
J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 225–238, 2007.
© IFIP International Federation for Information Processing 2007

Experiences from Developing a Distributed Context
Management System for Enabling Adaptivity

Nearchos Paspallis, Avraam Chimaris, and George A. Papadopoulos

Department of Computer Science, University of Cyprus
P.O. Box 20537, Postal Code 1678, Nicosia, Cyprus

{nearchos, cspgha, george}@cs.ucy.ac.cy

Abstract. Today, one can observe an ever increasing trend in the use of mobile
systems. This change inevitably affects the software running on such devices by
necessitating additional functionality such as context awareness and adaptive
behavior. While some developers design their systems to be fully self-reliant
with regard to context awareness, others aim for more synergistic approaches
by allowing context sharing across devices. This paper describes our experience
with first designing and implementing a basic context management system, and
then with extending it to allow context distribution. In the proposed
architecture, the developers define the context dependencies for their software
independently of the availability of context information in their corresponding
devices. An automated mechanism is then used to match these needs to the
corresponding providers, even when those reside across distributed devices.
This approach enables them to utilize shared context information at runtime
thus reducing both development efforts and hardware costs.

Keywords: Context-awareness, Middleware, Distributed architectures.

1 Introduction

Today, one can observe an ever increasing trend in the use and proliferation of mo-
bile systems. This change has inevitably affected the design and the implementation
of software running on such devices. For instance, additional functionality in terms of
context awareness and adaptive behavior is now a common feature desired and
frequently found in such systems. While the adaptive-behavior implies the capability
of a system to run in a number of different configurations or modes, context-
awareness refers to its ability to dynamically perceive the characteristics of its
surrounding environment. The ultimate benefit is provided in mobile systems which
are capable of monitoring and exploiting the contextual information, and infer
decisions on choosing the optimal adaptation. This process is guided by the aim for
maximizing the quality of the service as it is perceived by the users.

In this work it is assumed that an adaptive, mobile system monitors its environment
and dynamically chooses an optimal configuration, thus adapting itself on demand.
While the context information which is monitored can be theoretically of unbound
variability, in practice only a small fraction of the available context data is delegated
as input to the adaptation decision-making component. Naturally, the more context

226 N. Paspallis, A. Chimaris, and G.A. Papadopoulos

information is available to such a decision maker, the better the decision can be. In
most context-aware systems, acquired information is retrieved from sensors or the
client side of services. Consequently, the available context information types are
restricted by the limited mobile device size and resources which render the hosting of
unlimited context sensors intolerable. This limitation highlights the importance of
enabling sharing of context information between distributed sources. In this way, the
distributed context sources can further eliminate the related costs (e.g. battery
consumption, memory use, etc.) while providing mobile nodes with richer context
information which otherwise would be impossible to have access to.

This paper describes the architecture of a distributed context management system
which is used to drive the adaptation reasoning process in the mobility and adaptation
enabling middleware (MADAM) [1, 2]. Besides the architecture design this paper’s
contributions also include a review of requirements for the design and implementation
of such a system, as well as a list of related experiences and findings.

The rest of this paper is organized as follows: First, section 2 describes the basic
aspects of context-aware systems, followed by section 3 which analyzes a number of
requirements for distributed context management systems. Then the proposed
architecture is analyzed in section 4, along with a description of its implementation.
Following that is a discussion of experiences and related work presented in section 5,
and finally, section 6 concludes with a review of the contributions of this paper.

2 Context Awareness

Context-aware computing is an area which studies methods and tools for discovering,
modeling and consuming contextual information. Such information can include any
information affecting the interaction of a user with a system, such as user location,
time of day, nearby people and devices, user activity, light or noise conditions, etc. A
more formal and widely used definition specifies context as “any information that can
be used to characterize the situation of an entity; an entity is a person, place, or
object that is considered relevant to the interaction between a user and an
application, including the user and application themselves” [3, 4].

Context can also be classified in more fine-grained categories: physical, computing
and user context information types [5]. The physical context type is related to
environmental factors which can usually be evaluated by using specialized hardware
mechanisms. The light, noise, and temperature are examples of physical context data
types. The computing context refers to the information which describes the resources
available in the computing infrastructure. This includes information such as the
network connectivity and its characteristics (e.g. bandwidth, latency, etc.), nearby
resources (such as printers, video projectors, etc), and details concerning the memory
availability, the processor use, etc. Finally, the user context refers to the user’s profile
by focusing on the user needs, preferences, mood, etc. For example these can include
information concerning the user’s occupation (e.g. driving, studying, etc.) or the
user’s choice for preferring, say, to use a desktop computer rather than a PDA while
at work.

Furthermore, it is argued that any system that aims to be minimally intrusive must
be context aware, in the sense that it should be cognizant of its user’s state and

 Experiences from Developing a Distributed Context Management System 227

environment [6]. In other words, context-aware mobile systems are expected to utilize
such information in order to adapt their behavior, based on a predefined set of
adaptation rules. These rules are usually monitored by a system which dynamically
adapts the system’s operation based on the contextual information sensed.

In this paper, the context awareness is treated as an independent concern, where the
applications can separately and independently register for particular context change
events, without having to be involved in the collection or management of contextual
information. Because of this separation of concerns, it is possible to treat the context
awareness support mechanism independently of the adaptation mechanism. I.e. from a
developer’s point of view, the two mechanisms can evolve independently, thus
improving on both the development and the maintenance effort required.

3 Requirements for Distributed Context Management

The main responsibilities of a context-aware, adaptive mobile system include
acquiring context information, reasoning on the acquired information, and performing
adaptations as a result of these changes. In many cases the acquired information is
retrieved locally (e.g. through attached sensors) but frequently this information is
insufficient for performing the required adaptation reasoning. In a distributed context
management system, additional context information can be shared among a set of
distributed mobile devices. This enhances the process of making adaptation reasoning
decisions by offering context information which would otherwise not be accessible.

3.1 General Requirements

The implementation of a distributed context-aware framework should address many
of the requirements of traditional distributed systems such as heterogeneity, mobility,
scalability, and tolerance to system and network failures. Heterogeneity is required
because systems are inevitably developed by different teams and target many different
platforms. However, these systems are still expected to collaborate with each other
and share context information. Distributed context management systems are also
naturally expected to enable mobility, and thus it should be possible to disseminate
context information independently of the communication protocols, the underlying
network infrastructure or the location of the nodes. The requirement for scalability is
a natural consequence of the distributed nature of the desired context management
system. This requirement dictates that the performance of the system is not severely
downgraded as the number of participating nodes increases. Finally, and although not
critical from a functional point of view, the ease of deployment and configuration is
also an important requirement for such a system. These requirements were considered
in our implementation, as it is discussed in sections 4 and 5.

3.2 Requirements for the Distribution of Context

Typical context management systems adhere to the publish/subscribe model, where
providers asynchronously provide their information, and clients subscribe for
notification when such events occur. This approach however, is further extended in

228 N. Paspallis, A. Chimaris, and G.A. Papadopoulos

the case of distributed systems, as the providers and the subscribers can reside on
different, network connected nodes. The additional requirements are:

Service Discovery: The service discovery requirement refers to the need for
discovering context providers (i.e. nodes capable of sharing context information).
Suitable approaches include two main categories: centralized and ad-hoc service
discovery. Centralized approaches include services which provide context at well
known locations (e.g. a URL), or advertise their capabilities in directories. Contrary to
these, ad hoc approaches utilize services which dynamically form partnerships for
context exchange. Their communication can be realized by using combinations of
infrastructure-based, wireless and ad hoc-based networks.

Modeling and Semantics: The context modeling refers to the requirement for
formatting the information so that it encapsulates both the required data and metadata.
Context modeling is important for guaranteeing compatibility among the possibly
heterogeneous devices (i.e. mobile nodes, context sensing mechanisms, etc.). This is
particularly important in ad-hoc configurations, where the nodes participate to context
exchanges without being a priori aware of each other, and consequently of the
methods they use to abstract (model) and interpret (semantics) context information.

Scope and Privacy: When sharing context information in a distributed environment,
it is important to define its scope. For example, context information which is limited
to local use should be prevented from being generally distributed. Rather, suitable
methods should be used to limit its dissemination within a local area in which it is
more likely to be valid. As most of the context information is expected to be of local
interest only, this requirement seeks to ensure that an explosion of context
information is prevented and rather a form of localized scalability is enabled. On the
other hand, the dissemination of context information should also be controlled so that
no sensitive information can be leaked to the wrong hands. Similar to the context
scope, the privacy is another important parameter which must be taken into account
when defining the access to context information. In particular, the access to sensitive
context information must be explicitly defined so that only the context information
which is intended to be public is shared with other devices.

4 The Architecture of the Context Management System

The main concept of the implemented architecture is the separation between context
clients and context providers [7,8]. In this respect, all nodes act as both context
providers and context consumers, as part of a membership group which is formed
using a loosely coupled protocol. Furthermore, while individual nodes are free to
access context information from any possible provider (i.e. even context servers
located at remote geographical locations), it is nevertheless assumed that in most
cases context sharing is limited to a local area only. In this respect, the locality refers
to groups formed by nodes which can directly communicate with each other, e.g. over
a wireless link by forming an ad-hoc WiFi or Bluetooth network (i.e. a piconet).

 Experiences from Developing a Distributed Context Management System 229

Fig. 1. Distributed Context Management System Architecture

This approach has the important advantage of assigning higher importance to local
context and consequently enabling localized scalability [6]. The first one refers to the
fact that it is more likely that two neighboring nodes will share a common interest on
the same context as opposed to nodes at different geographical locations. This is true
for example in most pervasive computing applications where applications aim to
utilize the infrastructure which is embedded in the surrounding environment. In
another example, it would be more likely that an application would be more interested
in the temperature information provided by nearby nodes (and thus residing in the
same environment) as opposed to the temperature information provided by distant
nodes. Second, localized scalability is achieved by preferring local sources (and
respectively consumers) for sharing context information with. In this approach, the
use of mainstream links is avoided as most of the communication is carried out over
local (i.e. direct) network links. The following paragraphs describe the basic ideas of
this approach, along with the algorithms required to support it.

4.1 Context Management in Centralized Environments

As it has already being mentioned, the implemented architecture is based on the
separation of roles between context providers and consumers [7]. Even if all nodes
can interchangeably act as both clients and producers, at the underlying layer there are
specialized architectural components which can either support context production or
consumption. These components are the Context Sensors that are used to produce
context, and the Context Listeners which can be registered to listen for context
changes (Fig. 1). When the monitored context type changes, the listeners inform the
linked applications (e.g. Application A is informed for context changes for the
monitored context of Listener A and Listener B). The Context Sensors generate
context elements that are stored in local repositories. This centralized architecture is
quite simple and is based on the requirements defined in the context-aware section.

4.2 Membership and Distributed Context Management

In a distributed context-aware system the intention is for the information in the local
repositories to be shared between nodes. In order to enable this, we implemented a
loosely coupled communication protocol between the distributed nodes which is
based on the transmission and handling of heartbeat messages. This architecture is
based on the requirements that were identified in section 3. In the analysis of the

230 N. Paspallis, A. Chimaris, and G.A. Papadopoulos

required communication protocol we discovered that not all context information was
suitable for sharing. For example, context information describing the battery status of
a device is generally useless to other, neighboring devices. Furthermore, as per the
privacy requirement, we detected a need for excluding some context information from
being shared. In this respect, two properties were defined for characterizing the
context element types: scope and privacy. The first property refers to whether the
context element value is appropriate for distribution or not. The possible values that
can be assigned to this property are: public (i.e. can be distributed without
restrictions), local (i.e. useful only within a small range around the providing node;
such information is typically directly communicated across devices) and private
(meaningful only within the device itself). The privacy property describes how
sensitive is the context information and consequently whether it is suitable for sharing
or not. This property can be assigned two values: public (i.e. the information can be
shared unrestricted), and private (i.e. the information is not subject to distribution
outside the local device).

Once the context information is appropriately annotated with properties, the next
step is to define an appropriate mechanism to first enable the dynamic discovery of
nodes, and second to physically enable information sharing among them. In this work,
we have purposely aimed for a completely ad-hoc approach, which has the benefit of
not requiring the set-up of context servers and, additionally, it provides better access
to neighboring information which is much more likely to be relevant to collaborating
nodes. The used protocol is based on a loosely coupled method, which is enabled by
periodically broadcasting and handling heartbeat messages. Furthermore, the overall
system is based on a push/pull hybrid approach. While pull approaches attempt to
retrieve context information without a priori being aware if the requested data is
available or not, push approaches proactively communicate context information to
peer nodes regardless of whether the context was requested or not. In our hybrid
approach, the distributed context is transmitted (pushed) from the providing nodes to
the requesting ones. Additionally, the requesting nodes do not keep track of the
remotely provided context, but rather they notify nearby nodes of their needs.

The distributed context needs are defined inside the heartbeat messages which are
broadcasted by the underlying network layer. The broadcasted messages also encode
the types of the desired context data. When received, the context data is decoded to
form a list of the required values by all nodes in the neighborhood. Then, from an
individual node’s point of view, requested context types that are available are
subsequently broadcasted to the local network (push approach) also by being encoded
in the corresponding heartbeat messages that are periodically broadcasted. On the
receivers’ side the heartbeats are decoded and the corresponding context values are
used to generate a local context change event, as if the changes were sensed locally.

In practice, the push mechanisms are more efficient than their pull counterparts, as
the pull mechanisms need local meta-data in order to select the proper provider to
request for, and to construct the request message. In push architectures, there is no
need to keep local information about remote providers because as soon as a nearby
node receives a context request an appropriate heartbeat message is immediately
constructed and communicated back to the requestor.

We argue that this architecture satisfies the detected required features. The use of a
broadcasting mechanism for the heartbeat messages reduces the communication

 Experiences from Developing a Distributed Context Management System 231

overhead (especially as the required context information is piggy-backed into these
messages). Another alternative would be to have nodes announcing their offered
context information, but this imposes significant overhead for updating local tables
mapping context offerings to context requestors. Instead, in the proposed architecture
there is no need for storing such information because the requests are handled directly
by context producers. Consequently, this architecture provides the benefits of better
scalability and consistency, while at the same time requiring fewer resources.

This architecture is heavily based on the periodic broadcast of special heartbeat
messages which serve two purposes: first they are used to update the membership
status of the individual nodes and they communicate basic information about context
required by the sender. Additionally, the heartbeat messages are used for transmitting
context change events from providing nodes (using the discussed push approach) to
the requesting nodes. This approach also enables a loosely-coupled synchronization
method which is based on periodic broadcast of heartbeat messages. These messages
are intended to both form and maintain a membership group, as well as to update the
individual nodes of the context information required by the senders. Similar protocols
have also been proposed and tested in commercial environments (e.g. the Bonjour [9]
and the Bluetooth technologies [10]). In the proposed approach however, the aim is
specialized on the exchange of context information rather than of general data.

The membership manager: In this architecture, the most important component is the
Membership Manager (see Fig. 1). The Membership Manager is part of the context
management system of the MADAM middleware. Its main responsibility is to
periodically multicast the heartbeat messages and to handle the received ones.

The periodic multicast of heartbeats aims at achieving mainly two goals: first, to
enable the formation of a loosely coupled membership group, and second, to inform
the neighboring nodes (i.e. the group) about possible context needs which cannot be
locally satisfied. Additionally, the heartbeats are also used to encapsulate context data
so that they can be shared with other nodes. On the receiving side, the membership
manager exploits this information exactly for forming this loosely coupled group and
for decoding possible context change events which are of interest to the local node.

The membership manager’s functionality is supported by two table-like data
structures: the membership table which is used for managing the membership status
and the context requestors table to maintain the context requests from the remote
nodes. When a heartbeat message is received, the membership table is updated with
the provided information. For example if the heartbeat was sent by a node which is
not already present in the membership management table, a new entry is created for it.
At the same time, an event is generated indicating the addition of the new member. If
the node is already present in the membership table, then its context requirements are
examined for changes, and appropriately update the context requestors table. In this
way, the requesting nodes notify the nearby context-provider nodes of their newly
required context in order to adjust their remote context listeners.

In order to detect when a node has left the membership, a simple algorithm is also
used which is based on a predefined, globally agreed timeout period: the heartbeat
interval. In simple words, this algorithm periodically checks the table with the current
members and ensures that all members have a recent heartbeat timestamp. When a

232 N. Paspallis, A. Chimaris, and G.A. Papadopoulos

Fig. 2. Sequence diagram of a typical message interchange in a group membership

member misses a predefined number of consecutive heartbeats, it is assumed to have
left the group. At that point, an appropriate event is generated indicating the fact that
the member in question has left the group. Because the departed node was possibly
also included in the context requestors table, an appropriate update takes place there
too, so that all context entries requested by that node only, are removed.

As a result of the heartbeat messages, two main events are triggered by the
corresponding membership management mechanism: the new member added event
and the existing member left event. An additional event concerning context updates
(pushed context changes) can also be raised: the context updated event. All events
encapsulate information about the identity of the node involved, as well as
information on its requested context. To better explain the used algorithm, the
following paragraphs explain how these events are handled by the context manager:

 Experiences from Developing a Distributed Context Management System 233

• New member added event: This type of event is generated when a heartbeat
message is received from a node not previously registered with the membership
manager. Once detected, the new node is also automatically considered for its
needed context. For each remote requestor, a local context listener counterpart is
instantiated. This listener automatically pushes context information to the remote
requesting node when the respective context changes (sequence 1 in Fig. 2).

• Existing member left event: This event is triggered when a node is detected to
have left the membership group. Each heartbeat timestamp is updated whenever a
heartbeat message is received from the specific node. In this way, when the
heartbeat timestamp of a node in the context providers table is found to be
outdated, the corresponding node is assumed to be disconnected. At that time, the
listeners that are pushing information to this remote node are considered obsolete,
and thus are removed from the table (sequence 4 in Fig.2).

• Context requirements updated event: Finally, a context change event occurs
when an existing node is found to have changed its needed context. In that case,
the membership manager iterates through the context requestors table and updates
the corresponding entries (i.e. removes obsolete entries and add newly required
ones). This is depicted by sequence 3, in Fig. 2.

Besides generating these events, the membership manager also reacts on them, by
adding and removing context listeners (to itself). The actual context information is
communicated through the heartbeat messages, as piggy-backed context information.
Thus, beyond updating the membership status when a heartbeat is received, the
membership manager also parses the heartbeats and passes possible context change
events to the context repository (see Fig. 1) for further distribution.

4.3 Implementing the Architecture

The described architecture was designed and implemented as part of a broader
adaptation enabling middleware (MADAM). The system was implemented in the Java
language and tested on both a laptop computer running the Windows XP operating
system and an iPAQ PDA computer running the Windows Mobile operating system.
Regarding the JVM, in the first case we used the mainstream implementation
provided by Sun Microsystems, while in the case of the PDA we used the CreMe
JVM by NSI.com. Finally, the MADAM middleware provides a context visualizer (a
simple context client) which allows a user or a developer to dynamically monitor and
edit (simulate) the context information (shown in Fig. 3, when deployed on a PDA).

During the implementation, some of our main goals were interoperability, platform
independence, and extensibility. To facilitate the first two goals, we used the Java
system while refraining from using native (i.e. platform dependent) libraries.
However, lower-level layers of the MADAM middleware (and especially the resource
management component) do extensive use of native libraries, which are platform-
dependent (e.g. two different implementations are made available by the MADAM
consortium targeting both Windows-based PCs and PDAs). However, extensive
coverage of the resource management layer is beyond the scope of this paper. The
interested readers are rather referenced to the MADAM website [1].

234 N. Paspallis, A. Chimaris, and G.A. Papadopoulos

Fig. 3. The left diagram depicts the context view in the case of a single node, while the right
diagram depicts a situation where two individual nodes form a membership

For the extensibility goal, we used an approach which allows to interchangeably
selecting different networking technologies. In this respect, we defined a Broadcast
Service interface which provides methods for broadcasting generic, serializable
messages and for subscribing (and unsubscribing) for the reception of such messages.
The membership manager is only aware of this interface, thus allowing a developer to
provide different implementations.

At this time, we have tested a default implementation of the broadcast service
which has successfully demonstrated message broadcasts on both wired and wireless
networks, on both Windows XP and Windows Mobile-based systems. Furthermore,
we developed a simulated version of this service, which uses plain TCP
communication messages and a simulation hub, with the intention of enabling the
middleware to function even behind firewalls or simply when on devices which do
not support multicasting. Finally, a Bluetooth-based implementation is also underway.

5 Experiences from the Development of the Context System

The process of first designing a basic context management system and then extending
it to enable distributed context sharing has provided us with many valuable insights
that we attempt to document in the following paragraphs:

Non-functional nature of context should remain as such: When designing context
aware systems, the aim is usually to optimize the operation of the system, rather than

 Experiences from Developing a Distributed Context Management System 235

extend its capabilities. For example, an intelligent agenda could exploit GPS
information so that when a “lunch at 12pm” entry is activated, a list of nearby
restaurant options, compatible with the user's taste, are automatically displayed to
inform the user about them. However, in this case the availability of context
information (i.e. GPS coordinates) is completely optional and does not prevent the
software from performing its basic goals. Rather, it simply limits its functionality to
some extent, with also a possible decrease in the quality of the offered service. It has
been our experience with the development of the context management system, but
also with the development of the MADAM adaptation-enabling middleware, that the
context information should be used as such and never being allowed to become a part
of a critical path, i.e. its absence should never cause a system to stop functioning. In
this respect, the MADAM middleware suggests the designers to provide a set of
possible adaptations (i.e. configurations) for their applications, along with a set of
properties and utility functions which always allows the computation and the selection
of a minimal configuration, regardless of the availability or absence of (possibly
distributed) context information. This experience is in accordance to a common
distributed computing fallacy1: the network is reliable.

Modeling of context should provide support for distribution: While designing the
basic context management system, one can be easily mislead to the assumption that
the context information is both generated and consumed at the same node. However,
in real distributed systems, sharing of context information imposes additional
requirements for identifying both the nature and the origin of the context information.
For example, information about the memory availability of a node becomes useless,
unless the actual node association is explicitly or implicitly defined. This also implies
that unless the context information is generated and consumed by the same system
(e.g. the MADAM middleware), then a set of semantics metadata must accompany
the actual context data to allow for better optimization of the context data (e.g. the
metric system used for the measurements, the methods used to acquire the data, and
even the accuracy of the communicated information). Last but not least, distributed
dissemination of context data requires that the distributed peers trust each other and
they are capable of securing that the communicated data is handled as it is intended.

Plug-and-Play architecture support for context sensors: Assuming that a device
will require a constant set of context information types is erroneous. In practice,
different applications are dynamically started and stopped. Additionally, in the case of
adaptive, component-based applications different variants of the same application
might impose different context requirements. Having the maximum context
information provided at all times is not an optimal solution, especially in mobile
systems where resource consumption is an important concern! In this respect, the
design of a plug-and-play architecture enables dynamic reconfiguration of the context
manager’s architecture, which can greatly improve the system’s efficiency and
autonomy. In our context system’s architecture, we maintain a dynamically updated
list with the registered context listeners (consumers) along with their corresponding

1 http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing.

236 N. Paspallis, A. Chimaris, and G.A. Papadopoulos

needs. This allows the system to periodically and dynamically evaluate the situation
which concerns the need for context information and dynamically activate and
deactivate the corresponding context sensors. Additionally, while some of the sensing
functionality (such as the memory and CPU monitoring) can only be embedded in the
middleware system, others depend on software and hardware sensors, both native to
the device and newly added ones. For example, a system might be originally designed
with a GPS device only, but in the future it might be equipped with a temperature and
barometer sensor as well. Such an addition should not require any updates to the
middleware, but simply the addition of new software context sensors which would
make the new information available to the middleware as well. This is combined with
the general middleware’s pluggable architecture which allows dynamic loading and
unloading of applications and components together with the corresponding (software)
context sensors and reasoners. In effect, this enables the context system to extend its
domain of covered context information at runtime while at the same time conforming
to the actual needs of the hosted applications.

6 Related Work and Conclusions

A plethora of related work studies both centralized and distributed issues of context
management. This section discusses a number of achievements established already,
but also detects open problems which are not addressed by existing approaches yet.

Centralized context-aware systems use a local service which provides applications
with contextual information. Such infrastructures encapsulate these services as part of
a middleware which acquires raw contextual information from sensors and provides
interpreted context to applications via a standardized API. Furthermore, the
middleware is assigned to monitor particular context changes and dispatch relevant
events to interested applications when required.

In contrast to centralized approaches, distributed context-aware applications allow
the generation of context information at several locations, thus avoiding potential
bottlenecks and unnecessary hardware duplication. Despite the fact that decentralized
architectures increase the communication cost, they are more resilient to errors as they
do not require a central server to maintain the context information.

An approach which is partly based on message multicasts is described in [12]. In
this approach clients broadcast their location queries to all the members of a group
and interested parties anonymously listen to the queries. When they match a query
and their privacy policy allows it they reply to the query. Just like in our approach, the
main disadvantage lies in the increased computation and communication cost. Unlike
that approach though, our proposed mechanism aims at limiting the communication
cost by minimizing the heartbeat message size. Furthermore, both the computation
and communication costs can be minimized by increasing the heartbeat interval if that
can be tolerated by the applications. Finally, the computation cost is further limited by
using the context update timestamp which prevents the nodes to perform unnecessary
computations when there are no context changes encoded in the heartbeat.

The Context Toolkit [13] provides a component framework for acquiring and
handling context using three key abstractions: widgets, interpreters, and aggregators.

 Experiences from Developing a Distributed Context Management System 237

The context widgets are the most important components of this framework because
they provide applications with access to the context information while hiding the
details of context sensing. The context interpreters convert or interpret context to
higher level information and the context aggregators collect context relevant to
particular entities. Similar to our approach, the Context Toolkit provides support for
storing historical context data, and then reusing them to estimate their value trend.

Other systems, like Jini [14], use coordination model infrastructures to implement
well-formed shared repositories. This technology is usually used in the background,
such as for example in the Smart Map project [15], which enables position-aware
applications by using the Jini technology for implementing a registry. The registry is
used by service providers to register themselves for context availability and the
service consumers use the registry to discover them. The Context Fusion Networks
(CFN) [16] project is implemented as a context-aware middleware which handles
context information by realizing sources, sinks and channels. The context sensors are
represented by sources because they are responsible for constructing contextual
information. The applications which use this information are represented by sinks.
Furthermore, more recent approaches exist which aim at enabling generic data sharing
between neighboring devices. A notable approach is described in [17] where support
is provided for developing efficient solutions for sharing data in the neighborhood.

In contrast to most of these approaches, which do not explicitly tackle fault
tolerance, our approach provides limited fault tolerance. As the context manager has a
minimum state, any failures can be tolerated by simply re-instantiating the context
manager and allowing some time for the corresponding context producers and
consumers to recover by processing their periodic messages. However, our approach
is not tolerant to malicious attacks such as message flooding, which is a common
limitation of broadcasting-based approaches. Finally, unlike most other works, our
approach implements and promotes localized scalability as an effective measure to
optimize the consumption of resources and maintain the system performance.

In conclusion, this paper proposes a distributed context management mechanism
which aims at driving the decision making in the adaptation enabling middleware
(MADAM). We have detected a number of both general and more specific
requirements imposed by the distribution aspect. In this respect we have proposed an
approach which is based on the periodic communication of heartbeat messages for
forming loosely coupled membership groups and for advertising their required
context. We argue that this approach satisfies the detected requirements to a great
extend. Furthermore, this architecture has been implemented, tested, and evaluated in
real pilot applications, on both resourceful (laptops) and small (PDAs) computers,
with significant success. Further work is underway, aiming at specifying a more
structured context model, as well as extending its application domain to ubiquitous
computing (i.e. embedded in addition to mobile devices).

Acknowledgments. The authors would like to thank their partners in the MADAM-
IST and the MUSIC-IST projects and acknowledge the financial support given to this
research by the EU (6th Framework Programme, contract numbers 4169 and 35166).

238 N. Paspallis, A. Chimaris, and G.A. Papadopoulos

References

1. IST MADAM (Mobility and Adaptation Enabling Middleware), http://www.ist-
madam.org

2. Floch, J., Stav, E., Hallsteinsen, S., Eliassen, F., Gjørven, E., Lund, K.: Using Architecture
Models for Runtime Adaptability. IEEE Software 23(2), 62–70 (2006)

3. Dey, A.: Providing Architectural Support for Building Context-Aware Applications, PhD
Thesis, College of Computing, Georgia Institute of Technology, pp. 170 (2000)

4. Dey, A.: Understanding and Using Context. Personal Ubiquitous Computing 5(1), 4–7
(2001)

5. Chen, G., Kotz, D.: A Survey of Context-Aware Mobile Computing Research, Technical
Report: TR2000-381 Dartmouth College, Hanover, NH, USA (2000)

6. Satyanarayanan, M.: Pervasive Computing: Vision and Challenges, IEEE Personal
Communications Magazine, pp. 10–17 (2001)

7. Mikalsen, M., Paspallis, N., Floch, J., Stav, E., Papadopoulos, G.A., Ruiz, P.A.: Putting
Context in Context: The Role and Design of Context Management in a Mobility and
Adaptation Enabling Middleware, International Workshop on Managing Context
Information and Semantics in Mobile Environments (MCISME’06). In: conjunction with
the 7th International Conference on Mobile Data Management (MDM’06), Nara, Japan,
May 9-12, 2006, pp. 76–83. IEEE Computer Society Press, Washington, DC (2006)

8. Paspallis, N., Papadopoulos, G.A.: An Approach for Developing Adaptive, Mobile
Applications with Separation of Concerns. In: 30th Annual International Computer
Software and Applications Conference (COMPSAC 2006), Chicago, IL, USA, Sept.
17-21, 2006, pp. 299–306. IEEE Computer Society Press, Washington, DC (2006)

9. Bonjour: Connect Computers and Electronic Devices Automatically without any
Configuration http://images.apple.com/macosx/pdf/MacOSX_Bonjour_TB.pdf

10. Draft Bluetooth Core Specification v2.1 + EDR https://www.bluetooth.org /spec/
11. Want, R., Schilit, B., Adams, N., Gold, R., Petersen, K., Goldberg, D., Ellis, J., Weiser,

M.: An Overview of the PARCTAB Ubiquitous Computing Experiment. IEEE Personal
Communications 2, 28–43 (1995)

12. Spreitzer, M., Theimer, M.: Providing location information in a ubiquitous computing
environment. 14th ACM Symposium on Operating Systems Principles, Asheville, NC,
USA, December 5-8, pp. 270–283. ACM Press, New York (1993)

13. Dey, A., Salber, D., Abowd, G.: A conceptual framework and a toolkit for supporting the
rapid prototyping of context-aware applications. Human Computer Interaction 16(2-4),
97–166 (2001)

14. Sun Microsystems, Jini Network Technology, http://www.sun.com/software/jini/
15. Urnes, T., Hatlen, A., Malm, P., Myhre, O.: Building Distributed Context-Aware

Applications. Personal Ubiquitous Computing 5(1), 38–41 (2001)
16. Chen, G., Li, M., Kotz, D.: Design and implementation of a large scale context fusion

network. 1st Annual International Conference on Mobile and Ubiquitous Systems:
Networking and Services (MobiQuitous), Cambridge, MA, USA, Aug. 22-25, 2004,
pp. 246–255. IEEE Computer Society Press, Washington (2004)

17. Lachenmann, A., Marrón, P.J., Minder, D., Saukh, O., Gauger, M., Rothermel, K.: EWSN
2007. LNCS, vol. 4373, pp. 1–16. Springer, Heidelberg (2007)

	Introduction
	Context Awareness
	Requirements for Distributed Context Management
	General Requirements
	Requirements for the Distribution of Context

	The Architecture of the Context Management System
	Context Management in Centralized Environments
	Membership and Distributed Context Management
	Implementing the Architecture

	Experiences from the Development of the Context System
	Related Work and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

