
An Automation Component for Cross-Platform,
Context-Aware Applications Development

Achilleas P. Achilleos(B), Marita Thoma, Georgia M. Kapitsaki,
Christos Mettouris, and George A. Papadopoulos

Department of Computer Science, University of Cyprus,
1 University Avenue, Nicosia, Cyprus

{achilleas,mthoma03,gkapi,mettour,george}@cs.ucy.ac.cy
http://www.cs.ucy.ac.cy

Abstract. Context-aware computing faces many challenges mainly due
to the increasing number and heterogeneity of context sources, since
the Internet of Things introduces billions of devices. The development
of context-aware applications is thus becoming a complex and cumber-
some process, which is also augmented by the availability of different
mobile platforms. This requires a modular approach that aims to auto-
mate the development of these applications, by enabling developers to
easily add context-aware functionality. In this paper, an automation
component is presented that allows novice developers to select context
plug-ins (e.g., Geolocation, Facebook profile, battery level) and generate
a sample application that includes these context-aware functions. This
application serves as a basis for the development of more complex cross-
platform, context-aware applications. The code generation support of the
automation component is demonstrated through a case study. Finally, a
basic evaluation is performed to showcase the benefits, issues and identify
potential future work.

Keywords: Context-aware applications · Separation of concerns ·
Mobile computing · Web development · Code generation

1 Introduction

The widespread use of mobile platforms has led to new business models and
has urged organizations to provide applications for users “on the move”. These
mobile users are best served if their needs of mobility are fulfilled in all settings
without overwhelming users with redundant information. Such a personalized
technology view has been adopted by various researchers [1] and is currently
intensified by the widespread presence of sensors in mobile devices, such as GPS
receivers, accelerometers and compasses, as well as the vast volume of data avail-
able on the Internet in the form of Web Services, information from social net-
works and sensors and actuators typically connected to micro-controllers. This
necessity to follow user needs to utilize efficiently software applications and ser-
vices using different mobile devices at various places forms part of the general
c© Springer International Publishing Switzerland 2015
H. Christiansen et al. (Eds.): CONTEXT 2015, LNAI 9405, pp. 63–76, 2015.
DOI: 10.1007/978-3-319-25591-0 5



64 A.P. Achilleos et al.

term of context-awareness. Context-awareness defines a broad concept that is
generally used to describe the process of acquiring and managing different pieces
of context information to intelligently adapt the application behaviour. We adopt
the definition from Dey and Abowd [2], referring to context as “any information
that can be used to characterize the situation of an entity, in which the entity
can be a person, a place, or a physical or computational object that is considered
relevant to the interaction between the entity and the application”.

Mobile computing combined with context-awareness encompass various
aspects spanning from sensing information at the hardware and network infor-
mation level, to context-based recommendations at the application level, such as
travel or music recommendations for mobile environments [3]. Context-acquisition
from device components (e.g., device motion, battery level), from social networks
(e.g., LinkedIn, Facebook), network information (e.g., based on Cell ID, or Wi-
Fi), etc. can support and facilitate the mobile user in a variety of tasks. In fact,
this information act as enablers of context-awareness, empowering applications to
be adapted to end-user preferences and circumstances.

Although mobile devices offer clear-cut benefits to the user and context-
awareness is a desirable feature, the diversity of platforms makes development of
platform specific applications an uneconomical choice, since it requires manpower
and additional resources from the provider’s side to develop for each platform.
The problem of platforms diversity needs to be addressed, since is important by
developers to provide cross-platform applications, because even the same users
own and use different devices.

Currently, a useful alternative to native applications is offered through the
HTML5 standard, which allows accessing many device resources that were
unavailable to web technologies in the past. This vision of pure web-based devel-
opment offers many benefits to software engineers, where the key one refers to
cross-platform development: develop once, deploy anywhere. Also recent devel-
oper surveys demonstrate a tendency to move towards pure HTML5 solutions1,
as mobile browsers implement the features offered by the HTML5 standard.
Gartner also defines2: “HTML5 is in the top 10 technologies and capabilities for
2015-16 and despite many challenges, HTML5 will be an essential technology for
organizations delivering applications across multiple platforms”.

An HTML5, context middleware was developed [4], which provides a mod-
ular approach that promotes the concept of separation of concerns and thus
enables developers to reuse context plug-ins for the development of context-
aware applications. This work develops a new component that assists developers
with limited experience in developing context-aware applications, by automat-
ing a large part of the process. It allows selecting from an (extensible) pool of
context plug-ins and generates the code for a sample context-aware application
that can serve as the basis for further development. The key target is to reduce
the complexity involved with developing context-aware functionality, simply by

1 http://www.sencha.com/blog/the-state-of-html5-development-in-the-enterprise/ -
Published: February 12, 2014.

2 http://www.gartner.com/newsroom/id/2669915 - Published: February 24, 2014.

http://www.sencha.com/blog/the-state-of-html5-development-in-the-enterprise/
http://www.gartner.com/newsroom/id/2669915


An Automation Component for Cross-Platform 65

allowing developers to easily select and include context plug-ins that already pro-
vide this functionality. A further benefit is found in the production of compact
code, having clearer separation of concerns (focus on application logic instead of
context-aware functions).

The rest of the paper is structured as follows. Section 2 introduces related
work, outlining the difference of our approach in comparison to existing frame-
works. Section 3 provides an overview of the context-middleware. The following
section introduces the developed automation component and the development
pathways. Section 5 demonstrates the use of the automation component in two
scenarios of a case study and presents the results of the evaluation performed.
The final section outlines the conclusions and identifies potential future work.

2 Related Work

The provision of access to context sources to facilitate the development of mobile
applications, has been the focus in research work. MUSIC (Self-Adapting Appli-
cations for Mobile Users in Ubiquitous Computing Environments) defines a
context-management and adaptation middleware for Java [5]. MUSIC runs on
top of the OSGi (Open Service Gateway initiative) framework and includes a
number of context plug-ins available as OSGi components. Similarly to our solu-
tion, MUSIC includes the notion of context sensor and reasoner plug-ins, which
receive and process context data from other plug-ins via the middleware in order
to produce higher level data. The evolution of MUSIC, following the same ratio-
nale, but tailored to the Android platform is found in RSCM (Really-Simple
Context Middleware) [6]. The RSCM architecture differentiates between con-
text producing components (the plug-ins) and context consuming components
(the applications). RSCM is used in the Professor2Student application that offers
dynamic collaboration between supervisors and students [7].

A similar solution, which also focuses on web applications accessing sen-
sor information on the Android platform, has been proposed in Ambient
Dynamix [8]. Sensor access is handled through native plug-ins that can be
installed on-demand on the users Android device, and are organized and man-
aged by the Dynamix Service. Each plug-in provides its own set of context events
and (optionally) an API for controlling its functionality. To support communica-
tion with web applications, Dynamix exposes two REST APIs using a customized
web server embedded within the Dynamix Service. This way a web-based appli-
cation is able to interact with the associated Android plug-in to trigger context
sensing and/or remote device interactions.

Dynamix has characteristics that are closer to a “hybrid” approach (it does
not follow a pure cross-platform approach), but it rather ties web application
development to the native context plug-ins offered by the underlying Android
platform. The use of hybrid technologies is very popular in mobile application
development in an attempt to satisfy the cross-platform requirement. A vari-
ety of such technologies exists, such as PhoneGap, Apache Cordova (i.e., the
open-source engine/version that runs PhoneGap) and AppBuilder. Hybrid tech-
nologies offer usually a set of uniform JavaScript libraries that can be invoked,



66 A.P. Achilleos et al.

Table 1. Comparing HTML5 properties with hybrid and native frameworks

Feature H5CM approach Hybrid Technologies
approach

Platform-specific
frameworks
approach

Native code use x � [PhoneGap] � [RSCM, Dynamix]

Technologies used Web Technologies Web along with
platform-specific,
e.g., Android,
Firefox OS, iOS
[PhoneGap]

Web [Dynamix] and
Android SDK
[RSCM,
Dynamix]

Required
development
knowledge

Web Technologies Web technologies
along with basic
framework/plat-
form specific
understanding
[PhoneGap]

Web technologies
and platform
specific
[Dynamix)]or
Platform specific
[RSCM]

Pre-installation
requirements

x � [PhoneGap] � [RSCM, Dynamix]

Access
Device-specific
features

Limited (Browser
restricted)

Full (based on API
availability per
platform)
[PhoneGap]

Full (based on
plug-in
availability)
[RSCM,
Dynamix]

Security and
Privacy support

Browser based Guidelines only
[PhoneGap]

Via context firewall
[Dynamix]

wrapping device-specific native backing code through provided JavaScript
libraries. This process provides access to native device functions through
JavaScript, such as the device camera or its accelerometer.

With the introduction of H5CM (HTML5 Context Middleware) [4], the vision
is a pure web-based approach. Table 1 captures the key points of variability
between our approach and other approaches. All cases have both advantages and
disadvantages in terms of application variability and execution speed. The main
criticisms for hybrid development is the learning curve, since developers need to
learn how to use the native libraries for each platform, but most importantly
that mobile devices are not able to smoothly run a hybrid application [9]. On the
other hand, native applications offer benefits in terms of performance and API
coverage, but lack in terms of instant worldwide deployment, manual installation
or upgrades and flexibility to combine data from different resources [10].

Differentiating from both native and hybrid approaches, H5CM offers a
pure HTML5 approach not bound to any platform or development environ-
ment employing solely web technologies [11]. Although access to device-specific
capabilities is provided based on the browser support, vendors are continuously
extending their support based on the popularity and evolution of HTML5. More-
over, in respect to pre-installation requirements our approach does not have



An Automation Component for Cross-Platform 67

any prerequisites. Finally, a feature that is missing from all approaches, is an
extended security and privacy support, since this feature is handled either by
the browser (as in the case of H5CM) or by the underlying platform (in hybrid
and platform specific frameworks).

3 H5CM Overview

3.1 Architectural Elements

As aforementioned the main requirements fulfilled with the creation of H5CM
were to provide a framework that is modular, reusable, extensible, and that can
be utilised for web applications on any mobile platform. H5CM has a hierarchical
structure: at the lower level there are context-sensor plug-ins that allow acquir-
ing and distributing low-level context data. These may refer to the location of the
user, the orientation of the user’s device and the results from the invocation of Web
APIs. At the second level of the hierarchy there are context-reasoner plug-ins that
accept low-level context from one or more sensor plug-ins and apply the appropri-
ate reasoning, in order to create high-level context information. The application
is at the top of the hierarchy and is able to communicate with the sensor and/or
reasoner plug-ins to acquire context information that enables the adaptation of
the application’s logic. More details on the architecture of H5CM can be found in
our earlier work [4].

3.2 The Context Repository

The H5CM functionality is empowered by an extensible and reusable Context
Repository. The basic point of differentiation between sensor and reasoner plug-
ins, is that the former provides access to “basic” context data in the form that
these can be collected directly from context sources (e.g., device accelerometer,
user geographical coordinates), whereas the latter gives access to sophisticated
context information that are derived from the “basic” data. These plug-ins define
an extensible and reusable repository. On the one hand, they can be reused by
developers, since they are generic and can be invoked from any context-aware,
web application. On the other hand, the set of plug-ins can be extended by
technical users that need additional functionality, as more and more features of
HTML5 are continuously being supported in mobile browsers. H5CM is currently
offering different reusable plug-ins, some of which are described in Table 2. The
current version of H5CM and the plug-ins are available on Google Code3.

The context plug-ins repository has been also enriched with the addition of
the SensoMan plug-in. This plug-in enables access to context data retrieved from
sensors connected to Arduino micro-controller boards. The SensoMan plug-in is
of particular importance, since it provides access to the context data coming
mainly from the environment (see Fig. 1), which was not fully covered by other
plug-ins that principally retrieve data from the mobile device (internal) and the
3 https://code.google.com/p/h5cm/.

https://code.google.com/p/h5cm/


68 A.P. Achilleos et al.

Table 2. The context repository: example sensor and reasoner plug-ins

Plug-in Plug-in type Functionality Access type

SensoMan Sensor Enables connecting and retrieving data

from sensors connected to

microcontroller boards through the

REST API provided by the

SensoMan system [16].

External:

Micro-Controllers

BatteryLevel Sensor Retrieves and monitors the battery

level (e.g., 74%).

Internal: Mobile

Device

Geolocation Sensor Allows detecting and continues

monitoring the position of the user.

Returns the location in the form of

GPS coordinates (i.e., latitude and

longitude).

Internal: Mobile

Device GPS

Receiver

DeviceOrientation Sensor Monitors the physical orientation of the

device (e.g., the user tilts or rotates

it).

Internal: Mobile

Device

RestfulService Sensor Allows connecting to RESTful services.

It requires as a parameter the URL

of the service including any

parameters the service may require

for its functionality.

External: Internet

FacebookConnect &

LinkedInConnect

Sensor Enables user authentication with

Facebook/Linkedin and requests

the user to grant access permissions

for retrieving data (given in comma

separated string values).

External: Social

Networks

FacebookInformation &

LinkedinInformation

Sensor Provides the means to acquire

Facebook/LinkedIn profile data of

the user (i.e., public user data) and

retrieving additional data provided

that the user is authenticated

(requires FacebookConnect/Linked-

InConnect).

External: Social

Networks

FacebookPosts Sensor Provides the way to obtain wall posts

of the user, provided that the user

is authenticated (requires

FacebookConnect).

External: Social

Networks

ActivityRecognizer Reasoner Recognizes the activity of the user

(Jogging, Walking, Sitting, Upstairs

or Downstairs) based on the results

of a decision tree classifier.

Internal: Mobile

Device

BatteryAnalyzer Reasoner Retrieves data from the existing

BatteryLevel sensor and returns

TRUE if the application is able to

handle computational intensive

tasks based on a developer specified

cutoff value (e.g., ¿60%) passed as

a parameter to the reasoner or

FALSE otherwise.

Internal: Mobile

Device

FacebookRestaurants Reasoner Retrieves data from two sources:

Google Places restaurants at a

specific area and Facebook posts

about user-visited restaurants. It

computes the intersection of the

two sets in order to give user

preferred restaurants (requires

FacebookConnect and

FacebookPosts).

External: Social

Networks



An Automation Component for Cross-Platform 69

user (social networks). The SensoMan plug-in enables access to a diversity of
sensors and delivers context-aware functions that further support the develop-
ment of context-aware Web applications. The list of sensors currently supported
by the SensoMan system is presented in [16].

Furthermore, reasoner plug-ins provide the capability to perform aggregation,
analysis and reasoning on “basic” context data to derive higher level information
that can be useful in taking proactive actions at the application level. Hence,
a simple reasoner of H5CM can include the use of information on whether the
device is charging and its acceleration to decide whether the user is walking,
driving a car or sitting in a room. Such mechanism can be combined with machine
learning techniques of clustering or classification for drawing useful conclusions
on the user, such as activity recognition addressed in previous works [12]. Such
techniques can be supported by H5CM through plug-ins that include advanced
processing of context information.

In that respect we have implemented the ActivityRecognizer reasoner plug-
in that performs activity recognition based on training performed over raw
accelerometer data obtained from the raw dataset4 presented in [13]. The dataset
includes information collected from 29 users while performing various daily activ-
ities, such as Jogging, Walking, Sitting, Upstairs or Downstairs. We have used
the dataset that includes these specific activities to train a C4.5 Decision tree
classifier with a confidence factor of 0.25 [14]. For this step of the process we
have employed the Weka machine learning software and its decision tree imple-
mentation indicated as J48 [15]. Subsequently, a pruned version of the tree that
was created from the classification process was transferred to JavaScript code
and was used in the formation of a new reasoner plug-in. The current version of
the ActivityRecognizer is available on the Google code website of H5CM.

4 H5CM Automation Component

The main contribution of this work is the definition and implementation of the
H5CM Automation Component (HAC), which refines and extends the mid-
dleware architecture. In specific, it automates the development process, so as
to support mainly developers that are not experts in the implementation of
context-aware applications. In this way a developer can easily kick-start the
implementation of context-aware, web-based applications using the concepts and
the reusable elements provided by the middleware. This section presents the HAC
component that was developed through refinement of the H5CM architecture.
The refined architecture presented in Fig. 1 enables storing all developed plug-
ins in an XML-based repository, which is queried by the HAC component to
identify the complete list of plug-ins that the developer can use to automatically
generate the new (sample) context-aware application.

In specific, the HAC component gives the ability to the developer to select
which sensor and reasoner plug-ins need to be included and used in the context-
aware application to be developed. Apart from selecting the plug-ins, the HAC
4 http://www.cis.fordham.edu/wisdm/dataset.php.

http://www.cis.fordham.edu/wisdm/dataset.php


70 A.P. Achilleos et al.

Fig. 1. H5CM Automation Component (HAC): the extended H5CM middleware.

component also queries these plug-ins so as to identify their context properties
(e.g., name, birthday from FacebookInformation plug-in). This enables the devel-
oper to choose the properties needed by the application, in order to generate the
code that composes the new context-aware application. A novice developer of
context-aware applications, is thus able to easily include context-aware function-
ality in the application, simply by selecting the necessary plug-ins and properties.
This allows the developer to focus on the implementation of the application logic
and UIs, rather than on retrieving and analysing context information, e.g., GPS
coordinates, Facebook profile, which is indeed a complex task.

The HAC component is implemented using the library JQuery Steps5 In spe-
cific, JQuery Steps is a User Interface (UI) library that enables the developer
to easily create wizard-like interfaces. The library basically groups content into
sections for a more structured and orderly page view, while providing the capa-
bility for validation of steps and the information provided, so as to ensure smooth
progress and quality of the generated code produced by the HAC component.

5 GitHub wiki Online: http://www.jquery-steps.com/.

http://www.jquery-steps.com/


An Automation Component for Cross-Platform 71

When a developer navigates to the first page, all available plug-ins and their
properties, including an informative description in terms of the functionality, are
queried, generated and presented in a visual form. The description of the plug-
ins and their properties is defined in an XML file named “all-plugins.xml” (see
description of Facebook plug-in in Listing 1.1), which forms the XML represen-
tation of the context repository. The HAC component was implemented using
this modular and extensible approach, so as to adhere to the architecture of the
H5CM. This allows any expert developer to implement a new plug-in and add it
directly to the repository, simply by describing it using XML. In fact, the HAC
component can query and visualise any newly implemented plug-in, and include
its functionality as part of the generated application, simply by describing the
new plug-in similarly to the example Facebook plug-in shown in Listing 1.1.

Furthermore, the HAC component provides the capability to the developer
to select from two development pathways. The first development pathway, show-
cased in the form of a UML Activity diagram in Fig. 2 (A), allows developers to
enter the application name, select all context plug-ins and their properties, and
generate directly the new context-aware application. The generated application
code can be downloaded and the application is executed and demo-ed before
quitting the application. Using the generated code the developer can further
modify the generated application.

Listing 1.1. XML Description of Facebook plug-in and properties.

1 <plug in>
2 <name>FacebookConnect</name>
3 <source s>
4 <source>modules/ s en so r s /FacebookConnect . j s</ source>
5 </ source s>
6 <de s c r i p t i on>This plug−in i s used to al low the user to acce s s

through a Facebook account </ d e s c r i p t i on>
7 <p r op e r t i e s>
8 <property>
9 <name>name</name>

10 <de s c r i p t i on>This property r e t r i e v e s the name of the
Facebook user</ d e s c r i p t i on>

11 </ property>
12 <property>
13 <name>email</name>
14 <de s c r i p t i on>This property r e t r i e v e s the email o f the

Facebook user</ d e s c r i p t i on>
15 </ property>
16 <property>
17 <name>gender</name>
18 <de s c r i p t i on>This property r e t r i e v e s the gender o f the

Facebook user</ d e s c r i p t i on>
19 </ property>
20 <property>
21 <name>username</name>
22 <de s c r i p t i on>This property r e t r i e v e s the username of the

Facebook user</ d e s c r i p t i on>
23 </ property>
24 <property>
25 <name>birthday</name>
26 <de s c r i p t i on>This property r e t r i e v e s the in format ion about

the birthday o f the Facebook user</ d e s c r i p t i on>
27 </ property>
28 </ p r op e r t i e s>
29 </ plug in>

The second development pathway enables the developer to enter the name
of the application and then select specific plug-ins. Afterwards, the developer
is able to choose context properties available in specific context plug-ins (e.g.,
FacebookConnect, LinkedInConnect), which are required as context information
in the context-aware application to be developed. For instance, as presented in



72 A.P. Achilleos et al.

Fig. 2. UML activity diagram: the development pathways.

Fig. 2 (B), the developer has selected the Geolocation, LinkedInConnect and
LinkedInInformation plug-ins. In the following step the developer chooses the
first name and skills context properties associated with the LinkedIn related
plug-ins. Finally, the developer is able to download the generated code and view
a demo of the application prior to exiting. The developer can use and further
modify the generated application based on the desired logic and UI for the final
context-aware application.

5 Case Study and Evaluation of the HAC Component

This section describes the use of the HAC component for the generation of two
example context-aware applications and the evaluation of the component. The
evaluation is contacted by nine MSc students of the course EPL603: Advanced
Software Engineering, offered at the Dept. of Computer Science, University of
Cyprus. In the first scenario, all context plug-ins offered by the middleware are
selected by the developer and the new context-aware application is generated. It
is important to note that the SensoMan sensor plug-in and the ActivityRecog-
nizer reasoner plug-in are still to be integrated with the HAC component, since
their development was only recently completed [16]. The automatically gener-
ated application for this scenario where all the plug-ins are selected and executed
using the desktop version of the Firefox Browser.

In the second scenario, the development pathway enables developers to select
specific plug-ins and their associated properties. As presented in Fig. 3, during
the third step the HAC component allows selecting the desired context-plug-
ins. In the next step, the HAC component detects that the FacebookConnect
plug-in has explicit context properties. This allows the developer to choose the
necessary ones for supporting the desired functionality for the context-aware
application. At the “Finish” step the summary of the process is presented to
the developer, and as soon as the developer downloads the code files of the
generated application, the wizard is completed. The final snapshot in Fig. 3,
showcases the application running on the Android Firefox Mobile Browser.



An Automation Component for Cross-Platform 73

Fig. 3. Scenario 2: selecting context plug-ins and context properties.



74 A.P. Achilleos et al.

Fig. 4. Knowledge, experience and expertise on web technologies and context-aware
applications development.

The HAC component was used by nine MSc students of the EPL603 course:
Advanced Software Engineering. At first the evaluation gathered information on
the knowledge, experience and expertise of the students in regards to prior usage
of middleware technologies, use of web technologies and development of context-
aware applications. As illustrated in Fig. 4, students have at 75 %, medium to
high experience in the use of web technologies (e.g., Javascript, HTML5, CSS)
for developing web applications. In terms of the use of a middleware for the
development of software applications, 88 % indicated that they have only used
such software once, which refers to the use of the first version of the middleware
during the first evaluation session [4], while only 12 % have used a middleware
sometimes. The third chart confirms that 75 % of the students have experience
and have worked in the past on software projects for the development of web
applications. Finally, in respect to the development of context-aware applications
3 out of 4 students indicated that they almost never developed such applications.

The students answered the provided questionnaire6, which revealed that the
opinion of the students for the HAC component was highly positive. In specific,
the scores were high in terms of all the assessed factors: Learnability, Memora-
bility, Effectiveness and Functionality. Moreover, reviewing the answers to the

6 https://docs.google.com/forms/d/1DJ7FNarlpAq0FI6bqcAOsOb703NgNbRctTsSF
UxhBgU/viewform, HAC Component Questionnaire.

https://docs.google.com/forms/d/1DJ7FNarlpAq0FI6bqcAOsOb703NgNbRctTsSFUxhBgU/viewform
https://docs.google.com/forms/d/1DJ7FNarlpAq0FI6bqcAOsOb703NgNbRctTsSFUxhBgU/viewform


An Automation Component for Cross-Platform 75

Table 3. Evaluation results

Learnability, Memorability Effectiveness Functionality

4.78/5 4.63/5 4.63/5

questions dedicated to the HAC component it is evident that the students con-
sidered it as a strong point/extension for the middleware. Finally, the automa-
tion tool raised the interest of students during the evaluation session, since they
actively tried it on different mobile devices to identify and assess if it was work-
ing for mobile-specific plug-ins (e.g., device motion, device orientation) and on
different platforms. The results of the tests were encouraging.

The last two factors scored lower since the students indicated that they would
appreciate access to additional sensors, which provided context data from the
environment. The SensoMan plug-in can assist to overcome this limitation and as
part of future work we will be adding this plug-in in the HAC component, so as
to offer additional context-aware functions and increase effectiveness of the gen-
erated applications. Moreover, a complementary evaluation by expert developers
can definitely provide additional insights in terms of functionality coverage and
effectiveness in building context-aware applications. The evaluation was inten-
tionally performed with novice developers (in terms of developing context-aware
applications), since the component’s key aim is to support developers that have
limited experience with such kind of applications (Table 3).

6 Conclusions

Context awareness is a promising research field that refers to the acquisition,
processing and reasoning on context information, so as to adapt the application
mainly to the requirements of the user. Due to the diversity of context sources
(i.e., mobile device, user, environment) the development of context-aware appli-
cations becomes inherently complex. The developed H5CM context middleware
provides the ability to reduce complexity through the concept of separation of
concerns. In specific, the middleware enables reusability of context plug-ins and
favours extensibility for supporting the development of context-aware applica-
tions. Furthermore, the combination of HTML5 and context-awareness in the
developed middleware addresses the issue of cross-platform development.

The work in this paper goes a step further and aims at further simplifying the
development of context-aware applications. In specific, it extends the H5CM mid-
dleware by defining the HTML5 Automation Component. The HAC component
is also implemented following a modular and extensible approach, which enables
novice developers to define and automatically generate web-based, context-aware
mobile applications. Future work aims to integrate the SensoMan context sensor
and ActivityRecogniser context reasoner plug-ins with the HAC component, as
there plug-ins are only recently developed [16].



76 A.P. Achilleos et al.

References

1. Rodden, K., Hutchinson, H., Fu, X.: Measuring the user experience on a large scale:
user-centered metrics for web applications. In: Proceedings SIGCHI Conference on
Human Factors in Computing Systems, pp. 2395–2398 (2010)

2. Dey, A.K.D., Abowd, G.D.: Towards a better understanding of context and context
awareness. In: Proceedings of Workshop: What, Who, Where, When, and How of
Context Awareness, ACM Conference Human Factors in Computer Systems (2000)

3. Wang, X., Rosenblum, D., Wang, Y.: Context-aware mobile music recommendation
for daily activities. In: Proceedings of ACM International Conference on Multime-
dia, pp. 99–108 (2012)

4. Achilleos, A., Kapitsaki, G.M.: Enabling cross-platform mobile application devel-
opment: a context-aware middleware. In: Proceedings of the 15th International
Conference on Web Information System Engineering (WISE 2014), pp. 304–318
(2014)

5. Floch, J., Fr, C., Fricke, F., Geihs, K., Wagner, M., Lorenzo, J., et al.: Playing
USIC - building contextaware and selfadaptive mobile applications. Softw. Pract.
Exp. 43(3), 359–388 (2013)

6. Paspallis, N., Papadopoulos, G.A.: A pluggable middleware architecture for devel-
oping context-aware mobile applications. Pers. Ubiquit. Comput. 18(5), 1099–1116
(2014)

7. Ioannides, F., Kapitsaki, G.M., Paspallis, N.: Professor2Student - connecting super-
visors and students. In: 10th International Conference on Mobile Web Information
Systems, pp. 288–291 (2013)

8. Carlson, D., Schrader. A.: Dynamix: An open plug-and-play context framework for
android. In: 3rd International Conference on the Internet of Things, pp. 151–158
(2012)

9. Gai, D.: Hybrid VS Native Mobile Apps. http://www.gajotres.net/
hybrid-vs-native-apps/. Accessed 26 Sept. 2014

10. Mikkonen, T., Taivalsaari, A.: Reports of the web’s death are greatly exaggerated.
IEEE Comput. 44(5), 30–36 (2011a)

11. Mikkonen, T., Taivalsaari, A.: Apps vs. open web: the battle of the decade. In:
Proceedings of 2nd Annual Workshop Software Engineering for Mobile Application
Development, pp. 22–26 (2011b)

12. Abdullah, M.F.A., Negara, A.F.P., Sayeed, M.S., Choi, D.J., Muthu, K.S.: Classi-
fication algorithms in human activity recognition using smartphones. World Acad.
Sci. Eng. Technol. 68, 422–430 (2012)

13. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone
accelerometers. SIGKDD Explor. Newsl. 12(2), 74–82 (2011)

14. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers,
San Mateo (1993)

15. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, J.H.: The
WEKA data mining software: an update. SIGKDD Exp. 11(1), 10–18 (2009)

16. Paphitou, A.C., Constantinou, S., Kapitsaki, G.M.: SensoMan: remote manage-
ment of context sensors. In: 5th International Conference on Web Intelligence,
Mining and Semantics (WIMS 2015) (2015)

http://www.gajotres.net/hybrid-vs-native-apps/
http://www.gajotres.net/hybrid-vs-native-apps/

	An Automation Component for Cross-Platform, Context-Aware Applications Development
	1 Introduction
	2 Related Work
	3 H5CM Overview
	3.1 Architectural Elements
	3.2 The Context Repository

	4 H5CM Automation Component
	5 Case Study and Evaluation of the HAC Component
	6 Conclusions
	References


