
— 1 —

Object-Oriented Term Graph Rewriting

George A. Papadopoulos

Department of Computer Science

University of Cyprus

75 Kallipoleos Str., P.O. Box 537, CY-1678

Nicosia

CYPRUS

E-mail: george@turing.cs.ucy.ac.cy

Abstract

The relationship between the generalised computational model of Term Graph

Rewriting Systems (TGRS) and Object-Oriented Programming (OOP) is explored

and exploited by extending the TGRS model with records where access to

parameters is done by naming rather than position. Records are then used as the

basis for expressing object-oriented techniques such as object encapsulation and

(various forms of) inheritance. The effect is that TGRS with records can now be

used as an implementation model for a variety of (concurrent) object-oriented

(functional, logic or otherwise) languages but also as a common formalism for

comparing various related techniques (such as different forms of inheritance or

approaches for providing solutions to problems caused by the combination of

concurrency and interaction between objects).

Keywords: Object-Oriented Programming; Concurency and Parallelism;

Programming Language Extensions; Rewriting Systems.

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 2 —

1. INTRODUCTION

The generalised computational model of Term Graph Rewriting Systems ([3]) has

been used extensively as an implementation vehicle for a number of, often

divergent, programming paradigms ranging from the traditional functional

programming ones ([14,16]) to the (concurrent) logic programming ones ([11,19]).

The model is also capable of supporting imperative programming techniques,

such as destructive assignment which is needed frequently for modelling object

behaviour (say, the changing of an object’s state); in addition, the notion of

sharing, a fundamental concept in the graph rewriting world, corresponds

directly to the notion of reusability. However, there has not been so far a

coherent attempt to use TGRS as an implementation model for Object-Oriented

Programming techniques.

In this paper we explore and exploit the relationship between TGRS and OOP by

means of extending the TGRS framework with records, where access to

parameters is done by naming rather than position. Records are then used as the

basis for expressing object-oriented techniques such as object encapsulation and

(various forms of) inheritance ([4,27]). Furthemore, if we also enforce a

programming methodology where all functions defined and used in a program

access their parameters via the use of a single record we end up with a

framework where all pattern matching and function application is done based on

named rather than positional parameters. This enhanced framework of “TGRS

with records” (or “TGRS with names”) provides a powerful formalism able to

play the role of a generalised implementation model for a variety of (possibly

concurrent) OOP languages but act also as a common platform for comparing the

various OOP techniques and assessing their usefulness with respect to each other.

In particular, using as a vehicle the intermediate compiler target language Dactl

([8,9]) based on TGRS and playing the role of a high-level machine language in

the FLAGSHIP project ([15]), part of the Alvey program ([22]), we first show how

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 3 —

records can be implemented in the language without the need to extend the

semantics of the associated TGR computational model; then, we use records as

the basis for implementing a variety of OOP techniques. The rest of the paper is

organised as follows: the next section introduces the TGRS model and the

language Dactl and the third one extends Dactl with records and introduces the

methodology of using solely records for function definition and application; the

fourth one discusses a number of ways to model fundamental OOP techniques

and the fifth one describes some practical benefits arising from this work. The

paper ends with a discussion of current and future research.

2. TERM GRAPH REWRITING SYSTEMS AND THE ASSOCIATED

COMPILER TARGET LANGUAGE DACTL

The TGRS model of computation is based around the notion of manipulating

term graphs or simply graphs. In particular, a program is composed of a set of

graph rewriting rules L=>R which specify the transformations that could be

performed on those parts of a graph (redexes) which match some LHS of such a

rule and can thus evolve to the form specified by the corresponding RHS. Usually

([3]), a graph G is represented as the tuple <NG,rootG,SymG,SuccG> where:

• NG is the set of nodes for G

• rootG is a special member of NG, the root of G

• SymG is a function from NG to the set of all function symbols

• Succ G is a function from N G to the set of tuples N G
* , such that if

Succ(N)=(N1…Nk) then k is the arity of N and N1…Nk are the arguments of N.

Note that the arguments of a graph node are identified by position and in fact we

write Succ(N,i) to refer to the ith argument of N using a left-to-right ordering.

The context-free grammar for describing a graph could be something like

graph ::= node | node+graph

node ::= A(node,…,node) | identifier | identifier:A(node,…,node)

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 4 —

where A ranges over a set of function symbols and an identifier is simply a

name for some node.

In the associated compiler target language Dactl, a graph G is represented as the

tuple <NG,rootG,SymG,SuccG, NMarkG, AMarkG> where in addition to those

parts of the tuple described above we also have:

• NMarkG which is a function from NG to the set of node markings {ε,*,#n}

• AMarkG which is a function from NG to the set of tuples of arc markings {ε,^}*

A Dactl rule is of the form

Pattern -> Contractum, x1:=y1,…,xi:=yi,µ1z1…µjzj

where after matching the Pattern of the rule with a piece of the graph

representing the current state of the computation, the Contractum is used to add

new pieces of graph to the existing one and the redirections x1:=y1,…,xi:=yi

are used to redirect a number of arcs (where the arc pointing to the root of the

graph being matched is usually also involved) to point to other nodes (some of

which will usually be part of the new ones introduced in the Contractum); the

last part of the rule µ1z1…µjzj specifies the state of some nodes (idle, active or

suspended).

The Pattern is of the form F[x1:P1 … xn:Pn] where F is a symbol name, x1

to xn are node identifiers and P1 to Pn are patterns. In particular a pattern Pi

can be, among others, of the following forms with associated meanings:

ANY it matches anything

INT,CHAR,STRING with obvious meanings

READABLE it matches a symbol name which can only be matched

CREATABLE it matches a symbol name which can be matched and

created

REWRITABLE it matches a symbol name which can be rewritten with

root overwrites

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 5 —

OVERWRITABLE it matches a symbol name which can be overwritten with

non-root overwrites

(P1+P2) it matches a symbol name which is either P1 or P2

(P1&P2) it matches a symbol name which is both P1 and P2

(P1-P2) it matches a symbol name which is P1 but not P2

The Contractum is also a Dactl graph where however the definitions for node

identifiers that appear in the Pattern need not be repeated. So, for example, the

following rule

r:F[x:(ANY-INT) y:(CHAR+STRING) v1:REWRITABLE v2:REWRITABLE]

-> ans:True, d1:1, d2:2, r:=*ans, v1:=*d1, v2:=*d2;

will match that part of a graph which is rooted at a (rewritable) symbol F with

four descendants where the first matches anything (ANY) but an integer, the

second either a character or a string and the rest overwritable symbols. Upon

selection, the rule will build in the contractum the new nodes ans, d1 and d2

with patterns True, 1 and 2 respectively; finally, the redirections part of the rule

will redirect the root F to ans and the sub-root nodes d1 and d2 to 1 and 2

respectively. The last two non-root redirections model effectively assignment. A

number of syntactic abbreviations can be applied which lead to the following

shorter presentation of the above rule

F[x:(ANY-INT) y:(CHAR+STRING) v1:REWRITABLE v2:REWRITABLE] => *True, v1:=*1, v2:=*2;

where => is used for root overwriting and node identifiers are explicitly

mentioned only when the need arises. Finally, note that all root or sub-root

overwritings involved in a rule reduction are done atomically. So in the above

rule the root rewriting of F and the sub-root rewritings of v1 and v2 will all be

performed as an atomic action.

The way computation evolves is dictated not only by the patterns specified in a

rule system but also by the control markings associated with the nodes and arcs of

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 6 —

a graph. In particular, * denotes an active node which can be rewritten and #n

denotes a node waiting for n notifications. Notifications are sent along arcs

bearing the notification marking ^. Computation then proceeds by arbitrarily

selecting an active node t in the execution graph and attempting to find a rule

that matches at t. If such rule does not exist (as, for instance, in the case where t

is a constructor) notification takes place: the active marking is removed from t

and a “notification” is sent up along each ^-marked in-arc of t . When this

notification arrives at its (necessarily) #n -marked source node p, the ^ mark is

removed from the arc, and the n in p’s #n marking is decremented. Eventually,

#0 is replaced by *, so suspended nodes wake when all their subcomputations

have notified.

Now suppose the rule indeed matches at active node t. Then the RHS of that

rule specifies the new markings that will be added to the graph or any old ones

that will be removed. In the example above, for instance, the new nodes ans, d1

and d2 are activated. Since no rules exist for their patterns (True, 1 and 2 are

“values”), when their reduction is attempted, it will cause the notification of any

node bearing the # symbol and its immediate activation. This mechanism

provides the basis for allowing a number of processes to be coordinated with each

other during their, possibly concurrent, execution.

In order to further illustrate some of Dactl’s features which are important for

understanding the rest of the paper we present below the equivalent Dactl

program for a non-deterministic merge as it would be written in any state-of-the-

art concurrent logic language ([24]).

merge([X|XS],YS,ZS] :- ZS=[X|ZS1], merge(XS,YS,ZS1).

merge(XS,[Y|YS],ZS) :- ZS=[Y|ZS1], merge(XS,YS,ZS1).

merge([],YS,ZS) :- ZS=YS.

merge(XS,[],ZS) :- ZS=XS.

MODULE Merge;

IMPORTS Arithmetic; Logic;

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 7 —

SYMBOL REWRITABLE PUBLIC CREATABLE Merge;

SYMBOL OVERWRITABLE PUBLIC OVERWRITABLE Var;

SYMBOL CREATABLE PUBLIC CREATABLE Cons; Nil;

PATTERN PUBLIC PAIR = Cons[head:ANY tail:ANY];

 LIST = (PAIR+Nil);

RULE

Merge[Cons[x xs] ys zs:Var] => *Merge[xs ys zs1], zs:=*Cons[x zs1:Var]|

Merge[xs l:PAIR zs:Var] => *Merge[xs l.tail zs1], zs:=*Cons[l.head zs1:Var]|

Merge[Nil ys zs:Var] => *True, zs:=*ys|

Merge[xs Nil zs:Var] => *True, zs:=*xs;

(Merge[p1 p2 p3]&Merge[Var ANY ANY]+Merge[ANY Var ANY]) => #Merge[̂ p1 ̂ p2 p3];

Merge[ANY ANY ANY] => *False;

ENDMODULE Merge;

The module starts with a declaration of all the new symbols to be used in the

program and the way they are supposed to be used. So, for instance, Merge can be

rewritten in this module but can only be created in some other module whereas

Var, playing the role of a “variable”, can be overwritten anywhere. Some patterns

are also declared: so PAIR will match a pattern of the form Cons[head tail]

where head and tail can be anything, whereas LIST is defined as a pattern

which will match either a PAIR or the symbol Nil.

The first four Dactl rules implement the corresponding ones of the original

program. Note again here the use of => instead of -> for root overwriting and the

use of := to model assignment. Note also the selection operator . used for

illustrative purposes in the second rule where x.y is used to refer to a node y of

some pattern x. The fifth rule models the suspension of the process if none of its

first two input arguments is instantiated yet; note the use of the pattern operators

& (conjunction) and + (sum). Note here also the use of two notification markings

and just one suspension marking. In general, a node of the form #P[^p1 … ^pn]

will be activated in a non-deterministic way when some pi notifies. In our

example this technique models the required non-deterministic merging of the

lists. Finally, the last rule reports failure if the input arguments have been

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 8 —

instantiated to anything other than a Cons or Nil. Rules separated by a | can be

tested in any order whereas those separated by a ; will be tested sequentially.

We should also stress again the point that the nodes of a graph are labelled with

symbols for which an associated access class is specified. In particular, a

REWRITABLE symbol (such as Merge) can be rewritten only by means of ordinary

root redirections whereas an OVERWRITABLE symbol (such as Var) can be

rewritten only by means of non-root redirections; also a CREATABLE symbol can

only be used as the name implies. An overwritable symbol can be “assigned”

values by means of non-root overwrites as many times as it is required, and can

thus play the role of either a declarative single-assignment variable or the usual

imperative one.

It should be apparent by now that TGRS is a powerful generalised computational

model able to accommodate the needs of a number of languages, often with

divergent operational semantics such as lazy functional languages ([14,16]),

“eager” concurrent logic languages ([11,19]) or combinations of them ([12]).

Furthermore, recent studies have shown that TGRS are able to act as a means for

implementing languages based on computational models such as Linear Logic

([2]) and π-calculus ([7]). In addition, the implementation of TGRS themselves on

a variety of (data-flow and graph rewriting) machines such as Alice ([5]), Flagship

([15,30]) and GRIP ([20]) has been extensively studied. Thus, TGRS can be viewed

as playing the role of a UNiversal COmputer Language ([29]) for a variety of

programming languages and architectures.

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 9 —

PARLOG

GHC

GHC/F

CP family HOPE ML OO lang

Dactl Computational Model

(Term Graph Rewriting Systems)

FLAGSHIP ALICE GRIP Sequential
Implement

TRS

Linear
Logic

 calculus

For more information on TGRS the reader is advised to consult [21,26] whereas

for Dactl appropriate references are ([8,9,10]). The rest of the paper can be viewed

as an attempt to add one more box to the top part of the figure shown above, that

one of Object Oriented Programming.

3. TERM GRAPH REWRITING WITH RECORDS

In order to be able to model some fundamental OOP techniques we propose the

introduction of records where the aim is to support standard record

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 10 —

manipulation operations such as record creation, selection and updating of a

record’s elements, etc. without the need to extend the semantics of the

underlying TGR model of computation. In particular, a record is a data structure

of the form

Record[“string_name id” Name1[value1] … Namen[valuen]]

where the following symbol declarations have been defined.

SYMBOL CREATABLE PUBLIC CREATABLE Record; Unbound;

SYMBOL OVERWRITABLE PUBLIC OVERWRITABLE Name1; … ;Namen;

PATTERN PUBLIC RECORD = (Record[STRING]+Record[STRING ANY]+Record[STRING ANY ANY]+

 Record[STRING ANY ANY ANY]+ …);

 NAME = (Name1+ … +Namen);

In other words, a record is a data structure comprising a string (its name id), and a

sufficient number of overwritable symbols (possibly none if the record denotes a

constant value) which represent the fields of the record. In Name[value], value

can be any value (even another record or a function invocation) including the

special symbol Unbound with the obvious meaning. The following fundamental

operations are allowed on records.

CreateRecord[rec_name:STRING Names[name1 … namen] Values[value1 … valuen]]

=> *Record[rec_name Name1[value1] … Namen[valuen]];

RecordElement[rec:RECORD name:NAME] => *value;

SetRecordElement[rec:RECORD name:NAME value] => *True, name:=*value;

Note that the textual ordering of names and their values in the first rule is

immaterial. Note also that in selecting the value of a record element in the

second rule, if Name is not a field of the record the rule returns False as the

answer. However, an attempt to update a record field which does not exist (third

rule) is considered a null operation; SetRecordElement will stil return True but

of course no field will be updated. This is a typical approach when named

parameters or variables are involved in a computation ([4,28]).

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 11 —

All these three operations on records are implemented at a lower level in the

language but in a way that adheres to the already established semantics for TGRS.

Name comparison, for instance, is done by mapping the respective symbols onto

their equivalent string values and checking for string equality. As it has already

been mentioned, records in Dactl are updatable objects where the value of a

(named) field can be changed multiple times by virtue of the semantics of non-

root redirections supported by the underlying TGR model.

The introduction of named parameters in functions by means of using records

leads necessarily to more verbose coding. For instance, the following piece of

code

Sell[rec:RECORD] => #IF[̂ ##AND[̂ and1 ̂ and2] new_rec Wrong_Input],

 and1:#EQ[̂ *RecordElement[rec Colour] Red],

 and2:#EQ[̂ *RecordElement[rec Size] Large],

 new_rec:CreateRecord[“NewRec” names values],

 names:Names[Colour Size Sold],

 values:Values[Red Large True];

where IF and AND are defined by the rules

IF[True then else] => *then| AND[True True] => *True;

IF[False then else] => *else; AND[ANY ANY] => *False;

models a function which given a record having named parameters Colour and

Size with values Red and Large respectively, creates a new record consisting of

the fields Colour and Size having their previous values and a new field Sold

with value True; in any other case the function returns an appropriate error

message.

In order to avoid the creation of such elaborate code, we introduce some syntactic

sugar. In particular, we define the record field selection operator ····· whose use is

better described by means of the following examples:

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 12 —

F[rec:RECORD·····Name:George] => *True, rec·····Age:=*32;

G[rec:RECORD·····Colour:x ans:Unbound] => *True, ans:=*x;

H[rec:RECORD·····Value:x:(ANY-INT)] => *x;

The first rule is a candidate for matching if F’s argument is a record having a field

named Name with George as value. Upon selection, the rule rewrites to True and

instantiates the field Age of the record to 32. The second rule is a candidate for

matching if G’s argument is a record having a field named Colour; in this case

the rule rewrites to True and instantiates G’s second argument to Colour’s value.

Finally, the last rule is a candidate for matching if H ’s argument is a record

having a field named Value whose value is anything but an integer; the rule

simply rewrites to that value. It is easy to show that all these sugared versions of

selecting and updating fields of records require no semantic extensions to the

basic TGRS model and can be implemented in terms of the three basic operations

on records that were discussed earlier on. Using the °° operator then, the Sell

rewrite rule can be written simpler as follows:

r:Sell[rec:RECORD], new_rec:<<“NewRec” Colour:col Size:sz Sold:True>>,

rec·····Colour:col:Red, -> r:=*new_rec;

rec·····Size:sz:Large

Sell[ANY] => *Wrong_Input;

Note the way the LHS of the first rule is formed to cope with a double matching

on the record and the use of the new operator <<…>> for providing a shorter way

to create a new record. The first rule could also have been written instead as

follows:

Sell[RECORD[“Rec” Colour[col:Red] Size[sz:Large]]]

=> *<<“NewRec” Colour:col Size:sz Sold:True>>;

Nevertheless this version destroys the encapsulation offered by named records:

the rule must be aware of all the details related to the contents of the record

whereas the previous version is valid for any record having fields named

Colour and Size with the required values. In the rest of the paper we will be

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 13 —

using sugared syntax with the understanding that all programs shown can be

rewritten to the core subset of the language without the need to extend

semantically the underlying TGRS model.

This point brings us to the second contribution made in this paper (the first being

the introduction of records per se): if the use of records is coupled with an

enforced programming methodology where, with the exception of built-in

functions and other similar objects, function parameters are encapsulated within

a record and operations such as pattern matching are viewed as field selections, a

compact formalism is yielded able to accommodate fully the needs of OOP such

as support for software composition. In addition, data abstraction and object

encapsulation is respected since selective (“by need”) pattern matching does not

require knowledge of the complete structure of the object that is being pattern

matched. So a user program does not have to rely on knowing information like

the arity of a function or the full range of parameters it takes. In addition,

reusability comes for free due to the inherent notion of sharing available in a

graph rewriting framework.

We show the principles of programming in “TGRS with names” by means of a

couple of suitable examples. The first defines the function Polynomial with

signature [x:INT,y:INT,a:INT,b:INT,c:INT] -> [res1:INT,res2:INT]

where the parameters res1 and res2 will eventually be bound to the results of

computing (a*x+b*y)*(a*x+b*y) and (a*x+b*y)*(a*x+b*y+c) respectively.

Note that by returning two results, Polynomial belongs more to the realm of

(concurrent) logic programming rather than functional programming.

SYMBOL REWRITABLE PUBLIC CREATABLE Polynomial;

SYMBOL OVERWRITABLE PUBLIC OVERWRITABLE Var;

r:Polynomial[rec:RECORD], -> share:##IAdd[̂ *IMul[r·····a r·····x] ̂ *IMul[r·····b r·····y]],

r·····x:INT, r·····y:INT, r·····res1:=##IMul[̂ share ̂ share],

r·····a:INT, r·····b:INT, r·····c:INT, r·····res2:=##IMul[̂ share ̂ #IAdd[̂ share r·····c]];

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 14 —

r·····res1:Var, r·····res2:Var

r:Polynomial[rec:RECORD], -> #r;

r·····a:(Var+INT), r·····b:(Var+INT), r·····c:(Var+INT),

r·····x:(Var+INT), r·····y:(Var+INT),

r·····res1:Var, r·····res2:Var

Polynomial[ANY] => *False;

The first rule performs the computation where we note the sharing of

computing the common subexpression (a*x+b*y) but also the subsequently

concurrent evaluation of the two results. The second rule performs the

synchronisation needed in case some of the required input parameters have not

been instantiated yet. More to the point, what the + patterns in the LHS of the

rule say is that if some of the input parameters are Var (i.e. still uninstantiated)

but the rest are instantiated to a valid value (i.e. an integer) the function

suspends. The third rule returns some appropriate value (such as False) since

when matching reaches this rule it means that some of the record’s parameters

are instantiated to an invalid value (i.e. some value other than Var or integer).

Note that the syntactic ordering of referring to some node r·····x is immaterial. So

the record representing a polynomial may well have more input or ouput

parameters and some other function running in parallel with Polynomial could

be computing concurrently other related results.

The next example encodes some well known list manipulation functions

(including a functional variant of the non-deterministic merge shown earlier on)

using records.

SYMBOL OVERWRITABLE PUBLIC OVERWRITABLE Head; Tail;

PATTERN PUBLIC Nil = Record[“Nil”];

 Cons = Record[“Cons” Head[ANY] Tail[ANY]];

Length[rec:Nil] => *0|

Length[rec:Cons] => #IAdd[1 ̂ *Length[rec·····Tail]];

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 15 —

Length[unb:Var] => #Length[̂ unb];

Length[f:REWRITABLE] => #Length[̂ *f];

Append[rec1:Nil rec2] => *rec2;

Append[rec1:Cons rec2] => *<<“Cons” Head:rec·····Head Tail:*Append[rec·····Tail rec2]>>;

Synchronisation rules for Append

Merge[rec1:Cons rec2] => *<<“Cons” Head:rec1·····Head Tail:*Merge[rec1·····Tail rec2]>>|

Merge[rec1 rec2:Cons] => *<<“Cons” Head:rec2·····Head Tail:*Merge[rec1 rec2·····Tail]>>|

Merge[Nil rec2:(Cons+Nil)] => *rec2;

Merge[rec1:(Cons+Nil) Nil] => *rec1;

Merge[ANY ANY] => *False;

Synchronisation rules for Merge

A call to Length, for instance, could take the following form (where INITIAL

denotes the first rule to be tried in a Dactl program).

INITIAL => *Length[list], list:<<“Cons” Head:1 Tail:<<“Cons” Head:2 Tail:<<“Nil”>>>>>>

We should stress a rather important point at this stage: the techniques we present

for record manipulation in TGRS are independent of whether the programming

framework (more precisely, the OO language that will be compiled down to Dactl

code) is a functional or a (concurrent) logic one (or even an imperative one).

Thus, we have been rather liberal and general in providing synchronisation code

for the concurrently executing functions of a Dactl program. For instance, the last

two rules in the definition of the Length function, which model the required

synchronisation of that function with others, cover both the cases where the

original program is a functional one (the last rule will fire the argument if it is

still a function and wait until its evaluation returns a record) or a logic one (the

one but last rule will suspend waiting for the variable to be instantiated to some

record by some other producer predicate). Wherever we feel that by refraining to

include such code we do not compromise our assertions about the validity of our

examples, and in order to keep their length down to resonable size, we will

refrain from including it from now on. However, it should be assumed implicit

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 16 —

in any complete and formal translation from some OO language to its equivalent

Dactl code.

Our final example in this section illustrates the use of TGRS with records to act as

an implementation model for “calculi with names” such as λN ([4]) and the γ-

calculus ([28]), as it was done for other calculi ([2,7]). For lack of space we only

highlight briefly the principles of such a mapping, concentrating on λN. The

syntax of λN and the associated reduction rules are as follows:

xi ∈ Names, v ∈ Variables, a,b ∈ Terms

v ::= x | \v variables

a ::= λ(x1,…,xn)a abstraction

| v variable

| a(x->b) bind operation

| a! close operation

(λ(x1,…,xn)a)(xi->b) -> λ(x1,…,xn)(a[xi->b])

(λ(x1,…,xn)a)! -> a

Note that \v is a protected variable which belongs to the outer abstraction (use of

α-conversion is for obvious reasons not possible). All the names introduced in

the definition of an abstraction are at the same level. Note the use of two

reduction rules where a(x->b) binds the name x in a to b and a! performs the

actual reduction. This allows the binding of a function’s arguments to be done in

any order, even concurrently, and the actual function reduction to be done when

all (input) arguments have been instantiated, thus achieving some of the

functionality of a concurrent logic program.

The principles of mapping λN to TGRS with records are shown below.

SYMBOL REWRITABLE PUBLIC CREATABLE L; { the λN abstraction

SYMBOL OVERWRITABLE PUBLIC OVERWRITABLE X1;…;Xn; { its names

PATTERN PUBLIC L_REC = Record[“L” X1[ANY] … Xn[ANY]];

 NAME = (X1+ … +Xn);

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 17 —

RULE

some_lhs -> l:<<“L” X1[Unbound] … Xn[Unbound]>>,

{ creating a template for the abstraction

l·····Xi:=…, l·····Xj:=…;

{ binding some of L’s named parameters

r:L[l:L_REC] -> l·····Xk:=…, binding some more parameters

*r; firing the abstraction

Note that what happens in general when an expression a(x->b)(x->c) is

evaluated, depends very much on the semantics of the underlying

computational formalism. In λN itself, the first binding is performed and the

second is simply ignored. In other models ([28]) the two bindings could be

attempted in a non-deterministic way but again the one that did not manage to

update x will not produce an error. This functionality can be easily captured in

TGRS with records by simply examining whether the target r in r·····x is still an

overwritable node and abandoning the operation otherwise. If a model dictates

so, a totally imperative approach can also be modelled where both the above

bindings are performed either sequentially or in a non-deterministic concurrent

way with the last one prevailing.

4. INHERITANCE MECHANISMS IN TGRS WITH RECORDS

4.1 Object Encapsulation and Representation

The extended with records framework provides the required mechanism needed

for object encapsulation and representation and acts as the basis for modelling

various forms of inheritance. In general, there are a number of ways to achieve

encapsulation (and hence inheritance) either in a (concurrent) logic ([6,13,27,28])

or a functional ([4,17,18,31]) framework. Here we concentrate on those techniques

that use records as first class objects.

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 18 —

We use as an example the unavoidable 2- and 3-dimensional point with a

number of elementary methods associated with it. A first approach is shown

below:

SYMBOL CREATABLE PUBLIC CREATABLE SetX; SetY; Move; Clear; { methods

SYMBOL REWRITABLE PUBLIC CREATABLE Point2D; Point3D; { object

SYMBOL REWRITABLE Point2D_aux;

SYMBOL OVERWRITABLE PUBLIC OVERWRITABLE XCoord; YCoord; ZCoord; Colour; { parameters

PATTERN PUBLIC POINT2D = Record[“Point2D” XCoord[ANY] YCoord[ANY]]; { classes

 POINT3D = Record[“Point3D” XCoord[ANY] YCoord[ANY] ZCoord[ANY]];

 POINT2DCol = Record[“Point2DCol” XCoord[ANY] YCoord[ANY] Colour[ANY]];

 POINT = (POINT2D+POINT3D+POINT2DCol); { more general class patterns

 NAME = (XCoord+YCoord+ZCoord+Colour);

Point2D[rec:POINT Nil] => *rec|

Point2D[rec:POINT Cons[message rest]] => #Point2D[̂ *Point2D_aux[rec message] rest];

Point2D_aux[rec name:NAME] => *rec·····name|

Point2D_aux[rec SetX[dx:INT]] => *rec, rec·····XCoord:=*dx|

Point2D_aux[rec SetY[dx:INT]] => *rec, rec·····YCoord:=*dy|

Point2D_aux[rec Move[dx:INT dy:INT]]

=> *rec, rec·····XCoord:=*IAdd[rec·····XCoord dx], rec·····YCoord:=*IAdd[rec·····YCoord dy]|

Point2D_aux[rec Clear] => *rec, rec·····XCoord:=*0, rec·····YCoord:=*0;

A number of points should be cleared before we continue the discussion. The

class of a 2- or 3-dimensional point is represented by means of an appropriate

record. The corresponding object is represented by means of a recursive function

comprising two arguments: the record and a stream parameter accepting a list of

messages to this object. Each message in the list is handled by an associated

auxiliary function which returns the updated record.

Note that the updating of the record is done “in place”, effectively by resorting to

imperative techniques (destructive assignment) by means of non-root overwrites

supported by TGRS. This is a more efficient approach than creating a brand new

record with the new values and does not compromise the declarativeness of the

framework. Note also the way class patterns are defined, allowing the use of

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 19 —

methods such as Move for a variety of similar types of points. This is possible, of

course, because the use of records renders the update operations polymorphic

and independent of, say, the number and names of arguments in other types of

points.

A further couple of points should be noted which apply in fact to all the

examples in this section: i) the updating operations of different fields in a record

are done concurrently, exploiting here the high degree of fine grain parallelism

available in the TGR model; ii) messages like Move should, strictly speaking, also

be records so that the textual position of their components (and possibly other

information such as their number) need not be known by the object handling

them. We choose the ordinary positional approach however for the sake of

keeping the complexity of the presentable code down to a manageable level.

The above approach achieves object encapsulation and reuse of methods by

instances of other similar classes. However an even more flexible approach is the

following where the record itself is extended with a Class parameter denoting

the class of the object and allowing the extracting of a method from a class and its

direct application to instances of subclasses. We present only that part of the code

which is different from the one shown above.

SYMBOL REWRITABLE Point2Da;

PATTERN PUBLIC POINT = Record[“Point2D” Class[Point2D] XCoord[ANY] YCoord[ANY]];

 METHOD = (GetX[ANY]+GetY[ANY]+SetX[ANY ANY]+SetY[ANY ANY]+

 Move[ANY ANY ANY]+Clear[ANY]);

Point2D[method:METHOD] => *Point2D_aux[method]|

Point2D[Nil] => *True|

Point2D[Cons[message rest]] => #Point2Da[̂ *Point2D_aux[message] rest];

Point2Da[ANY Nil] => *True;

Point2Da[ans Nil] => *ans; { when the last message will cause an answer

Point2Da[ANY Cons[message rest]] => #Point2Da[̂ *Point2D_aux[message] rest];

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 20 —

Point2D_aux[GetX[rec:POINT]] => *rec·····XCoord;

Point2D_aux[GetY[rec:POINT]] => *rec·····YCoord;

Point2D_aux[SetX[rec:POINT dx:INT]] => *rec, rec·····XCoord:=*dx|

Point2D_aux[SetY[rec:POINT dy:INT]] => *rec, rec·····YCoord:=*dy|

Point2D_aux[Move[rec:POINT dx:INT dy:INT]]

=> *rec, rec·····XCoord:=*IAdd[rec·····XCoord dx], rec·····YCoord:=*IAdd[rec·····YCoord dy]|

Point2D_aux[Clear[rec:POINT]] => *rec, rec·····XCoord:=*0, rec·····YCoord:=*0;

Note that both the method to be invoked and the record whereupon the method

will be applied are now part of the messages an object receives. In order to use

this approach the appropriate class must be selected first followed by a selection of

the required method. Here we make use of the following “metarule” available in

Dactl.

Apply_To[f:FUNCTION_NAME param1 … paramn] => *F[param1 … paramn];

A typical query now takes the following form (where MovedPoint is an instance

of Point2D).

MovedPoint[rec:POINT messages] => #Wait_for_ans[rec ̂ *Apply_To[rec·····Class messages]];

Wait_for_ans[updated_record True] => *updated_record;

Wait_for_ans[updated_record ans] => *ANS[updated_record ans];

INITIAL => *MovedPoint[rec:<<“Point2D” Class:Point2D XCoord:0 YCoord:0>> messages],

 messages:Cons[SetX[rec 2] Cons[SetY[rec 3] Cons[Move[rec 5 6] Nil]]];

Note the sharing of the record by all messages sent to Point2D.

4.2 Inheritance

The last technique for object encapsulation and representation discussed above

can be used as the basis for modelling inheritance where methods defined in a

certain class are applied to instances of some other class. In order to illustrate this

ability we define a 3-dimensional point which inherits the methods of its 2-

dimensional counterpart (some pattern definitions must be redefined and their

new values are also shown below).

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 21 —

SYMBOL CREATABLE PUBLIC CREATABLE GetZ; SetZ; Move2D; Move3D;

SYMBOL REWRITABLE PUBLIC CREATABLE Point3D;

SYMBOL REWRITABLE Point3D_aux;

SYMBOL OVERWRITABLE PUBLIC OVERWRITABLE ZCoord;

PATTERN PUBLIC POINT = (Record[“Point2D” Class[Point2D] XCoord[ANY] YCoord[ANY]]+

 Record[“Point3D” Class[Point3D] XCoord[ANY] YCoord[ANY] ZCoord[ANY]]);

 METHOD2D = (GetX[ANY]+GetY[ANY]+SetX[ANY]+SetY[ANY]);

 METHOD = (METHOD2D+GetZ[ANY]+SetZ[ANY]+

 Move2D[ANY ANY ANY]+Move3D[ANY ANY ANY ANY]);

Point3D is defined in the same way as Point2D

Point3D_aux[GetZ[rec:POINT]] => *rec·····ZCoord;

Point3D_aux[SetZ[rec:POINT dz:INT]] => *rec, rec·····ZCoord:=*dz|

Point3D_aux[method:Move2D[rec:POINT dx:INT dy:INT]] => *Point2D[Move[rec dx dy]]|

Point3D_aux[Move3D[rec:POINT dx:INT dy:INT dz:INT]]

=> *Point2D[Move[rec dx dy]], rec·····ZCoord:=*IAdd[rec·····ZCoord dx]|

Point3D_aux[method:METHOD2D] => *Point2D[method];

In the example above, a number of OOP techniques are applied simultaneously:

i) Point3D renames Move to Move2D, ii) it inherits its code from Point2D in

order to implement a Move3D operation, iii) it defines new methods for accessing

and updating the third argument, and iv) it forwards all the other messages to

Point2D. This is sufficient for modelling inheritance based on static binding.

Note that in the last but one rule, the two activities of the invoking of the

methods in Point2D and the updating of the third argument by Point3D itself,

are both done concurrently.

However, it is also possible to model more flexible forms of inheritance based on

dynamic binding by noting that: i) instead of mentioning explicitly class (and

super class) names we can get them from the record information, and ii)

methods such as Move and Move3D can in fact be implemented in terms of more

elementary methods such as GetX, etc. defined in the same class. This requires

simply the extension of some class with an additional field representing its

superclass as follows:

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 22 —

Record[“Point3D” Class[Point3D] Super[Point2D] XCoord[INT] YCoord[INT] ZCoord[INT]]

Now the implementation of Point3D is as follows.

Point3D_aux[GetZ[rec:POINT]] => *rec·····ZCoord;

Point3D_aux[SetZ[rec:POINT dz:INT]] => *rec, rec·····ZCoord:=*dz|

Point3D_aux[method:Move2D[rec:POINT dx:INT dy:INT]]

=> *Apply_TO[rec·····Super Move[rec dx dy]]|

Point3D_aux[Move3D[rec:POINT dx:INT dy:INT dz:INT]]

=> *Apply_TO[rec·····Super Move[rec dx dy]],

 rec·····ZCoord:=#IAdd[dz ̂ new_z], new_z:*Apply_TO[rec·····Class GetZ]|

Point3D_aux[method:METHOD2D] => *Apply_TO[method·····Super method];

where we rely again on the functionality of the Apply_To metarule to create

dynamically function applications. Note that the classes involved (Point2D and

Point3D) are not mentioned explicitly and are derived by means of retrieving

the appropriate values from the parameters Class and Super. These classes can,

of course, be changed dynamically as in the following example

Point[rec:POINT] => *Point3D[rec], rec·····Super:=*Point3DColour;

where all references to super will now use the methods in the class

Point3DColour.

Finally, note that the operational semantics of the inheritance mechanism

discussed in this section is not based on code copying as it is done in other

models ([13]) and no code duplication is required.

4.3 The Inheritance Anomaly

An important point to note is the fact that by extending the definition of the

record with the Class and Super fields we have actually turned the classes

identifiers into first class values; a class identifier can now be matched in the LHS

of some rule and its value can even be changed. It has recently been shown ([18])

that this approach can lead to an elegant solution to the so called inheritance

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 23 —

anomaly caused by the conflicting nature of concurrency and inheritance

([17,18,31]).

In particular, the problem arises because of the need in a concurrent OOP

environment to include in the code for the methods of an object some

synchronisation constraints on the acceptance of a message by an object. A typical

example is that of a bounded buffer where a put message should be accepted only

if the buffer is not full and a get message should be accepted only if the buffer is

not empty. The problem that arises then is that the code which is responsible for

performing the checking on whether the current state of a bounded buffer object

allows it to accept a put or a get message, the so called synchronisation code in

general, is difficult to inherit without extensive, sometimes, redefinitions. Using

only the most important parts of the produced code the put and get methods of

such a bounded buffer object could be defined as follows:

PUBLIC PATTERN BUFFER = Record[“Buffer” Class[Buffer] LIMIT[INT] CONTENTS[LIST]

 IN[INT] OUT[INT]];

Buffer[put:Put[ANY buffer:BUFFER]] { if buffer is full ignore the message

=> #IF[̂ #ILESS[̂ *ISUB[buffer·····IN buffer·····OUT] buffer·····LIMIT] Buffer1[put] True];

Buffer[get:GET[ANY buffer:BUFFER]] { if buffer is empty ignore the message

=> #IF[̂ *ILESS[buffer·····OUT buffer·····IN] Buffer1[get] True];

Buffer1[Put[item buffer:BUFFER]] => *buffer, buffer·····IN:=*IAdd[buffer·····IN 1],

 buffer·····CONTENTS:=*Cons[buffer·····CONTENTS item];

r:Buffer1[Get[toObject buffer:BUFFER]], -> buffer·····OUT:=*IAdd[buffer·····OUT 1],

buffer·····CONTENTS:Cons[item rest] toObject:=*item, r:=*buffer;

where Put[item] adds item to the buffer and Get[toObject] sends the last

item added to the buffer to the object toObject. Now consider having a class

Lock of lockable objects in general; a lockable bounded buffer object then, which

ignores get or put messages when it is locked, could be defined by multiple

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 24 —

inheritance from bounded buffers and lockable objects where the standard

approach is to add a boolean value attribute to ascertain whether the state of the

object is locked or unlocked. It becomes immediately apparent however that

although the issue of a buffer being locked is orthogonal to that of receiving get

or put messages, the methods for these two messages must be redefined in order

to test the value of the boolean attribute before accepting any of those messages.

The solution proposed ([18]), which our framework is able to implement because

of the way classes and superclasses are represented, is to effectively change the

class of some object when it becomes locked or unlocked. The way a lockable

bounded buffer object then is defined in our model is shown below.

Buffer is defined as before

r:Buffer1[Put[item buffer:BUFFER]], -> buffer·····IN:=*IAdd[buffer·····IN 1],

buffer·····Class:Buffer buffer·····CONTENTS:=*Cons[buffer·····CONTENTS item],

r:=*buffer;

Buffer1[Put[ANY buffer]] => *buffer;

r:Buffer1[Get[toObject buffer:BUFFER]], -> buffer·····OUT:=*IAdd[buffer·····OUT 1],

buffer·····CONTENTS:Cons[item rest], toObject:=*item,

buffer·····Class:Buffer r:=*buffer;

Buffer1[Get[toObject buffer]] => *buffer, toObject:=*Error;

r:Lockable[Lock[rec:RECORD]], -> rec·····Class:=*Locked[class],

rec·····Class:class:(ANY-Locked[ANY]) r:=*rec;

r:Lockable[UnLock[rec:RECORD]], -> rec·····Class:=*class,

rec·····Class:Locked[class]) r:=*rec;

PATTERN PUBLIC LCKBUFFER = Record[“LockableBuffer” Class[LckBuf] Super[(Buffer+Lockable)]

 LIMIT[INT] CONTENTS[LIST] IN[INT] OUT[INT]];

LckBuf[mess:(Get[ANY ANY]+Put[ANY ANY])] => *Buffer[mess]|

LckBuf[mess:(Lock[ANY]+Unlock[ANY])] => *Lockable[mess];

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 25 —

What we have done simply is to test in Buffer1 whether the Class attribute of

the record has the expected value. If it does not then the message received (Put or

Get) is ignored and the buffer object is not modified. Similarly, upon receiving a

Lock or UnLock message, the Lockable object changes the Class field of the

object it receives to Locked[class] and back to class respectively. Note that the

Put and Get method definitions require no modifications whatsoever. A

lockable bounded buffer object then simply invokes the appropriate method

depending on the messages it received. What has happened effectively is that the

synchronisation code has disappeared and its functionality has been absorbed by

the pattern matching performed in the rewrite rules.

5. IMPLICATIONS

5.1 Object Representation, Evolution and Communication

In this section we have used records for expressing a variety of different ways to

model object encapsulation and representation. Some of them are more

declarative than others (i.e. not relying on destructive operations). In addition,

they differ in the way they support inheritance mechanisms, i.e. not supporting it

at all (first approach), supporting it statically (second approach) or supporting a

fully-fledged dynamic functionality (third approach). It is also possible to define

other similar (but not identical in functionality) mechanisms. We recall that the

framework in which we have introduced record based object-oriented

functionality is an intermediate representation and an associated compiler target

language into which other programming (at the user level) languages compile.

These languages (among the many existing we mention some well known

typical representatives such as [6,13,17,18,23,25,27,28]) advocate different

approaches in dealing with object encapsulation, inheritance, etc. which vary

with respect to issues such as degree of “declarativeness”, support for concurrent

method invocation, the exact functionality of the inheritance or delegation (see

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 26 —

below) mechanism employed, etc. The three different ways we described in the

previous section have shown that our generic framework can model these

different approaches and the Dactl with records implementation can employ

whatever such mechanism the user-level object-oriented language insists on

using. For instance, purely declarative languages like [6,23] may want the Dactl

implementation to employ a mechanism like the first one whereby the pure

declarative approach (completely replacing an updated record with a copy of the

new version) may increase the degree of concurrent method invocation and

reduce the amount of locking (the object’s state, etc.) at the expense of some

copying overhead. On the other hand, in languages with coarser grain object-

oriented functionality such as [27], where destructive updating of records and

dynamic inheritance are supported in a well encapsulated way, an approach

similar to the third one may be more appropriate. Furthermore (and bearing in

mind the points raised in section 2), by employing all these different mechanisms

it is also possible to use our intermediate formalism as a comparison framework

able to systematically organise these different approaches, compare them,

examine ways of extending them and study the interaction of the extended

frameworks with existing constructs and mechanisms.

Another point worth clearing has to do with object representation and

evolution. We have deliberately not developed a specific way that defines in

some concrete manner how objects are represented, evolve or communicate

with each other. The reason is that these rather more specific aspects that

completely define some particular object-oriented framework are language

specific. We recall from the discussion so far, that our aim is to define a

framework able to accommodate the needs of various classes of object-oriented

languages while they are being mapped onto an intermediate formalism like

Dactl. Our approach is that all these different aspects have a common

denominator: a perpetual entity (object, process or whatever) that recurses and in

the process it accepts messages, invokes its own methods or delegates requests to

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 27 —

other objects, changes its state accordingly and returns its updated version. All

these activities can be done by means of recursive rewrite rules handling records

like the ones described in this section without any need (or wish) to refine

further the framework. In order to explain further the benefits of our approach

we focus our attention to the issue of object communication and method

invocation. In object-oriented languages based on the functional programming

approach (such as [23]), these mechanisms would be employed by means of

function applications. It would be possible to enhance our generic framework

with techniques developed for implementing traditional (non object-oriented)

functional languages in Dactl such as [8,12,14,16]. On the other hand, in object-

oriented languages based on the concurrent logic programming approach (such

as [6,13,25,27]), these mechanisms would be employed by means of logic variables

modelling channels through which messages representing method calls flow.

This time it would be possible to enhance our generic framework with

techniques developed for implementing traditional (non object-oriented)

concurrent logic languages in Dactl such as [2,8,11,12,19]. We are given the

opportunity to address further this point promptly.

5.2 Implementation and Performance Aspects

A prototype implementation of the framework developed in the previous

section has been implemented on top of the Dactl system ([9,10]). The only

aggregate data structure that Dactl supports is arrays and we have used it to

represent a record structure. Names are mapped to unique integer values and

operations on records are presented to the underlying system as operations on

array elements. Thus, our sequential prototype implementation is not terribly

efficient but most of the inefficiency stems from this simulation of records-as-

arrays. If records are implemented as first class citizens in C, as it is the case for

the rest of the Dactl system, then most of the extra overhead of record handling

will be removed. However, considering a distributed or parallel implementation

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 28 —

of the Dactl system ([2,15,30]) our framework, being enhanced with records and

adhering to an object-oriented programming methodology as described in the

previous sections, can derive more efficient code regarding load distribution,

communication, etc. More to the point, objects are natural distribution units

since they represent autonomous entities which communicate by means of

message passing; this can be taken into consideration by a Dactl compiler to

organise and distribute the work to be performed accordingly. We illustrate the

above points by means of the Point2D and Point3D classes as they would be

modelled by a typical concurrent object-oriented logic programming language

([6,13]) using the standard techniques developed by Shapiro and Takeuchi ([25]).

We stress the point here that languages like [6,13] simply provide a sugared

object-oriented front-end to the underlying concurrent logic framework. The

techniques employed by all these languages are simple variants of the basic

model described in [25]. According to this model, a class template is reresented by

means of a recursive predicate with sufficient numbers of arguments (an object’s

attributes, internal values, etc.) and an extra variable playing the role of a

communication channel between the object and the rest of the world. For every

method that the object must handle there are one or more clauses. This model

does not normally support true inheritance but only delegation. In such a

framework, the Point2D and Point3D classes could be modelled as follows (only

parts of the code are shown for brevity).

poin2D(Point,State) :- point2D(Point,0,0,State).

point2D([setX(V)|Rest],X,Y,State) :- point2D(Rest,NX,Y,NState),

 NX=X+V, State=[coord(NX,Y)|NState].

point2D([move(V1,V2)|Rest],X,Y,State) :- point2D(Rest,NX,NY,NState),

 NX=X+V1, NY=Y+V2, State=[coord(NX,NY)|NState].

…

point2D([],_,_,State) :- State=[].

poin3D(Point,State) :- point3D(Point,0,0,0,State).

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 29 —

point3D([setZ(V)|Rest],X,Y,Z,State) :- point3D(Rest,X,Y,NZ,NState),

 NZ=Z+V, State=[coord(X,Y,NZ)|NState].

point3D([move(V1,V2,V3)|Rest],X,Y,State) :- point3D(Rest,NX,NY,NZ,NState),

 point2D([move(v1,v2),X,Y,IState),

 update(IState,X,Y,NX,NY,OState),

 NZ=Z+V, State=[OState|NState].

…

point3D([],_,_,_,State) :- State=[].

Using the non object-oriented Dactl framework, and in particular techniques like

the ones described in detail in [11,19], the above fragment of code would generate

a Dactl program like the following (only the essential parts of the code are shown

below — the detailed compilation techniques are described in [11,19]).

Point2D[point state] => *Point2D[point 0 0 state];

Point2D[Cons[SetX[v] rest] x y state:Var] => *Point2D[rest nx y nstate:Var],

 nx:*IAdd[x v],

 state:=*Cons[Coord[nx y] nstate];

Point2D[Cons[Move[v1 v2] rest] x y state:Var] => *Point2D[rest nx ny nstate:Var],

 nx:*IAdd[x v1], ny:*IAdd[y v2],

 state:=*Cons[Coord[nx ny] nstate];

Point2D[Nil ANY ANY state:Var] => *True, state:=*Nil;

Point3D[point state] => *Point3D[point 0 0 0 state];

Point3D[Cons[SetZ[v] rest] x y z state:Var] => *Point3D[rest x y nz nstate:Var],

 nz:*IAdd[z v],

 state:=*Cons[Coord[x y nz] nstate];

Point3D[Cons[Move[v1 v2 v3] rest] x y z state:Var]

=> *Point3D[rest nx:Var ny:Var nz nstate:Var], (***)

 *Point2D[Cons[Move[v1 v2] Nil] x y istate:Var],

 *Update[istate x y nx ny ostate],

 *nz:*IAdd[z v3], state:=*Cons[Coord[nx ny nz] nstate];

Point3D[Nil ANY ANY ANY state:Var] => *True, state:=*Nil;

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 30 —

The precise compilation route of programs such as the one shown above is as

follows: the original object-oriented program, written by means of techniques

such as [6,13], is first translated to an intermediate and pure concurrent logic

notation (essentially the framework [25]) and the resulting code is finally

translated to Dactl using the techniques [11,19]. By the time the program is

represented by means of Dactl rewrite rules, all the knowledge regarding objects,

encapsulated states, etc. have been compiled away without, however, the

implementation having taken advantage of it. For instance in the rule (***)

above, it would be beneficial for the compiler to know that new entities

introduced in the rhs of the rule like the graph nodes nx, ny and nstate or the

process Update actually are used locally by the object and, thus, in a parallel

realisation of the language (like [2]) they should normally reside in the local

memory of the same processing element as the one where the rest of the entities

involved in this rule reside. This information, however, can be retained in our

enhanced with records framework. The produced code would be similar to the

one described in section 4 where, now, we show (by means of only a handful of

rules for reasons of brevity) how its run-time behaviour is optimised by means of

introducing compiler directives (shown in bold for the sake of clarity) that take

into consideration the original object-oriented structure and intended behaviour.

Point2D_aux[rec Move[dx:INT dy:INT]]

=> *rec, rec·····XCoord:=*IAdd[rec·····XCoord dx] <PLACENEAR[rec]>,

 rec·····YCoord:=*IAdd[rec·····YCoord dy] <PLACENEAR[rec]>|

…

Point3D_aux[Move3D[rec:POINT dx:INT dy:INT dz:INT]]

=> *Apply_TO[rec·····Super Move[rec dx dy]] <PLACENEAR[rec·····Super]>,

 rec·····ZCoord:=#IAdd[dz ̂ new_z] <PLACENEAR[rec]>,

 new_z:*Apply_TO[rec·····Class GetZ] <PLACENEAR[rec]>|

In code fragments like m:*Process[…] <PLACENEAR[n]> the compiler directive

PLACENEAR is used to show that the graph node m representing a piece of

computation Process[…] (possibly introduced in the rhs of some rule) should be

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 31 —

placed in the same processing element as the one that handles the process n. It is

possible to use other types of compiler directives ([9]) that add extra functionality

depending on the structure of the original object-oriented code and the intended

behaviour of the objects involved in some computation.

6. CONCLUSIONS. CURRENT AND FUTURE WORK

We recapitulate on the main contributions of the paper. We have extended the

framework of TGRS to support record manipulation and we have shown how

this extended framework can be used as the basis for modelling typical OOP

techniques in a TGR framework. We have also shown that our framework can

support concurrency, reuse (sharing) of computation as well as handle various

problems associated with the combination of non-determinism and OOP

techniques (such as inheritance). We have built a prototype implementation of

records in Dactl and we have used it to test the examples presented in the paper.

Such an extended model of TGRS with records can now play the same role that

the ordinary TGRS model has played for the past decade with respect to

(concurrent) logic ([11,18]) and functional ([14,16]) languages, namely to provide

an implementation vehicle for a number of existing OOP languages and models

([4,17,18,23,27]). In addition, as it was again the case for other declarative

formalisms ([8]), it is possible to use TGRS as a common basis for comparing

various OOP languages but perhaps more importantly for studying and

comparing different approaches regarding object encapsulation, inheritance, etc.

Finally, new (concurrent) OOP based on TGRS semantics can be designed and

implemented on top of existing TGRS languages.

We are currently defining a high-level syntax aiming at reducing program

verbosity and we study the inclusion of an appropriate type system. Also, we

investigate further the interaction of parallelism and non-determinism with the

OOP techniques supported by our model ([1]).

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 32 —

REFERENCES

1. Agha G., Wegner P. and Yonezawa A. (eds.), Research Directions in Object-

Based Concurrency, MIT Press, Cambridge, Massachusetts, 1993.

2. Banach R. and Papadopoulos G. A., Linear Behaviour of Term Graph

Rewriting Programs, Proceedings ACM SAC ’95, Nashville, TN, USA, Feb.

26-28, ACM Computer Society Press, 1995, pp. 157-163.

3. Barendregt H. P, van Eekelen M. C. J. D., Glauert J. R. W., Kennaway J. R.,

Plasmeijer M. J. and Sleep M. R., Term Graph Rewriting, Proceedings

PARLE’87, Eindhoven, The Netherlands, June 15-19, LNCS 259, Springer

Verlag, 1987, p. 141-158.

4. Dami L., Software Composition: Towards an Integration of Functional and

Object-Oriented Approaches, Ph.D. Thesis, Department of Computer Science,

University of Geneva, Switzerland, 1994.

5. Darlington J, and Reeve M., Alice - A Multiprocessor Reduction Machine for

the Parallel Evaluation of Applicative Languages, Proceedings ACM

FPLCA'81, New Hampshire, 1981, p. 65-75.

6. Davison A., POLKA: A Parlog Object-Oriented Language, Ph.D. Thesis,

Department of Computing, Imperial College, London, UK, 1989.

7. Glauert J. R. W., Asynchronous Mobile Processes and Graph Rewriting,

Proceedings PARLE’92, Champs Sur Marne, Paris, June 15-18, LNCS 605,

Springer Verlag, 1992, p. 63-78.

8. Glauert J. R. W., Hammond K., Kennaway J. R. and Papadopoulos G. A.,

Using Dactl to Implement Declarative Languages, Proceedings CONPAR’88,

Manchester, UK, Sept. 12-16, Cambridge University Press, 1988, p. 116-124.

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 33 —

9. Glauert J. R. W., Kennaway J. R., and Sleep M. R., Final Specification of Dactl,

Internal Report SYS-C88-11, School of Information Systems, University of

East Anglia, Norwich, UK, 1988.

10. Glauert J. R. W., Kennaway J. R., Papadopoulos G. A. and Sleep M. R., Dactl:

An Experimental Graph Rewriting Language, Journal of Programming

Languages, 1997, (to appear).

11. Glauert J. R. W. and Papadopoulos G. A., A Parallel Implementation of GHC,

Proceedings FGCS’88, Tokyo, Japan, Nov. 28 - Dec. 2, 1988, Vol. 3, p. 1051-1058.

12. Glauert J. R. W. and Papadopoulos G. A., Unifying Concurrent Logic and

Functional Languages in a Graph Rewriting Framework, Proceedings 3rd

Panhellenic Computer Science Conference, Athens, Greece, May 26-31, 1991,

Vol. 1, p. 59-68.

13. Goldberg Y., Silverman W. and Shapiro E. Y., Logic Programs with

Inheritance, Proceedings FGCS’92, Tokyo, Japan, June 1-5, 1992, Vol. 2, p. 951-

960.

14. Hammond K., Parallel SML: A Functional Language and its Implementation

in Dactl, Ph.D. Thesis, University of East Anglia, Norwich, UK.

15. Keane J. A., An Overview of the Flagship System, Journal of Functional

Programming 4 (1), 19-45 (1994).

16. Kennaway J. R., Implementing Term Rewrite Languages in Dactl, Theoretical

Computer Science 72, 225-250 (1990).

17. Matsuoka S., Taura K. and Yonezawa A., Highly Efficient and Encapsulated

Re-use of Synchronization Code in Concurrent Object-Oriented Languages,

Proceedings 8th OOPSLA’93, Washington D. C., USA, Sept. 26-28, ACM

Computer Society Press, 1993, p. 109-126.

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 34 —

18. Meseguer J., Solving the Inheritance Anomaly in Concurrent Object-

Oriented Programming, Proceedings ECOOP’93, Kaiserslautern, Germany,

July 26-30, LNCS 707, Springer Verlag, 1993, p. 220-246.

19. Papadopoulos G. A., A Fine Grain Parallel Implementation of Parlog,

Proceedings TAPSOFT’89, Barcelona, Spain, March 13-17, LNCS 352, Springer

Verlag, 1989, p. 313-327.

20. Peyton Jones S. L., Clack C., Salkild J. and Hardie M., GRIP - A High

Performance Architecture for Parallel Graph Reduction, Proceedings

FPLCA'87, Portland, Oregon, USA, Sept. 14-16, LNCS 274, Springer Verlag,

1987, p. 98-112.

21. Plasmeijer M. J. and Eekelen M. C. J. D., Functional Programming and

Parallel Graph Rewriting, Addison-Wesley, New York, 1993.

22. Quintas P., Software Engineering Policy and Practice: Lessons from the Alvey

Program, Journal of Systems and Software 24:1, 67-88 (1994).

23. Sargeant J., Uniting Functional and Object-Oriented Programming,

Proceedings 1st JSST, Kanazawa, Japan, Nov. 4-6, LNCS 742, Springer Verlag,

1993, p. 1-26.

24. Shapiro E. Y., The Family of Concurrent Logic Programming Languages,

Computing Surveys 21(3), 412-510 (1989).

25. Shapiro E. Y. and Takeuchi A., Object-Oriented Programming in Concurrent

Prolog, New Generation Computing 1, 25-48 (1983).

26. Sleep M. R., Plasmeijer M. J. and Eekelen M. C. J. D. (eds.), Term Graph

Rewriting: Theory and Practice, John Wiley, New York, 1993.

27. Smolka G., The Oz Programming Model, Computer Science Today, LNCS

1000, Springer Verlag, 1995, pp. 324-343.

Object-Oriented Term Graph Rewriting George A. Papadopoulos

— 35 —

28. Smolka G. and Treinen R., Records for Logic Programming, The Journal of

Logic Programming 18 (3), 229-258 (1994).

29. Steel T. B., UNCOL: The Myth and the Fact, Annual Review in Automated

Programming 2, 325-344 (1961).

30. Watson I., Woods V., Watson P., Banach R., Greenberg M. and Sargeant J.,

Flagship: A Parallel Architecture for Declarative Programming, Proceedings

15th Annual ISCA, Hawaii, May 30 - June 2, 1988, p. 124-130.

31. Yonezawa A. and Tokoro M. (eds.), Object-Oriented Concurrent

Programming, MIT Press, Cambridge, Massachusetts, 1987.

