM
model, the transactions are secured. In particular, the agents
involved in the transaction (namely the seller and the
potential buyer) broadcast only their intention of selling
something and their intention of possibly buying something
respectively. The rest of the information involved in the
transaction, i.e. the description of the product, the particular
offer that the seller may make to the potential buyer and the
acceptance of the offer by the buyer along with possibly
sensitive information such as a credit card number, are
exchanged between them by means of point-to-point port
connections, which are by default secure, private and reliable.

The actual MANIFOLD code for a seller and a potential
byer is shown below.

event offer_service, i_am_interested.

manifold Seller()
{
 event got_answer, got_money.
 begin: (raise(offer_service),
         <<Prod_Descr>> -> output,
         terminated(self)).
 i_am_interested.*buyer:
    { begin: <<Proposal>> -> buyer;
             if (input==<<Accept>>
                then (<<product>> -> buyer,
                      buyer -> payment).
    }.
}
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manifold Buyer (port in itemspeecs)
{
 port out specs.
 stream KK *-> specs.
 auto process myspecs is variable(itemspecs).

 /* check product’s description */
 auto process propose is CheckDescr().

 /* check product’s specs */

auto process advise is CheckSpecs(myspecs).

 begin: (variable(itemspecs) -> specs,
         terminated(self)).
 offer_service.*seller:
    { begin: (getunit(seller) -> propose,
              terminated(self)).
      continue.propose: (raise(i_am_interested),
                        getunit(input) -> advise,
                         terminated(self)).
      recommend.advise: (<<Accept …>> -> seller,
                     getunit(input) -> receiver);
                         <<Money>> -> seller..
      got_product: <<Money>> -> seller.
    }.
 next: post(begin).
}

We should probably stress here the fact that the actual
information and particular heroes of our scenario are
parametr ic . In other words, the code specifies and
implements, in a well-defined way, the coordination protocol
of the transaction, paying attention to important issues such
as security and anonymous communication (by virtue of the
IWIM model) but also paying little attention to what is being
offered, who is offering it or is interested in buying it, and in
the case of the purchase actualy taking place, how the buyer
pays. Thus, the protocol is reusable and can be applied to
many similar cases, combined with other protocols to form
more general and complicated ones, etc.

5 . Conclusions, related and further work

In this paper we have examined the use of a control-
oriented, event-driven coordination mechanism (namely the
IWIM model and its associated language MANIFOLD) in
modelling Electronic Commerce activities. We believe an
Electronic Commerce framework based on MANIFOLD
enjoys a number of desirable properties such as natural
distribution, hiding of lower level details, exploitation of
high-performance computational resources and secure
communication without compromising the flexibility and
openess that any such environment should support. Our
approach allows for the formation of generic coordination
patterns for Electronic Commerce transactions which can be
used for many cases irrespective of the types of potential
sellers and buyers, offered services and products, etc.
Coordination languages like MANIFOLD support complete
decoupling in both time and space; i.e., agents send
information without worrying as to who (if anyone at all)
receives this information, while other agents receive
information without worrying who has sent it or whether the
sender is still alive. Thus, it is possible to introduce new
players to a coordination protocol for some Electronic
Commerce transaction, enhance or replace existing offered
services, etc. Furthermore, the use of coordination technology
along the lines described in this paper, is orthogonal to many
other issues relevant to the case of Electronic Commerce.
More to the point, the work here can be combined with work
on intelligent agents (typically used to offer customer support
in finding and selecting the most appropriate service) to
derive coordination protocols where each MANIFOLD
process behaves as such an agent, dedicated to perform some



particular task. Furthermore, atomic processes (i.e. processes
not written in MANIFOLD due to their involvement with
aspects not directly related to the coordination protocols) can
be as elaborate as necessary without further complicating the
communication protocols. For instance, CheckDescr or
CheckSpecs (and other similar processes) could actually be
interfacing to a sophisticated knowledge base or use
constraint satisfaction techniques, in order to reach any
decisions. On another front, MANIFOLD processes can be
seen as mobile agents, migrating from one place to another
in order to be as efficient as possible and also exploit the
underlying hardware infrastructure. We are currently designing
a more elaborate environment for Electronic Commerce based
on the principles described in this paper.

Furthermore, MANIFOLD coordinators can be used in a
somewhat different manner, whereby in addition to the
security at the implementation level, we also enjoy security
at the logical level. This can be achieved by having special
MANIFOLD coordinators which are used as interfaces
between the actual agents (themselves being possibly other
MANIFOLD coordinators). An agent, say a seller or a buyer,
cannot arbitrarily communicate with some other agent but
instead it will have to ask for permission a special
coordinator; the latter may allow the communication to
continue or it may itself do it on behalf of the agent that
requested it. Thus, these special coordinators which interpose
themselves between an agent and the rest of the world,
regulate the behaviour of the agents and provide logical
security. These coordinators can be seen as law enforcers
where the law itself is defined and implemented by their
MANIFOLD code; the idea of special law enforcing agents
has been introduced in [11,12] and we are currently
implementing them in MANIFOLD.

Our paper complements (initial) work by others in the
use of coordination models for modelling Electronic
Commerce activities. More to the point, [8] describes such a
model based on the Linda coordination framework. As we
have argued in this paper and elsewhere ([13,14,15]), the
(vanilla) Linda formalism is based on the use of an open and
public shared communication medium (in the case of [8] this
is the PageSpace) where access for either placing or retrieving
information is almost unrestricted. Thus, the basic model, is
inherently insecure and extra devices must be built on top of
it. The same can be said about the work presented in [9]
where Prolog is used to model agents communicating via
MarketSpace, a medium very similar to Linda’s tuplespace.
On the other hand, our framework is based on secured (by
virtue of the underlying IWIM model) point-to-point
communications with broadcasting limited only to
publisizing the most necessary information. Finally, we
mention again the work reported in [12], and we note that the
laws described there can be implemented in MANIFOLD and,
thus, can be used to complement the work described in this
paper in deriving a framework based on MANIFOLD that
enjoys security at both the logical and implementation levels.
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