USING DACTL TO IMPLEMENT DECLARATIVE
LANGUAGES

JR.W. Glauert,
Declarative Systems Project, School of Information Systems, University of
East Anglia, Norwich NR4 7TJ.

K. Hammond,
Declarative Systems Project, School of Information Systems, University of
East Anglia, Norwich NR4 7T]J.

J. R. Kennaway,
Declarative Systems Project, School of Information Systems, University of
East Anglia, Norwich NR4 7TJ.

G. A. Papadopoulos,
Declarative Systems Project, School of Information Systems, University of
East Anglia, Norwich NR4 7TJ.

THE DACTL LANGUAGE.

Dactl is a language of graph rewriting, intended as an intermediate language and
compiler target language for highly parallel machines. It is based on a form of graph rewriting
which can be used to implement functional, logic, and imperative languages.

Graphs.

Graph rewriting is a standard technique for implementing term rewrite
languages such as Hope, Standard ML, and Miranda (Miranda is a trademark of Research
Software Ltd., Caterbury, UK) [1, 10, 13]. Dactl, however, views graphs as the fundamental
objects — terms are merely a view of graphs in which sharing is ignored. Although a formal
definition of graph rewriting is more complicated than for term rewriting, we consider graphs
to be the more fundamental concept.

A Dactl graph is a directed graph. Each node is labelled with a symbol which may
correspond to a function, predicate, or constructor according to the requirements of the
programmer. From each node originates an ordered set of arcs leading to successor nodes.
Graphs may be cyclic and need not be connected. However, there is a distinguished node in
the graph known as the root. When considering the final form of a graph, only nodes
reachable from the root are of interest.

. Graphs are written in a form similar to terms, but using repetition of defined variables to
indicate sharing. Here are some examples of Dactl graphs, in textual and diagrammatic form:

Append[s:Cons[0 Nil] s] c: Cons[1 c]
Append

3 0
s ¢

Nil
Rewrite rules.

Dact rewrite rules generalise term rewrite rules in several ways:

‘(‘1) _The left-hand side of a Dactl rule is a graph, not a tree. Repeated free variables test
_pointer equality”, not the textual equality of classical term rewriting (which is never
implemented in functional languages based on term rewriting). A left-hand-side graph is
rooted, and every node in it must be accessible from the root.

6))
mat
the 1

(ii1)
rede
Dac

Rule
only
acti

an a
its o
isa

bear
sign
mea
then
sign
pare

The
wait
the ¢
becc
case
the {
pait
Here

rule-
mar,

acti
be a
com
such

Iden

or in

> and
iting

NTite
:arch
ental
irmal
‘aphs

may
f the
xdes.
de in
wodes

es to

s test
never
phis

|
{
i
3

Glaugertetal : DACTL 117

(i) Whereas a term rule, implemented by graph rewriting, only rewrites the root of the
matched subgraph, a Dactl rule may rewrite several nodes, not necessarily including the root of

the match.
(i) In term rewrite languages such as ML, the evaluation strategy, which determines which

redex to reduce next, is built-in to the language, and is driven by the pattern-matching. In
Dactl, it is represented explicitly in the Dactl program.

Expressing the evaluation strategy.

The nodes in the graph are divided into three classes: active, blocked, and idle.
Rule-matching may only be attempted at active nodes. That is, the root of a left-hand side may
only be matched to an active node. Rule-matching may be attempted concurrently at different

active nodes.

The right-hand side of a rule specifies the class of each created node. Thus rule-matching
an active node may cause new active nodes to be created. Each locus of control thus appoints
its own successors. This contrasts with the von Neumann model of computation, where there
is a single locus of control appointing a single successor at each step.

A blocked node is waiting for some other computation to terminate before it proceeds. It
bears a count (denoted by a string of # signs), and some of its out-arcs will be marked with ~,
signifying that the node is waiting for the corresponding nodes to finish. For a node to “finish”
means that rule-matching is attempted at that node, but no rule is found to match. The node is
then made idle, and a notify signal is sent to each of its parents along a A-marked arc. This
signal decrements the blocked count of each such parent; if such a count becomes zero, that
parent is made active.

An example shows how this works in practice.

Fac[0] => *1;
Fac[n: (Int-0)] => #IMul[n "“#Fac[~*ISub[n 1]]]:
Fac[n: (Any-Int)] => #Fac[~*n];

The first two rules are the natural rules for Fac. The activation of 1 in the first rule causes
waiting parents to be notified (there being no rules for the symbol 1). The control markings in
the second rule ensure that the arguments to each functions are evaluated before the function
becomes active. IMul and ISub are built-in arithmetic operators. The third rule handles the
case where Fac is applied to an unevaluated argument. In term rewrite languages, the failure of
the first two rules to match causes evaluation of the argument. In Dactl, this is not so: Dactl
pattern-matching never invokes evaluation. Instead, we must provide for this case explicitly.
Here, the third rule activates the argument, and waits for it to notify.

Note that the left-hand sides of rules bear no markings. Other than the requirement that
rule-matching must begin from an active node, Dactl pattern-matching is independent of control
markings.

Summary of syntax.

A Dactl rule consists of four parts: the pattern, contractum, redirections, and
activarions. The pattern is a rooted graph, without control markings, in which every node must
be accessible from the root. It may include parrern operators, which allow boolean
combinations of patterns, and the predefined pattern any, which matches any node. A pattern
such as Int may be considered to be an infinite sum O+-1+1+-2+...).

The contractum describes the nodes which are to be created when the rule is executed.
Identifiers on the left-hand side may appear in the contractum.

The pattern and the contractum may be listed as a set of definitions of node identifiers:

(2:#IMull n "b], b:#Fac[“c], c:*ISub[n d], d:1
Orin an equivalent “packed” shorthand:

#IMul[n “#Fac| ~*ISubl n 1]]]

118 Glauert et al : DACTL

The longhand form makes it clear that the mark ~ belongs to an arc, but * and # belong to
nodes. '

Redirections have the form x: =y, where x is a left-hand side identifier. When the rule is
executed, every edge in the graph which points to the node matched by = is redirected so as to
point to the (matched or new) node y (the target of the redirection).

Redirection appears at first glance to be impractical, requiring a search of the whole graph.
However, redirection to a newly created node can be implemented by overwriting the
“redirected” node with the required contents, rather than creating a new node. Redirecting to an
existing node may be implemented by the usual method of indirection nodes [12]. The
redirection concept allows a uniform treatment of both types of rewrite, and makes the
semantics independent of low-level implementation details.

The activations have the form *x, where x is a left-hand side identifier. This indicates that
on executing this rule, the node matched by x is to be given the marking *, if it was idle. (If x
already bore a non-idle marking, the activation is ignored.)

Symbols must be declared, and rules may be grouped into modules, but we will not go
into detail on these points. The full definition of Dactl is in [3].

Examples.

Here is an example of a form of rule more general than that found in term

rewriting:
r:Assign[z:Celll x 1 y 1 -> r:=*Done, z:=Cell[y]

Note the single arrow separating the two sides, instead of the double arrow used previously.
The double-arrow is actually syntactic sugar, implying a redirection of the root. Here, for
clarity, we have written the root-redirection explicitly, together with the extra redirection made
by this rule of the ce11 node. The redirection of the z performs the actual assignment: anyone
else who had a pointer to that node now has a pointer to the new cel1 node. Redirection of r
ensures that the parents of the Assign node will be notified that the assignment has been done.
Here is a picture of the effect of executing this rule somewhere in a larger graph:

Before After
a b a\ /b
c\ * 23532 Assign *Done
Ci” 8\ Cell 8 @——Cell
d—p7 € d-—bt e

It would not do to redirect x to v, instead of z to a new ce11. In the example, this would
have the effect that 4 would afterwards point to 8 instead of 7 — rather disconcerting if integers
are expected not to spontaneously change their values!

Here is a simple semaphore.

r:Wait{ s:FreeSema] -> r:=*Done, s:=EngagedSema; { W1
Wait [s:EngagedSema] -> #Wait["s 1; { w2
r:Signal| s:EngagedSema] -> r:=*Done, Ss:=*FreeSema { S

Rule W1 allows a wait to acquire the semaphore if it is free. Rule W2 causes a wait to
continue to wait if the semaphore is engaged. When someone frees and activates the
semaphore (by executing rule S) all wait nodes waiting on that semaphore will be notified, and
one will succeed in acquiring it.

aton
fund
must
esset
whet
bein,
seria
amor
oper:

funci
lang
effec
assig
strate

nom
expr
the g
The

g to

le s
Sto

iph.
the

The
the

that
If x

t go

sly.
for
ade
one
o ¢
ne.

uld
‘ers

Glauertet al : DACTL 119

Serialisability.

What does it mean for multiple rewrites to occur concurrently? Rule-execution
at one active node might interfere with rule-execution at another. Dactl requires the following
fundamental property to be observed by any implementation: the result of a Dactl computation
must be identical to the resulr of some sequence of rewrites. This serialisability constraint is
essential if there is to be any hope of proving useful properties of a Dactl program. In general,
when agents are performing multiple rewrites, and rule-matching may inspect parts of the graph
peing rewritten by other agents, some sort of locking protocol must be used to ensure
serialisability of rewrites. However, for certain subsets, we are able to prove that only a small
amount of locking is actually necessary, even when the underlying hardware only serialises
operatons affecting single nodes [8].

COMPILING FUNCTIONAL LANGUAGES.

Due to space constraints we can only summarise methods of translating
functional languages into Dactl. See [6] or [7] for fuller accounts. We consider pure functional
languages, though many of the techniques are also applicable to functional languages with side-
effects. [7] considers the translation of a parallel version of Standard ML incorporating
assignment, input/output and exception handling. We consider both eager and lazy reduction

strate gies.

Simple translation.

A functional program consists of a set of function definitions, and a goal
expression to be evaluated by using those definitions as rewrite rules. This maps easily into
Dactl by translating the goal expression into the initial graph, and the function definitions into
Dactl rule-sets. Apart from translating the concrete syntax, all that is required is to add suitable
control markings to the right-hand sides of the rules.

For an eager evaluation strategy, the application of control markings can be based on the
principle that a graph should rewrite to normal form when it is activated. We can ensure this by
activating all the leaves of each right-hand side, marking all arcs on the rhs with +, and adding
an appropriate number of # marks to non-leaf nodes. Thus all arguments to a function will be
evaluated in parallel. However, care must be taken with conditional operators such as “if”,
which must be implemented lazily.

We translate each function name into a Dactl symbol and use polyadic nodes for function
application (ignoring partial applications, and those where the function is a general expression).
For example, consider the Standard ML definition:

fun ack 0 n = n+l

| ack m 0 = ack (m-1) 1

| ack m n = ack (m-1) (ack m (n-1));
This translates to

Ack [0 n:Int] => *IAdd[n 11]:
Ack[m:Int 0] => #Ack[~*ISub[m 1] 17;
Ack[m:Int n:Int] => ##Ack["*ISub[m 1] “#Ack([m ~*ISubln 1]]1;
IAdd and Tsub are standard arithmetic operators. We have made some optimisations to the

zilrrnpée-minded scheme we described, by not activating things we can see to be in normal form
cady.

Lazy evaluation.

With a lazy reduction strategy, expressions are only to be reduced to head-
normal-form (i.e. having a constructor outermost, but possibly containing unreduced sub-
expressions). An output driver (also programmed in Dactl) forces reduction to normal form of
the goal expression. Thus translated function definitions must handle partially evaluated forms.
The Ackermann function is now translated as:

Ack [0 n] => #IAdd[~*n 1];
Ack[m:Int 0] => *Ack[ISub{m 1] 1];

120 Glauert et al : DACTL

Ack[m:Int n:Int] => *Ack[ISub[m 1} Ack[m ISub[n 11]1;
Ack[m:Int n: (Any-Int)] => #Ack[m "*n];
Ack[m: (Any-Int) n:Any] => #Ack["*m n];

The last two rules force the evaluation of unevaluated arguments.

It is easy to prove that if a node is activated, it will not notify unless and until it reaches
head-normal form. Each of the first three rules transforms the graph in the same way as one of
the original ML rules, hence such a head-normal form must be correct. The last two “default”
rules implement a left-to-right pattern-matching strategy, which ensures [12] that head-normal
form will be reached whenever possible. The statement and proof of the output driver are
equally simple [7].

Since in fact Ackermann’s function is strict in both arguments we could use the eager
translation in place of the lazy one, to obtain parallelism. Thus strictness analysis, such as in
[12], may be used to improve parallelism.

Higher-order functions.

The translations above assume that the root of a function application is a
function name. Unfortunately, with higher-order functions this need not be the case.
Retaining our translation for the simple case, we introduce a function symbol “AP” to handle
more complex applications. Rules for “AP” will handle partial applications:

AP [Ack argl] => *Ack[argll];
AP [Ack[argl] arg2] => *Acklargl arg2];

AP[£ x] => #AP[~*f x];
The final rule will not loop infinitely since (assuming that the original functional program was
correct) “f” will be reduced to a form which will match one of the other “AP” rules.

Deep pattern-matching.

Deep pattern-matching does not present a problem for an eager reduction
strategy. When a function node becomes active, its arguments will all be in normal form. With
the lazy translation, firing a node only reduces it to head normal form, which may not be
sufficient. We consider two schemes which eliminate this problem.

Default rules.

One solution is to add more default rules, which will force as much evaluation

of arguments as is required. For example:

fun sums 0 1 = []

| sums n (m::(1 gas n::)) = mtn :: sums (n-1) 1

f sums n 1 = 1;
(which forms a list of sums of adjacent pairs of elements — e.g. sums 3 [1,2,3,4,5] = [3,5,7])
translates to

Sums [0 1] => *Nil;

Sums [n:Int Cons[m l:Consin Anyl]] => *Cons[JAdd[m n] Sums[ISub[n 1] 11];

Sums [n:Int Cons[m 1l:(Any-List)]] => #Sums[n Cons[m ~*1]1];

Sums [n:Int l:List] => *1;

Sums[n:Int 1:(Any-List)] => #Sums[n "*1];

Sums [n: (Any—-Int) l:Any] => #Sums["*n 1];
Although this might seem to involve considerable additional computation, in practice a good
Dactl implementation should optimise much of the shared matching. The advantage of this
scheme is that it is relatively simple to prove conditional correctness.

Pre-evaluartion of needed arguments.

We can remove the need for any default rules at all, by transforming the
functional program to eliminate deep pattern-matching. The necessary transformations are

state
trans

nunwmw

coerc
non-¢
for e;
folloy
the se
safety

This i

€S

lt”
1al

er
m

S a
S€.

rvas

ion
yith

tion

3,71)

13:

rood
“this

r the
5 are

Glauert et al : DACTL 121

stated in [9], and proved correct in the extended version of that paper. The example above
ranslates to:

sums[C 1] => *Nil;

sums[n:Int x1] => #Sumsl[n ~“*xl];

sumsl{ n x2:Cons[first x3 1] => #Sums2[n x2 first ~*x3];
gumsl{ n 1:Nil] => *1;

sums2{ n x4 first rest:Cons[second tail] 1 =>

*Cons[IAddl[first second] Sums3[ISub[n 1] rest 1 1;
gums2{ n 1 first Nil] => *1;
sums3[x5 x6] => #Sums|["*x5 x6];
1addl{ x7 x8 1 => ##IAdd[~*x7 ~*x8];
The pattern-matching required by sums is broken down into steps, each of which only requires
arguments to be reduced to head normal form.

LOGIC LANGUAGES.

The following PARLOG [5] procedure partitions a list according to the first
parameter:
mode partition(?,?2,7,7).
partition (U, [ViX], [VIX1],X2) <- V<U : partition(U,X,X1,X2).
partition (U, [VIX],X1, [VIX2]) <- U=<V : partition(U,X,X1,X2).
partition(, [1,[1,[1).
where the output arguments are always variables. This is translated to Dactl as follows:

Partition[u Cons[v x] p3 p4] => #Partition Commit[”gl "g2 u v x p3 p4],
gl:*Less[v u], g2:*Lesseqg(u v]|
Partition[Any Nil p3:Var p4:Var] => *SUCCEED, p3:=*Nil, p4:=*Nil|
Partition[pl p2:Var p3 p4] => #Partition([pl "“p2 p3 p4l]|
Partition[Any (Any-Var-List) Any Any] => *FAIL;
Partition Commit [SUCCEED Any u v x p3:Var p4]
=> *Partition[u x x1 p4],p3:=*Cons[v xl1l:Var]|
Partition Commit [Any SUCCEED u v x p3 p4:Var]
=> *Partition[u x p3 x2],pé4:=*Cons[v x2:Var] |
Partition Commit [FAIL FAIL Any Any Any Any Any] => *FAIL;
r:Partition Commit [Any Any Any Any Any Any Any] -> #r;
The first two clauses of partition are coalesced into a single Dactl rule which performs the
common pattern-matching of the second argument only once. The rule rewrites to a function of
the general form Predname_Commit [guards env]. The function evaluates its guards and
commits to the body of the appropriate clause using the environment of the passive part of the
clauses. Note that Predname_ Commit will become active as soon as either of the guards
notifies, because it has only a single #; this is a very useful technique for expressing non-
determinism in Dactl. If all the guards fail, Predname Commit reports failure and terminates.
The last rule is used to suspend the function if some of its guards are still executing.

Overlapping guarded clauses.

Certain guarded clauses possess overlapping input patterns which cannot be
coerced to a set of rules with non-overlapping patterns. Such clauses are first transformed to
non-overlapping ones by extending them with a new dummy argument having a unique value
for each pattern, and then firing all the corresponding rules in parallel using a metarule. The
following program fragment (part of a GHC [14] meta-interpreter) illustrates this. The guard in

the second clause is assumed to be safe (for implementing full GHC which requires a run-time
safety test see [4]).

pred(true,X,_) - true | X=ok.
pred(a,Xx,) :— ghcsystem(a) | X=ok, call(A).
pred((a,B),X,C) :- true | pred(A,Xa,Ca), pred(B,Xb,Cb),

L and(Xa,Ca,Xb,Cb,X,C).
This is translated to Dactl as follows:

122 Glauert et al : DACTL

Pred[pl p2 p3] => result:Var, ##0OR["0l1 "02 result],
ol:*Pred' ["I1" pl p2 p3 result],
02:*Pred' ["I2" pl p2 p3 result];
Pred' ["I1"™ True x Any result:Var] -> result := *Unify[x "Ok"]|
Pred' ["I1" Cl[a b] x ¢ result:Var] -> result := #AND [*b1l b2 ~b3],
bl:*Pred[a xa:Var ca:Var],
b2:*Pred[b xb:Var cb:Varj,
b3:*And[xa ca xb cb x cll
Pred' ["I2" a x Any] => #Pred'_Commit[“*thsystem[a] a x result];
Pred' ["I1™ pl:Var p2 p3 result:Var] => #Pred'["I1" “pPl p2 p3 result];
Pred' [Any Any Any Any Any] => *FAIL ;
Pred' Commit [SUCCEED a x result:Var] -> result := #AND [*bl ~b2],

bl:*Unify{x "0k"}, b2:*Callfa]|
Pred' Commit [FAIL Any Any Any] => *FAIL;

where
AND [SUCCEED SUCCEED .. SUCCEED] => *SUCCEED;
L:AND [(Any-FAIL) (Any-FAIL) .. (Any-FAIL)] -> #r;
AND [Any Any .. Any] => *FAIL ;
OR[FAIL FAIL .. FAIL result] -> result := *FAIL;

Note the use of the auxiliary “variable” result to commit to the appropriate body. Nodes such
as result which can be instantiated to a function (rather than a value), are termed stareholders .

Speculative parallelism.

Concurrent logic languages make use of the notion of speculative work:
processes will be spawned to do work that in the end may prove to be useless. This can
happen when either a guard in an or-conjunction succeeds, or a call in an and-conjunction fails;
in both cases further computation in the or- or and-conjunction in question is unnecessary.
However, terminating an unnecessary computation by means of low-level implementations of
kill signals is not easy in a graph reduction model where it is hard to detect unneeded but active
portions of graph. Instead, we simulate the broadeast of a kill signal by means of special
variables that may be instantiated to a constructor sTop. These variables are monitored by the
Dactl rules which refrain from spawning further computation if they become instantiated. We
illustrate this technique with the followin g PARLOG example:

mode ontree(?,”,7?).

ontree(key,val,T(x,P(key,val),y)).

ontree(key,val,T(x,P(rkey,rval),y)) <- ontree (key,val, x)

ontree(key,val,T(x,P(rkey,rval),y)) <- ontree (key,val,y)
which is translated to Dactl as follows:

Ontree [STOP Any Any Any] => *STOP)
Ontree[k:Var key val Tup["T" x Tup[“"P" key' val'] yl]
=> #Ontree Commit [~k c:Var “gl ~g2 ~g3 wval val' vall val2],
gl:*Eg[key key'],
g2:*Ontree[c key vall:Var x],
g3:*Ontreec key val2:Var vl
Ontree[k:Var key val p:Var] => #Ontree["k key val ~p]|
Ontree [Any Any Any Any] => *FAIL;
Ontree Commit [STOP c¢:Var Any Any Any Any Any Any Anyl => *STOP,c:=*STOP|
Ontree Commit [k:Var c:Var SUCCEED Any Any val val' any Any]
=> *Unify([val val'], C:=*STOP |
Ontree Commit [k:Var c:Var Any SUCCEED Any val Any vall Any]
=> *Unify[val vall], C:=*STOP |
Ontree Commit [k:Var c:Var Any Any SUCCEED val Any Any val2]
=> *Unify([val val2]l, c:=*3STOP|
Ontree_ Commit [Any Any FAIL FAIL FATL Any Any Any Any] => *FAIL;
r:Ontree Commit [Any Any Any Any Any Any Any Any Any)] -> #r;

- o .

[T N R O

Sl bt e A

[= |

—~

o

[~ T

"t O < T

cY Ao g od

such
lers .

rork:
5 can
fails;
sary.
ns of
ctive
iecial
iy the
. We

1127,

3TOP |
3TOP |
3TOP |

STOP |

Glauertetal : DACTL 123

The variables k and c propagate the kill signal down the computation tree. The “local” control
variable ¢ will be instantiated by ontree_Commit if either any of its guards succeeds or it
receives a kill signal from some other process via the “global” control variable k.

DACTL AS A COMPILER TARGET LANGUAGE.

As a notation for experimenting with reduction strategies in functional languages
Dactl is unrivalled. The level of abstraction is sufficient to avoid implementation details which
arise when using conventional languages. At the same time the graph rewriting model
corresponds closely to the operational model used in most functional language compilers, thus
translation is relatively straightforward and focusses attention on optimisations rather than the
basic translation scheme. For committed-choice logic languages, most clauses can be
transfomed directly into Dactl rules. However, guarded clauses with overlapping input patterns
require additional rules for parallel matching since Dactl selects a rule on the basis of matching
only. Thus parallel evaluation of guards must be handled explicitly by the translation process.
We are currently investigating the extension of our model to accomodate full PROLOG.

Low-level pattern matching facilitates the translation of modern pattern-matching languages
and permits experimentation with pattern-matching strategies. Node and arc markings provide
fine-grain control over parallel execution where this is available. Garbage,collection and low-
level resource management is provided by the Dactl compiler and is thus not an issue for the
declarative language implementor, although annotations may be used to influence particular
implementations.

DACTL FOR PERFORMANCE EVALUATION.

We translated three declarative programs using our translation schemes for logic
and functional languages. Our results, using metrics supported by the Dactl reference
interpreter, are summarised below. The bold figures refer to the functional version of each
program, the remainder refer to the logic version. Parenthesised figures use Dactl redirecion to
implement the logic variable directly as opposed to using the unification primitive.

Program Rewrites Nodes Created | Parallel Cycles | Avg. Parallelism
Tree Search 291(278) 646(621) 76(56) 5.66(7.27)
(31st. of 31 els.) 276 432 57 7
Ackermann’s 118227(77121) | 190256(144056) | 67180(56868) 2.75(2.53)
function (3,4) 56509 118230 61845 1.41
Quicksort 6348(3692) 10001(5796) 562(498) 18.19(12.15)
(30 els. reversed) 2583 3889 3725 1.04

Generally the results are self-explanatory: the functional implementation shows marginally
better performance where the problem is more functional, the logic implementation shows
better performance where there is greater scope for speculative parallelism. Note that the logic
versions do not implement the kill signal which, in general, would terminate unneeded
computation. This is a good contrast between the two declarative models. The dramatic
variance in parallelism for the case of Quicksort may be due to an overly sequential definition in
the functional version.

REASONING ABOUT DACTL PROGRAMS.

We briefly give a very small example of how one may reason about a Dactl
program. Consider again the semaphore example. Let w be the number of times rule W2 has
been applied to the semaphore, and s the number of times rule S has been applied to it. Then
WC must prove the invariant: w = s iff the semaphore is free, and w = s+1 iff the semaphore is
engaged. This may be proved by considering the effect of each rule: S increments s and makes

¢ semaphore free, W2 increments w and makes the semaphore engaged, and the other rules
do not change s, w, or the state of the semaphore. (We must assume that the rest of the
Program within which these rules occur also has the last property.) At the beginning of the
Computation, § = w = 0 and the semaphore is free, therefore the invariant holds throughout.

124 Glauvert et al ; DACTL

We cannot prove fairness, since Dactl itself makes no commitment to fair scheduling of
active nodes. The best we can do is to prove that if someone is waiting for the semaphore (i.e,
if somewhere in the graph we have #wait [~s:EngagedSema]), and if someone else is ready to
release it (i.e. the graph also contains *signalls]), then it is possible for the semaphore to be
released and for one of those waiting to acquire it, and this will remain possible until it
happens. A formal definition and proof of this wordy statement would require a foray into
temporal logic.

To assist proofs and efficient implementations, Dactl allows annotations by which the user
(or, say, a strictness-analysing program) may make assertions about the ways in which the
symbols are used.

CONCLUSIONS.

We have introduced Dactl, a compiler target language based on graph-rewriting,
and described compilation schemes for logic and functional lan guages. The relative
performance of our schemes have been assessed with the Dactl reference interpreter. At the
same time, it appears practical to reason about Dactl code. Thus Dactl is a realistic choice of
compiler target language.

REFERENCES.

1. Barendregt, H.P., et al. Term Graph Rewriting, Proc. PARLE Conference II, LNCS 259,
141-158, 1987.

2. Burstall, R.M., MacQueen, D.B., and Sannella, D.T., HOPE: an Experimental Applicative
Language. Report CSR-62-80, University of Edinburgh, 1980.

3. Glauert, JR.W., Kennaway, J.R., and Sleep, M.R., Specification of Dactll, School of
Information Systems, University of East Anglia, 1987.

4. Glauert, JR.W. and Papadopoulos, G. A., A Parallel Implementation of GHC, FGCS'88,
Tokyo, Japan, 1988.

5. Gregory, S., Parallel Logic Programming in PARLOG: the Language and its
Implementation, Addison-Wesley, London, 1987.

6. Hammond, K., and Papadopoulos, G.A. Parallel Implementations of Declarative
Languages Based on Graph Rewriting, Alvey Technical Conference, Swansea, 1988.

7. Hammond, K. Implementing Functional Languages on Parallel Machines, Ph.D. Thesis,
University of East Anglia, in preparation, 1988.

8. Kennaway, J.R. The Correctness of an Implementation of Functional Dactl by Parallel
Rewriting, Alvey Technical Conference, Swansea, 1988.

9. Kennaway, J.R. Implementing Term Rewrite Languages in Dactl, Proc. CAAP’88, LNCS
299, 102-116, 1988; extended version submitted to Th. Comp. Sci., 1988.

10. Milner, R. The Standard ML Core Language, Report CSR-168-84, Edinburgh University,
1984.

11. Papadopoulos, G.A., A High-Level Parallel Implementation of PARLOG, Internal Report
SY'S-88-05, University of East Anglia, 1988.

12. Peyton-Jones, S.L. The Implementation of Functional Languages, Prentice-Hall, 1987.

13. Turner, D.A. Miranda: a Non-strict Language with Polymorphic Types, FPLCA, LNCS
201, Springer, 1985.

14. Ueda, K., Guarded Horn Clauses, D .Eng. Thesis, University of Tokyo, Japan, 1986.

t1ve
Int
cor
guz

Sys

and
gal
pIC
str

to

ru)
Tl
Pa
s1z
Po
loc

