
Event-Driven Coordination of Real-Time Components

Theophilos Limniotes, Costas Mourlas and George A. Papadopoulos

Department of Computer Science
University of Cyprus

75 Kallipoleos Street, POB 20537, CY-1678
Nicosia, CYPRUS

{theo,mourlas,george}@cs.ucy.ac.cy

Abstract

The coordination paradigm has been used extensively as a
mechanism for software composition and integration.
However, relatively little work has been done for the cases
where the software components involved have real-time
requirements. The paper presents an extension to a state-of-
the-art control- or event-driven coordination language with
real-time capabilities. It then illustrates the expressiveness of
the proposed extensions by means of modeling a distributed
multimedia application. Finally, it discusses how these
extensions can be supported by the underlying architecture.
Keywords: Coordination Paradigm; Distributed Multimedia;
CBSE; Real-Time Systems.

1. Introduction

The concept of coordinating a number of activities,
possibly created independently from each other, such that
they can run concurrently in a parallel and/or distributed
fashion has received wide attention and a number of
coordination models and associated languages ([7]) have
been developed for many application areas such as high-
performance computing or distributed systems. Nevertheless,
most of the proposed coordination frameworks are suited for
environments where the sub-components comprising an
application are conventional ones in the sense that they do
not adhere to any real-time constraints. Those few that are
addressing this issue of real-time coordination either rely on
the ability of the underlying architecture apparatus to provide
real-time support ([12]) and/or are confined to using a
specific real-time language ([9]). However, all the issues
pertaining to conventional coordination frameworks are still
valid in those exhibiting real-time properties. Even more, the
use of a separate coordination formalism with real-time
capabilities “gluing together” real-time (software and/or
hardware) components helps in separating issues related to
specifying the computational part of the components from
those concerned specifically with their real-time behaviour
([13]). This approach has a number of advantages, ranging
from the ability to design, implement and test real-time
algorithms independent from the intended environment in
which they will be used, to offering flexible dynamic re-
configuration by hiding away real-time programming and
analysis details, to allowing the re-use of common real-time

synchronization patterns that may be applicable in a number
of different scenaria.

In this paper we address the issue of real-time
coordination within the context of the so-called control- or
event-driven coordination languages ([7]) which we feel are
particularly suited for this purpose, and specifically the
language Manifold ([1, 8]). We show that it is quite natural
to extend such a language with primitives enforcing real-time
coordination and we apply the proposed model to the area of
distributed multimedia systems.

The rest of this paper is organised as follows. The next
section is a brief introduction to the coordination language
Manifold; some emphasis is put on those features of the
language that are particularly suited to express real-time
behaviour, notably its event-driven state transition model.
The following section uses the extended framework to model
a particular case from the area of distributed multimedia
systems. Then, we focus on “real” environments where a set
of multimedia applications share a number of non-
preemptable resources or access shared data (e.g. storage
servers, live media sources, etc.) which are part of a high-
speed local area network. We concentrate on the effect of
this synchronization in the schedulability and the
predictability of the set of parallel running continuous media
applications and we propose a real-time scheduler for
Manifold that makes at run-time the timing properties of
each application predictable. The paper ends with some
conclusions and reference to related work.

2. The Coordination Language Manifold

Manifold is a control- or event-driven coordination
language, and is a realisation of the Ideal Worker Ideal
Manager (IWIM) model ([1]). In Manifold there exist two
different types of processes: managers (or coordinators) and
workers. A manager is responsible for setting up and taking
care of the communication needs of the group of worker
processes it controls (non-exclusively). A worker on the
other hand is completely unaware of who (if anyone) needs
the results it computes or from where it itself receives the
data to process. Manager processes are written in Manifod
whereas worker processes may be written also in Manifold or
in some computational language (typically C, Fortran). In
this latest case, these worker processes are called atomics. In
particular, Manifold possesses the following characteristics:

Proceedings of the 22 nd International Conference on Distributed Computing Systems Workshops (ICDCSW’02)
0-7695-1588-6/02 $17.00 © 2002 IEEE

• Processes. A process is a black box with well-defined
ports of connection through which it exchanges units of
information with the rest of the world.

• Ports. These are named openings in the boundary walls of
a process through which units of information are
exchanged using standard I/O type primitives analogous
to read and write. Without loss of generality, we assume
that each port is used for the exchange of information in
only one direction: either into (input port) or out of
(output port) a process. We use the notation p.i to refer
to the port i of a process instance p.

• Streams or channels. These are the means by which
interconnections between the ports of processes are
realised. A stream connects a producer process to a
consumer process. We write p.o -> q.i to denote a
stream connecting the port o of a producer process p to
the port i of a consumer process q.

• Events. Independent of channels, there is also an event
mechanism for information exchange. Events are
broadcast by their sources in the environment, yielding
event occurrences. In principle, any process in the
environment can pick up a broadcast event; in practice
though, usually only a subset of the potential receivers is
interested in an event occurrence. We write e.p to refer
to the event e raised by a source p.
Activity in a Manifold configuration is event driven. A

coordinator process waits to observe an occurrence of some
specific event (usually raised by a worker process it
coordinates) which triggers it to enter a certain state and
perform some actions. These actions typically consist of
setting up or breaking off connections of ports and channels.
It then remains in that state until it observes the occurrence
of some other event, which causes the preemption of the
current state in favour of a new one corresponding to that
event. Once an event has been raised, its source generally
continues with its activities, while the event occurrence
propagates through the environment independently and is
observed (if at all) by the other processes according to each
observer’s own sense of priorities.

3. Extending Manifold with a Real-Time Event
Manager

The IWIM coordination model and its associated
language Manifold have some inherent characteristics, which
are particularly suited to the modelling of real-time (software
or otherwise) systems. Probably the most important of these
is the fact that the coordination formalism has no concern
about the nature of the data being transmitted between input
and output ports since this data plays no role at all in setting
up coordination patterns. In particular, a stream connection
between a pair of input-output ports, simply passes anything
that flows within it from the output to the input port.
Furthermore, the processes involved in some coordination or
cooperation scenario are treated by the coordination
formalism (and in return treat each other) as black boxes
without any concern being raised as to their very nature or
what exactly they do. Thus, for all practical purposes, some

of those black boxes may well be devices (rather than
software modules) and the information being sent or received
by their output and input ports respectively may well be
signals, or continuous data (as opposed to ordinary discrete
data). Note also that the notion of stream connections as a
communication metaphor, captures both the case of
transmitting discrete signals (from some device) but also
continuous signals (from, say, a media player). Thus, IWIM
and Manifold are ideal starting points for developing a real-
time coordination framework.

A

B

A

A

A

Figure 1. Sources of Real-Time Behaviour

Figure 1 illustrates where precisely real-time behaviour
must be introduced and supported; in particular, two such
areas are indicated. Since Manifold is event-driven, event
raising and detection must now be done within bounded time
intervals, as opposed to the asynchronous nature of the
original model. Introducing such a temporal behaviour,
allows the expression of temporal relationships between
interacting components. This is the first area (A).
Additionally, we must ensure that the transfer of timed media
through the streams adheres to any QoS requirements. This is
the second area (B) and is addressed in section 5.

In order to deal with the first kind of real-time behaviour
we want our model to support, we enhance the event
manager with the ability to express real-time constraints
associated with the raising of events but also reacting in
bound time to observing them. Thus, while in the ordinary
Manifold system the raising of some event e by a process p
and its subsequent observation by some other process q are
done completely asynchronously, in our extended framework
timing constraints can be imposed regarding when p will
raise e but also when q should react to observing it.
Effectively, an event is not any more a pair <e,p>, but a
triple <e,p,t> where t denotes the moment in time at
which the event occurs. With events that can be raised and
detected respecting timing constraints, we essentially have a
real-time coordination framework, since we can now
guarantee that changes in the configuration of some system’s
infrastructure will be done in bounded time. Thus, our real-
time Manifold system goes beyond ordinary coordination to
providing temporal synchronization.

This extension couples conviniently with the rest of
Manifold’s event model which already supports the rest of
the functionality usually found in event-based systems ([5]),
such as anonymous broadcasting, filtering, priorities, etc.

Below we describe the most important primitives that our
extended event manager supports. These primitives can be
classified into two categories: the first category is

Proceedings of the 22 nd International Conference on Distributed Computing Systems Workshops (ICDCSW’02)
0-7695-1588-6/02 $17.00 © 2002 IEEE

responsible for expressing the notion of time while the
second one expresses temporal relationships among events.

3.1 Recording Time

The extended event manager maintains a table of records
of the form <e,p,t>, as was defined above. The use of
anyone of the primitives whose role is to express temporal
relationships, effectively updates the entries in the table of
the events involved in the expressed relationships. In
particular, the time t is modified, according to the temporal
relationships expressed. A linked list is used to build an
association between the events and the time points that
triggers them. The AP_Event field stores the identification
for the event. The time_t type stores the relevant delay of
execution to another event’s timepoint, and the lock field is
useful for deferring the execution of the event for a period of
time, when its execution is permitted by the timepoint period.

Type AP_Event time_t u_short

Description Event ID Delay Lock Period

A number of primitives exist for capturing the notion of
time, either relative to world time, the occurrence of some
event, etc. These primitives have been implemented as
atomic (i.e. not Manifold) processes in C and Unix. In
particular:
• AP_CurrTime(int timemode)

returns the current time according to the parameter
timemode, the latter being world time or relative.
• AP_OccTime(AP_Event anevent, int timemode)

returns the time point (in world or relative mode) of an event.
Time points represent single instances in time; two time
points form a basic interval of time.
• AP_PutEventTimeAssociation(AP_Event
anevent)

creates a record for every event that is introduced and inserts
it in the events table mentioned above.
• AP_PutEventTimeAssociation_W(AP_Event
anevent)

is a similar primitive which additionally marks the world
time when a scenario starts, so that the rest of the events can
relate their time points to it.

We stress again the fact that, contrary to what is
happening in the ordinary Manifold system, the events are
not raised explicitly by means of the raise primitive, but
only implicitly via the time points of the occurrence of some
other event. In that way, the system builds a sequence of
events to be raised and observed according to the specified
timing constraints and imposes the necessary temporal
ordering required.

3.2 Expressing Temporal Relationships

There are two primitives for expressing temporal
constraints among events raised and/or observed. The first is
used to specify when an event must be triggered while the
second is used to specify when the triggering of an event
must be delayed for some time period.

• AP_Cause(AP_Event anevent, AP_Event
another, AP_Port delay, AP_Port
timemode)

enables the triggering of the event another in relation to
the timepoint of anevent. The timepoint for this second
event is found using the OccTime() function. Its difference
to its current time is given by (OccTime()-
CurrTime()). Another basic time unit is the delay
which is entered as a parameter in the event management
predicates AP_Cause, AP_Defer and AP_Synch
(described below), and implies that a cause, a defer, or a
synchronisation predicate will take place only some time
after the triggering of the event’s timepoint. It represents
seconds added to this timepoint and it is an optional
parameter; likewise timemode, which allows for the
occurrence of the timepoint and the current time to be
calculated in either time mode (world or relative).
• AP_Defer(AP_Event eventa, AP_Event
eventb, AP_Event eventc, AP_Port
delay)

inhibits the triggering of the event eventc for the time
interval specified by the events eventa and eventb.
delay here represents how much time will elapse after the
start of the interval during which inhibition will take place.
During the duration of the inhibition the event’s record
remains locked, so that every attempt to update its timepoint
(i.e. cause it) will cause the cancellation of the update. As
before, the primitive AP_OccTime is used to retrieve the
time points eventa and eventb, and the primitive
AP_CurrTime to get the current time. Note that in the case
that a cause and a defer coincide for the same event,
defer prevails.

In addition to the above two primitives, two more
auxiliary ones are used at a lower level:
• AP_UpdateEventTimeAssociation(AP_Event
anevent, int delay, int timemode)

updates an event's record with a new timepoint, which is
derived from the sum of the delay and the time point of the
triggering event, and makes sure that two updates are not
performed on the same record at the same time. Moreover,
when the time comes for preemption to take place, a lookup
process checks if the occurrence of the event is deferred or
not and proceeds accordingly with raising of the event or the
abortion of the update.

Finally, the primitive
• AP_Synch(AP_Event eventa, AP_Event
eventb, AP_Event eventc, AP_Event
eventd, AP_Port delay)

expresses synchronization of intervals that are executed
simultaneously. Here an interval defined by eventa and
eventb is related to an interval defined by eventc and
eventd. The events eventc and eventd are caused
according to the timepoints of eventa and eventb.

4. Coordination of Real-Time Components in a
Multimedia Presentation

We show the applicability of our proposed model by
modelling an interactive multimedia example with video,

Proceedings of the 22 nd International Conference on Distributed Computing Systems Workshops (ICDCSW’02)
0-7695-1588-6/02 $17.00 © 2002 IEEE

sound, and music ([10]). A video accompanied by some
music is played at the beginning. Then, three successive
slides appear with a question. For every slide, if the answer
given by the user is correct the next slide appears; otherwise
the part of the presentation that contains the correct answer is
re-played before the next question is asked. There are two
sound streams, one for English and another one for German.
A graphical presentation of the example is given below.

Video
Server

Audio
Server

Splitter

Zoom
Pre
sen

tation

Ser
ver

Figure 2. A Distributed Multimedia Application

english

german

zero

one

three

two

For each medium, as appeared in the diagram above, there
exists a separate manifold process. Each such manifold
process is a, potentially reusable, “building block”. For
instance, the following manifold coordinates the execution of
atomics that take a video from the media object server and
transfer it to a presentation server.

manifold tv1()
{
 begin:(activate(cause1,cause2,mosvideo,
 splitter,zoom),cause1,WAIT).
 start_tv1:(cause2,mosvideo ->
 (-> splitter),
 splitter.zoom ->zoom,
zoom-> (->ps.zero),ps.out1->stdout,WAIT).
 end_tv1:post(end).
 end:(activate(ts1),ts1).
}

In addition to the begin and end states which apply at
the beginning and the end of the manifold’s execution
respectively, two more states are invoked by the AP_Cause
commands, namely start_tv1 and end_tv1. At the
begin state the instances of the atomics cause1, cause2,
mosvideo, splitter, and zoom are activated. These
activations introduce them as observable sources of events.
This state is synchronized to preempt to start_tv1 with
the execution of cause1. The declaration of the instance
cause1:
process cause1 is
AP_Cause(eventPS,start_tv1,3,CLOCK_P_REL)
indicates that the preemption to start_tv1 should occur 3
seconds (relative time) after the raise of the presentation start
event eventPS.

Within start_tv1 the other three instances, cause2,
mosvideo, and splitter, are executed in parallel.
cause2 synchronizes the preemption to end_tv1 and its
declaration
process cause2 is
AP_Cause(eventPS,end_tv1,13,CLOCK_P_REL)
indicates that the currently running state must execute the
other two atomic instances within 13 seconds. So, the
process for the media object mosvideo keeps sending its

data to splitter until the state is preempted to end_tv1.
The mosvideo coordinating instance supplies the video
frames to the splitter manifold. The role of splitter
here is to process the video frames in two ways. One with the
intention to be magnified (by the zoom manifold) and the
other at normal size directly to a presentation port. zoom is
an instance of an atomic which takes care of the video
magnification and supplies its output to another port of the
presentation server. The presentation server instance ps
filters out the input from the supplying instances, i.e. it
arranges the audio language (English or German) and the
video magnification selection. At the end_tv1 state the
presentation ceases and control is passed to the end state.
Finally at the end state, the tv1 manifold is activated and
performs the first question slide manifold ts1. This prompts
a question, which if answered correctly prompts in return the
next question slide. A wrong answer leads to the replaying of
the presentation that relates to the correct answer, before
going on with the next question slide. The code for a slide
manifold is given below.

manifold tslide1()
{
 begin:(activate(cause7),cause7,WAIT).
 start_tslide1:(activate(testslide),
 testslide,WAIT).
 tslide1_correct:
 "correct answer"->stdout;
 (activate(cause8),cause8,WAIT).
 tslide1_wrong: "wrong answer"->stdout;
 (activate(cause9),cause9,WAIT).
 end_tslide1:(post(end),WAIT).
 start_replay1: (activate(replay1,
 cause10),replay1,cause10,WAIT).
 end_replay1: (activate(cause11),
 cause11,WAIT).
 end:(activate(ts2),ts2).
}

The above example highlights two main issues in
distributed multimedia systems. The first one is separation of
the coordination from the computation components. As a
result, either of the two categories of functionality become
parametric to the whole application and can be substituted or
re-used in other similar applications. The second one is
realizing real-time synchronization between the system’s
components.

These tasks are achieved with the atomic primitives and
predicates (like AP_PutEventTimeAssociation(),
AP_CurrTime, AP_OccTime, A P _ C a u s e and
AP_Defer), as well as the atomics for the transmission and
the filtering of media information (like the mosvideo and
ps as described above). The coordination of these is done by
the media and the slide coordinating manifolds, namely
tv1, mosvideo, splitter, zoom for the media, and
tslide1, tslide2 and tslide3 for the slides. Each of
the above atomics and coordinators, being manifolds, are
reusable and the connectivity of streams remains reliable
even if some components are substituted by others. In
particular, we may want to change some computational

Proceedings of the 22 nd International Conference on Distributed Computing Systems Workshops (ICDCSW’02)
0-7695-1588-6/02 $17.00 © 2002 IEEE

components (say, the ones related to the slides or the media
content). This can be achieved without modifying the
coordination and synchronization part of the application. In
fact, we can take tv1 (say) as it is and reuse it in another
similar scenario. Note also that we can keep the coordination
(i.e. input-output relationships) intact and “play around” with
different timing constraints, since the related primitives are
also quite independent from the rest of the apparatus. As a
final point, we note that all the involved components can
(and, in fact, do) run in a distributed fashion.

5. Extending Manifold with a Real-Time
Scheduler

In this section we deal with the second aspect of real-time
behaviour, as was illustrated in figure 2 earlier on. In
particular, our goal is the extension of the Manifold run-time
environment based on a well-defined theory which will be
able to supply the continuous media streams of every
multimedia application with enough data to ensure that the
playback processes do not starve (intra-media
synchronization). We have developed a new theory for the
Manifold execution environment that makes the timing
properties of the system and the quality of the presentation of
each multimedia application predictable. This means that
one is able to determine analytically whether the timing
requirements of the different continuous media will be met,
and if not, which timing requirements will fail. The proposed
real-time scheduler for Manifold is based on our Set Based
Synchronization Protocol ([6]) where resources are assigned
only when actually required so that the system never wastes
an assignment that will not be used. The penalty paid for this,
found also in all the on-demand approaches, is blocking. If
the blocking time is non-deterministic then the whole system
becomes unpredictable and difficult to analyze. In
predictable multimedia environments, the blocking has to be
deterministic and for this reason our approach imposes a
specific structure on blocking to bound the blocking time. It
is an extension of our previous work on distributed real-time
and multimedia systems and comes from our experience in
the interesting field of real-time programming ([4]) where
similar problems for resource management and timing
correctness have been extensively studied.

In our model, we assume that the QoS for continuous
media objects is expressed with temporal and spatial
resolutions. The temporal resolution can be expressed by the
number of frames per second or sample rate and the spatial
resolution can by expressed by data size, number of bits per
pixel, compression scheme, etc. For example, in one simple
digital video application, the user may choose 22 frames per
second for its temporal resolution and a spatial resolution of
160 by 120 pixels wide with an 8-bit color resolution. It is
assumed also that every program executes periodic reads of a
number of frames from a remote media server into a local
buffer first and then plays them due to the fact that
continuous media require periodic service activities for
transmission and presentation.

We consider a new task oriented model that addresses all
the real-time requirements of the media streams. More

precisely, we view every different multimedia application
executed in a distributed environment as a periodic task that
can require in each period the use of non-preemptable
resources or access shared data. For example, one
multimedia session can be modeled as a task which in every
50 ms needs to deliver 3 video frames from the storage_
server1 and 6 audio frames from storage_ server2. Since
these storage servers are shared and exclusively used (i.e.
guaranteed exclusive access), there is a possibility for one
such task to block waiting for the use of these servers. The
period of each multimedia task is determined by the desired
quality of service (i.e. the temporal and spatial resolutions of
the continuous media), the number of continuous media used
in the application, the processor speed and the buffer size
used by the node that executes the application. This means
that high quality applications using many continuous media
are represented by our model as tasks having short periods,
i.e. high frequency tasks.

The proposed strategy is based on the rate monotonic
algorithm ([4]) in the way the priorities are assigned to tasks.
The assumptions and basic notation follow:
1. any continuous media application executed in a node of

a distributed environment is represented by a multimedia
task i.

2. every multimedia taski is periodic with period Ti and has
deadline Di at the end of its period (i.e. Di=Ti).

3. multimedia tasks are assigned fixed priorities inversely
to their periods. Hence, taski with period Ti receives
higher priority than taskj with period Tj if Ti < Tj.

4. every periodic taski is allocated on a different node pi of
the distributed system and can require the use of non-
preemptable resources or access shared data Ri.

5. every task asks for all of its global resources Ri only
once in its period and subsequently can release these
resources (one by one or all at once) after their use. Two
operations are used for this reason, taking as an
argument a set of resources:

• allocate(ResourceSet) and
• release(ResourceSet)

When a taski issues the allocate command asking for its
resources it then blocks (i.e. hangs) until all these
resources have been allocated to taski by the resource
manager. The duration of this time interval constitutes
the blocking time Bi of the task.

6. every multimedia taski has known, deterministic worst-
case execution time Ci. This is the total deterministic
computation requirement of taski during each period,
and Ci = Ci

cs + Ci
non-cs where:

Ci
cs is the total time that taski uses the resources and the

network in each period for data retrieval, for example for
the delivery of a set of frames from the storage servers
to the node where taski resides,
Ci

non-cs is the deterministic computation requirement of
taski that taski needs to process the received data frames.

Due to the fact that every multimedia task is allocated on
a different node of the distributed system, CPU scheduling is
not the main problem, but since tasks are inter-dependent the
main problem is task synchronization and resource

Proceedings of the 22 nd International Conference on Distributed Computing Systems Workshops (ICDCSW’02)
0-7695-1588-6/02 $17.00 © 2002 IEEE

allocation. Hence, blocking due to synchronization has to be
deterministic in order to have nice analysis properties and a
high degree of system predictability. Given a blocking
duration B of a taski with period T, then the ratio B/T is a
measure of schedulability loss due to blocking. In our
approach, we try to minimize this ratio as much as possible.
A formal definition of the Set Based Synchronization
Protocol is given in [6] where the exact evaluation of
blocking duration B of every taski is also described.

6. Conclusions

In this paper we have addressed the issue of real-time
coordination in parallel and distributed systems. In particular,
we have extended a control- or event-driven coordination
language with a real-time event manager that allows
expressing timing constraints in the raising, observing, and
reacting to events.

Our model is similar to models such as DAMSEL ([10])
which also relies on the use of a real-time event manager.
There are, however, a number of differences between that
approach and ours in the way interfaces to components are
defined (inlets and outlets instead of ports), the nature of
stream connections (ours are more flexible and secure) and
also on the very nature of events (in DAMSEL they can carry
data which makes their broadcasting a rather expensive
operation). On the other hand, our model defers from other
ones in that it does not rely on the use of special real-time
languages ([9]) or the underlying system architecture to
support hard real-time activities ([12]). Especially regarding
the last point, we note that implementing real-time languages
based on the synchronous hypothesis (i.e. instantaneous
reaction to events) is a non-trivial issue ([3]). However, we
must also note that our model is mostly suitable to model
cases of “soft” real-time systems where bounded time (but
not instantaneous) reaction to events is sufficient.

We have also proposed a real-time resource allocation
mechanism formally defined in [6] to extend the run-time
system of Manifold that is analyzable and understandable at
a high level. Given a set of multimedia applications encoded
in the extended Manifold framework we know in advance if
they will meet their deadlines or not. This scheduling
strategy has been designed for multimedia applications that
operate in a distributed computing environment where every
multimedia task is allocated on a different node and can
require the use of global resources. We have focused on
continuous media that have an implied temporal dimension,
i.e. they are presented at a particular rate for a particular
length of time and if the required rate of presentation is not
met the integrity of these media is destroyed. The proposed
synchronization protocol places an upper bound on the task
blocking duration and once the blocking durations have been
computed we can easily determine the schedulability of a set
of tasks. This protocol refers to the maintenance of real-time
constraints across continuous media streams and can ensure
for example that audio is presented with the required
throughput, jitter and latency characteristics, often referred to
as quality of service parameters of the media stream. Thus, it
is an approach for deterministic guarantees and provides

predictable distributed multimedia applications. Contrasting
with other approaches ([11]) ours pays more emphasis on
issues of (dynamic) predictability rather than enforcing fixed
priority schemes.

Our work is mainly focused on application-level
coordination techniques, specifying language constructs for
real-time generation and delivery of events. An efficient and
accurate implementation of these constructs requires a
minimum set of real-time operating system primitives that
support scheduling of processes and resource management
according to real-time constraints and a complete real-time
clock facility.

References
[1] F. Arbab, “The IWIM Model for Coordination of Concurrent

Activities”, First International Conference on Coordination
Models, Languages and Applications (Coordination’96),
Cesena, Italy, 15-17 April, 1996, LNCS 1061, Springer
Verlag, pp. 34-56.

[2] G, Blair, J-B. Stefani, Open Distributed Processing and
Multimedia, Addison-Wesley, 1998.

[3] N. Halbwachs, Synchronous Programming of Reactive
Systems, Kluwer Academic Publishers, 1993.

[4] J.P. Lehoczky, L. Sha, J.K. Strosnider and H. Tokuda, “Fixed
Priority Scheduling Theory for Hard Real-TimeSystems”,
Foundations of Real-Time Computing: Scheduling and
Resource Management, Editor A.M. van Tilborg and G.M.
Koob, Kluwer Academic Publishers, 1991, Ch. 1, pp. 1-30.

[5] R. Meier, State of the Art review of Distributed Event Models,
M.Sc. Thesis, Department of Computer Science, University
of Dublin, 2000.

[6] C. Mourlas and C. Halatsis, “Task Synchronization for
Distributed Real-Time Applications”, Ninth Euromicro
Workshop on Real-Time Systems, Toledo, Spain, 11-13 June,
1997, IEEE Computer Society Press, pp. 184-190.

[7] G. A. Papadopoulos and F. Arbab, “Coordination Models and
Languages”, Advances in Computers, Marvin V. Zelkowitz
(ed.), Academic Press, Vol. 46, August, 1998, 329-400.

[8] G. A. Papadopoulos, “Distributed and Parallel Systems
Engineering in Manifold”, Parallel Computing, special issue
on Coordination, Elsevier Science, 1998, Vol. 24 (7), pp.
1107-1135.

[9] M. Papathomas. G. S. Blair and G. Coulson, “A Model for
Active Object Coordination and its Use for Distributed
Multimedia Applications”, LNCS, Springer Verlag, 1995, pp.
162-175.

[10] P. Pazandak and J. Srivastava, “The Temporal Language
Component of DAMSEL: An Embeddable Event-driven
Declarative Multimedia Specification Language”, IEEE
International Conference on Multimedia Computing and
Systems (IEEE MMS’96), Hiroshima, Japan, June, 1996,
IEEE Computer Society Press.

[11] R. Rajkumar, Synchronization in Real-Time Systems: A
Priority Inheritance Approach, Kluwer AP, 1991.

[12] S. Ren and G. A. Agha, “RTsynchronizer: Language Support
for Real-Time Specifications in Distributed Systems”, ACM
SIGPLAN Workshop on Languages, Compilers and Tools for
Real-Time Systems, La Jolla, California, 21-22 June, 1995.

[13] F. Thoen, M. Cornero, G. Goossens and H. de Man,
“Software Synthesis for Real-Time Information Processing
Systems”, ACM SIGPLAN Workshop on Languages,
Compilers and Tools for Real-Time Systems, La Jolla,
California, 21-22 June, 1995.

Proceedings of the 22 nd International Conference on Distributed Computing Systems Workshops (ICDCSW’02)
0-7695-1588-6/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

