
Automating the Development of Device-Aware Web Services:
A Model-Driven Approach

Achilleas Achilleos, Nearchos Paspallis and George A. Papadopoulos
Department of Computer Science, University of Cyprus

Email: [achilleas, nearchos, george]@cs.ucy.ac.cy

Abstract—The huge growth of the mobile devices market
and the fast-changing requirements of mobile users, increase
the need to develop native Web Service clients that can
be deployed on both mobile and desktop devices. Existing
work attempts to address heterogeneity, in order to simplify
the development of device-aware Web Services. This paper
defines the Presentation Modelling Language, which allows
defining clients as graphical user interface models that are
then transformed to platform-specific code. Also, the Web
Services Description Language is used to define and generate
the proxy classes that enable service communication from the
generated clients. A functional device-aware Web Service
is developed, showcasing the high-degree of automation
achieved and the multi-platform nature of the approach.

Keywords-model-driven; Web Services; cross platform de-
velopment; code generation; device-aware; mobile services;

I. INTRODUCTION

Mobile devices are hawking the marketplace over their
stationary counterparts. Thus, mobile users requirements
are rapidly increasing in terms of running more complex
services on these mobile devices [1]. Also, the evolution
of technologies (e.g. J2ME, C#) and the introduction of
new ones (e.g. Android), creates additional requirements
and restrictions when developing service-clients [2]. These
arise from the graphical user interface (GUI) and resource
limitations (e.g. screen, battery) imposed, when develop-
ing service clients that utilise Web Services (WS) from
different devices.

To overcome these issues, research work focuses on
developing clients, which can consume WS directly via
the Web platform; e.g. using HTML forms. This confines
the development process in using pure HTML and a plain
web browser, so as to build and utilise Web Services across
multiple devices and platforms. Hence, the following
inherent constraints arise [3]: (i) difficulty in implementing
sophisticated, interactive and refined functionality, and (ii)
security implications presented when the secure HTTPS
(HyperText Transfer Protocol Secure) protocol is used,
since many mobile devices do not support it. In con-
trast, this work proposes a model-driven approach that
allows building native web-based applications (rather than
HTML-based) deployed across devices and platforms.

The Model Driven Architecture (MDA) paradigm [4] is
combined with the Web Services technology, to uncouple
the development of platform-specific clients from the im-
plementation of the Web Service functionality; producing
a fully functional device-aware Web Service. In particular,

we support development for the following categories of de-
vices: (i) Resource-rich devices; e.g. desktops, laptops, (ii)
Resource-competent devices; e.g. Netbooks, iPad and (iii)
Resource-constrained devices; e.g. mobile smartphones
such as Google Nexus One, iPhone, Nokia N8. Our
category set is defined based on an initial categorisation
of devices performed by Ortiz et al. [5] and extended by
adding and addressing the second category.

Foremost, the Presentation Modelling Language (PML)
is defined that enables the design and automates the
implementation of service clients. Also, the Web Services
Description Language (WSDL) is exploited to design and
generate device-specific proxy classes, which facilitate WS
communication. Thus, designers define GUIs and collec-
tions of service communication endpoints as graphical
models, which are transformed to different implemen-
tations and deployed on mobile devices to enable Web
Service access. Hence, the WS functionality is coded
manually in a single technology; e.g. J2ME, C#.

The paper is structured as follows: Section 2 presents
the motivation of this work and Section 3 introduces the
architecture of the proposed model-driven, Web Service
oriented approach. The following section presents the
PML, defined as an Eclipse Modelling Framework (EMF)
metamodel. Section 5 maps PML concepts to the Android
technology (i.e. transformation rules) and presents the
WSDL code generation capabilities. Section 6 presents the
case study and performs an evaluation using the Lines
of Code (LoC) software metric. Concluding, Section 7
presents findings and future plans of this work.

II. RELATED WORK

The development of GUIs is a taunting but essential
task when building software applications. In particular,
the development effort is largely increased when the same
software service is developed for different platforms with
various restrictions and requirements [2]. Initial work on
GUI modelling, focuses on the definition of the GUI
structure as presentation diagrams and its behaviour as
hierarchical statechart diagrams [6]. The models are then
transformed to Java-based GUI code, which can be ex-
tended for implementing functional multimedia desktop
applications. Link et al. [7] propose a tool-based approach
for the model-driven development (MDD) of GUIs for
various target platforms. The key objective is to model
the GUI properties of a software application and transform
them into code. This automates the GUI implementation
and reduces the effort to develop software applications.

2011 35th IEEE Annual Computer Software and Applications Conference

0730-3157/11 $26.00 © 2011 IEEE

DOI 10.1109/COMPSAC.2011.74

551

2011 35th IEEE Annual Computer Software and Applications Conference

0730-3157/11 $26.00 © 2011 IEEE

DOI 10.1109/COMPSAC.2011.74

554

2011 35th IEEE Annual Computer Software and Applications Conference

0730-3157/11 $26.00 © 2011 IEEE

DOI 10.1109/COMPSAC.2011.74

535

A more recent approach [8] takes research work a step
further, by addressing the development of fully functional
software applications for mobile platforms. This approach
allows non-expert users to easily design specialised mobile
applications. The authors state the following in their work:
“it still takes a large amount of skill and familiarity with
different APIs to create a simple mobile application”. To
tackle development complexity, the Mobile Applications
(MobiA) modelling tool is developed that allows designing
mobile applications, which could then be transformed to
platform-specific code. This work does not develop though
any transformation tools. Moreover, the main functionality
of the application is implemented and deployed on the ac-
tual device. This imposes a burden on resource-constrained
mobile devices and does not favour interoperability.

Dunkel and Bruns [9] propose a simple and flexible
approach for the development of mobile applications. A
model-driven approach is presented that allows defining
the client’s GUIs and the service workflow using graphical
models. These models are then transformed into XML-
based descriptions (i.e. XForms code). The XForms W3C
standard is selected because of its close correlation with
the Mobile Information Device Profile (MIDP) of J2ME,
which allows mapping easily XForm elements to MIDP
elements; i.e. client code. The approach could address
additional mobile implementations, by extending the code
generators. The authors acknowledge a deficit of their
approach, which arises from the necessity to integrate and
use various Unified Modelling Language (UML) tools.
These tools do not fully support metamodelling and pro-
vide proprietary and not yet stable code generation.

Ortiz et al. [5] state that mobile devices heterogeneity
and their non-stop use in everyday life activities reveals
the necessity to access WS from these mobile devices. The
main objective of this work is to adapt the result of the WS
invocation, based on the client’s device type. Hence, the
authors propose a service-side, aspect-oriented approach
that allows developers to extend the implemented WS.
This enables the adaptation of the WS invocation result
in accordance to the client’s device. The WS code is not
directly affected since additional aspect code is imple-
mented, which intercepts the invocation of the service op-
eration and adapts it according to the device type detected.
This approach suffers from three issues (as noted by the
authors[10]): (i) client code is implemented that declares
the device invoking the WS, (ii) response time is slightly
increased since the service-side aspect code requires to
process and adapt the response depending on the device
type, and (iii) the complex task of implementing different
service-clients (e.g. clients GUIs) is not considered.

Finally, Kapitsaki et al. [1] present an approach that
automates the development of composite context-aware
Web applications. The approach proposes complete sepa-
ration of the web application functionality from the context
adaptation. In particular, a methodology is adopted that
utilises the UML for the design and automatic generation
of a functional context-aware web application. However,
the approach automates the development of context-aware

Web applications (intended mainly for mobile users),
which are formulated by existing third-party web services.
This approach raises some security implications, since
in many cases it is not possible to develop clients that
interact with these services; i.e. permissions required.
Also, although UML profiling is supported by different
UML tools, it does not provide a standard way to access
model stereotypes, so as to impose model constraints and
map models to the context-aware implementation.

III. THE PROPOSED ARCHITECTURE

This work bridges MDA with WS, to exploit their
potentials and overcome their limitations. Fig. 1 presents
the architecture proposed in this work, which separates
each developed device-aware Web Service into two con-
stituent parts. The client-side comprises the GUIs and the
necessary proxy classes, which facilitate respectively the
interaction of the user with the device and the commu-
nication with the service by exchanging Simple Object
Access Protocol (SOAP) messages. Both the GUI and
proxy classes are generated from the abstract models (i.e.
PML, WSDL), as shown in Fig. 1.

Figure 1. Model-Driven, Web Service-oriented Architecture.

The principal target is to define abstract PML models
that include the necessary information for generating the
GUI implementation of service clients. Thus, each PML
model includes information that describe GUI elements
(e.g. label), properties (e.g. label’s text) and relationships
(e.g. panel contains button). This information is described
in the PML metamodel (section IV). On the basis of
the metamodel definition, the code generators (section V)
have been developed (G1, G2, ..., GN), which are tailored
towards different platforms, so as to enable the transfor-
mation of PML models to platform-specific code.

Furthermore, existing WSDL code generation tools are
used that enable the transformation of WSDL models into
platform-specific proxy classes. Hence, if we assume that
Android is the target platform, the generated Android GUI
classes use the Android proxy classes to consume the WS,
receive the response message and display the information
on the Android mobile device. The same reasoning applies
for all platforms, since the model-driven approach enables
the generation of different implementations. This allows

552555536

Figure 2. Presentation Modelling Language metamodel.

building device-aware Web Services and deploying them
across different platforms; see Fig. 1.

The WS functionality, is the only part that must be
manually implemented by developers. However, it is coded
in one implementation (in this work it is Java-based),
since the WS platform enables clients implemented in
various technologies (e.g. J2ME, Windows) to consume
the same WS. This is possible since the communica-
tion is performed using SOAP, which is a simple pro-
tocol for exchanging XML-based structured information
in computer networks. It also relies on Remote Procedure
Call (RPC) and HyperText Transfer Protocol (HTTP) for
connection negotiation and message transmission. This
enables interoperability (proven characteristic of WS [1])
between various platforms, and it simplifies and speeds
up the development of fully-functional, device-aware Web
Services.

IV. PRESENTATION MODELLING LANGUAGE

The PML is defined as an EMF metamodel, presented
in Fig. 2, which describes the modelling elements, their
associations and properties. This information defined in
the metamodel enable the design of GUIs in the form
of visual abstract PML models. The metamodel was de-
fined by examining and evaluating various GUI elements,
associations and properties that share similarities across
platforms. Example cross-platform elements are contain-
ers, labels, text boxes, etc. Moreover, typical associations
between objects exist across platforms, such as container
(e.g. panel) includes component (e.g. label).

As illustrated in Fig. 2 the top element defines the whole
PML model, which includes the rest of the graphical mod-
elling elements. It is specified using the DocumentRoot
metaclass that includes the name property and aggrega-

tions to the rest of the model elements. First, the displays
aggregation designates that each model contains zero to
many displays (i.e. device screen). To reduce complexity
we impose an OCL rule that allows to define merely one
display element per model, so as to improve the model’s
comprehension and reduce its complexity.

The display model element is specified as an instance of
the Display metaclass, which includes graphical properties
that are common across platforms. First, the name property
defines the actual name of the display element, while the
second property defines the title shown onto the main
display of the device. The size and layout properties define
the actual size of the display and the layout of container
elements onto the main display. Concluding, the visibility
property specifies if the display is visible or not, while the
location property defines its position onto the screen.

Following, the containers aggregation defines the con-
tainment relationship between the display and its container
elements. These components are described as the con-
tainers of secondary components, such as labels, buttons,
etc. The PML defines also these secondary components,
which are common and widely-used in all implementation
platforms. In particular, the Component metaclass defines
the parent of the following child metaclasses: Message,
Label, Button, TextPane, RadioButton, ComboBox, Check-
Box, TextField, List and SelectionGroup modelling ele-
ments. Hence, the designer is able to instantiate these
child metaclasses and define different secondary graphical
components using an abstract representation.

The discontainers, discomponents and concomponents
associations define the relationships between the above
modelling elements. Foremost, the discontainers associ-
ation describes that the main display element may include
different container elements. Moreover, the discomponents

553556537

association defines the containment relationship of the dis-
play element directly with various secondary components;
e.g. labels, buttons. Also, the concomponents association
describes that container elements may as well include
different secondary components.

Finally, the Property metaclass is a key element, since
it allows describing miscellaneous graphical properties
for the modelling elements. The aggregation associations
dproperties, conproperties and compproperties define
clearly that each element may contain various properties,
which are defined as instances of the metaclass. Properties
are defined as keywords, which are recognised and
transformed via the transformation rules defined within
code generators. In addition, the following OCL constraint
ensures that the designer can define only keywords (i.e.
properties) supported by the PML. Thus, the flexibility is
provided to extend the PML, by adding keywords to the
OCL rule and the generators. The specification of OCL
rules completes the PML definition and allows generating
a supporting Presentation Modelling Framework (PMF),
which includes an editor with drag-and-drop capabilities
for designing and validating PML models.

context Property
inv:Property.allInstances()→forAll(p: Property | p.name =
’text’ or p.name = ’title’ or p.name = ’message’ or p.name
= ’rows’ or p.name = ’columns’ or p.name = ’lineWrap’ or
p.name = ’stringArray’ or p.name = ’command’)

V. BUILDING THE CODE GENERATORS

To support the transformation of PML models to the
necessary target implementations, it is imperative to define
coherent transformation rules that compose the code gen-
erators. This ensures the correctness of the generated code
operational semantics. The development of the generators
is performed using our previously proposed MDD envi-
ronment [11], enabling as a result the transformation of
PML models to the target GUI implementations. Also, this
approach exploits existing code generators to transform
WSDL models to the required source code (i.e. proxy
classes) that enables the communication with the WS.

A. Presentation Modelling Language Code Generation

The MDD environment [11] includes the openArchitec-
tureWare (oAW) software tool that enables the develop-
ment of code generators by defining model-to-text trans-
formation rules. The tool’s most important components are
the Xpand template language and the workflow execution
engine. Foremost, the Xpand language supports the defi-
nition of advanced code generators as templates, which
capture the transformation rules and control the output
document generation; e.g. J2ME, C#, HTML. Finally, the
workflow execution engine drives the code generation on
the basis of the defined templates and the input model.

Fig. 3 presents the code generation process, which is
driven by the workflow execution engine. The most critical
parts of the process are the PML model and the templates.
Also, a workflow script is defined, which is executed via
the workflow engine, calling the necessary Java classes

Figure 3. The PML code generation process.

of the oAW tool that drive generation. Listing 1 presents
part of the Android-specific template definition that allows
demonstrating how code generation is achieved. Note that
the required scripts and code generators are defined for
all platforms but Android is presented here as an example.
Lines 1-4 define the path to extension functions, define the
DocumentRoot metaclass as the root element and access
the displays collection. Next, the Display metaclass is
defined as the primary element (i.e. line 6), which enables
access to its associated containers, the secondary compo-
nents and their properties to facilitate code generation.

Lines 25-46 define a key template part, which allows
iterating through the collection of display containers. This
enables access to containers’ properties and the secondary
components associated to these containers. Lines 29-45
define a second loop that iterates through the collection
of secondary components, which are associated with the
current container in the first iteration. Thus, the properties
and associations of all secondary components can be
accessed through the corresponding variable reference
and the required conditional statements can be defined
that drive generation according to the component type.

Listing 1. Part of the Android-specific template definition

1. <<EXTENSION extensions::AndroidExtensions>>
2. <<DEFINE Root FOR pres::DocumentRoot>>
3. <<EXPAND Display FOREACH displays>>
4. <<ENDDEFINE>>
5. <<REM>>Define Display - Primary Element.<<ENDREM>>
6. <<DEFINE Display FOR pres::Display>>

...
20. <<REM>>Create method for activity.<<ENDREM>>
21. /** Called when the activity is first created. */
22. public void onCreate(Bundle savedInstanceState) {
23. super.onCreate(savedInstanceState);
24. <<REM>>Set title and layout of Activity.<<ENDREM>>
25. <<FOREACH this.discontainers AS discon->>
26. this.setTitle(<<this.title>>);
27. TableLayout <<discon.name>> = new TableLayout(this);
28. <<REM>>Create associated components.<<ENDREM>>
29. <<FOREACH discon.concomponents AS concomp->>
30. <<IF concomp.metaType.name.matches("pres::Label")->>
31. <<concomp.name>> = new TextView(this);
32. <<concomp.name>>.setText(<<concomp.compproperties.

select(e|e.name.contains("text")).value.first()>>);
33. <<ELSEIF concomp.matches("pres::Button")->>
34. <<concomp.name>> = new EditText(this);

...
44. <<ENDIF>>
45. <<ENDFOREACH>>
46. <<ENDFOREACH>>

...
58. <<ENDDEFINE>>

Each conditional statement allows checking the type
(i.e. metaType) of the current secondary component and
generating the necessary source code. For instance, the
logical statement defined at line 30 ensures that the
current component is an instance of the Label metaclass,

554557538

so as to generate the code that implements a TextView
component. Using the same reasoning the whole template
is defined, which transforms the PML model to Android
code. Additional templates were defined, which drive PML
model transformation to various GUI implementations.

B. Web Service Description Language Code Generation

This subsection presents briefly the transformation of
WSDL models to the corresponding proxy classes that
support the communication with the WS. The WSDL
serves as a platform-independent specification language
that allows describing the functionality of WS using
abstract models. Thus, different technologies have devel-
oped their individual code generation tools, which enable
the transformation of WSDL models to implementation
classes that permit to invoke and retrieve responses from
WS. In this work we exploit existing WSDL tools, such
as the Axis2 wsdl2java tool or the .NET wsdl tool, so
as to transform an input WSDL model to fully annotated
platform-specific code. Further details on the implemen-
tation of these tools is out of the scope of this work.

VI. CASE STUDY: THE BookStore PROTOTYPE

A. Prototype Overview

The prototype is a BookStore device-aware Web Service
that allows searching for books stored in a repository using
their title and returning to the users the necessary details of
the book. Primarily, the service-side main functionality of
the prototype is manually implemented by the developer in
Java. The implementation utilises the Java Open Database
Connectivity (ODBC) standard, which enables access to
database management systems (DBMS) for querying and
retrieving data. The second step involves the definition and
validation of the PML and WSDL models and their trans-
formation to different platform-specific service-clients.

Figure 4. The BookStore Web Service Presentation Model.

Fig. 4 presents the PML model that defines the GUIs of
the service-clients. At the top we have an instance of the
Display metaclass, which represents the main display of
the GUI. It also includes additional properties (not shown
in the figure) and associations. For instance, the display
is associated with a single container component (i.e.
Container instance), which includes its own properties

and contains secondary components; e.g. label. These
secondary components are defined as instances of the
respective metaclasses and include their own properties.
Finally, the model is validated, prior to code generation,
to ensure that no errors exist in the PML model.

Listing 2. The GUI code generated for the Android target platform.

1. package client.gui;
...

11. public class BookStoreWSAndroidClient
12. extends Activity implements OnClickListener {

...
19. public void onCreate(Bundle savedInstanceState) {
20. super.onCreate(savedInstanceState);
21. this.setTitle("BookStoreWSClient");
22. TableLayout WSClient = new TableLayout(this);
23. bookTitleL = new TextView(this);
24. bookTitleL.setText("Enter Book Title:");
25. bookTitleTF = new EditText(this);

...
31. bookDetailsTP = new TextView(this);
32. bookDetailsTP.setText("");
33. /** TODO starts */

...
45. /** TODO ends */
46. }
47. public void onClick(View event) {
48. if (event.equals(submitB)) {
49. /** TODO starts */
50. AndroidProxy proxy_stub = new AndroidProxy();
51. try { String result = proxy_stub.
52. getBookDetails(bookTitleTF.getText().toString());
53. bookDetailsTP.setText(result);
54. } catch (Exception e) {
55. e.printStackTrace();
56. }
57. /** TODO ends */
58. }
59. }

Listing 2 shows the Android-specific code generated
from the PML model. Lines 20-24 of the code, are gener-
ated via the rules defined in lines 23-32 of Listing 1. These
rules transform the Display, Container and Label elements
and their properties shown in Fig. 4. The developer im-
plements manually a few lines of code (TODO branches),
which have to do with the tasks of placing components
to the container and invoking the WS (i.e. lines 49-57)
using the proxy classes generated from the WSDL model;
Fig. 5. Thus, the implementation effort is reduced, since
a large percentage of the code is generated for different
implementations. This reduces the coding effort, addresses
device heterogeneity and portability across platforms.

Figure 5. The BookStore Web Service Description Language Model.

B. Evaluation using the Lines Of Code Software Metric

This subsection evaluates our approach using the LoC
metric, which allows demonstrating the high-degree of au-
tomation achieved and the decrease of the implementation

555558539

effort. Table I presents the results obtained by comparing
the generated code with the fully-functional code of each
service-client. The WS main functionality is implemented
only once using Java and is consumed by different clients.
Hence, the WS code (i.e. 55 LoC) is considered only when
deriving the percentage for all target implementations.

Table I reveals that a significant part of the service-
clients code has been automatically generated from the
models; i.e. percentages are above 75%. Furthermore, our
experience in defining code generators [11] suggests that
transformation rules can be optimised, so as to achieve
higher-degree of automation. Also, the diversity of tech-
nologies reveals the merits of the transformation, i.e.
rapidly adaptable to additional platforms; e.g. Apple iOS.

Table I
EVALUATION RESULTS USING LOC SOFTWARE METRIC.

Metric Generated Overall Generated/
(LoC) Code Code Overall (%)

Java 295 316 93.35%

J2ME 206 225 91.56%

Android 74 93 79.57%

Windows Mobile 80 94 85.11%

Windows Desktop 116 123 94.31%

All Platforms 771 851 90.60%
(Average)

These results, although confined to the case study, allow
extracting the necessary conclusions as to the development
efficiency of the proposed approach. We need to acknowl-
edge though, that implementing less lines of code does not
necessarily indicate a decrease in the development effort.
This is because developers must familiarise themselves
with the code generators, so as to be able to extend easily
the generated implementation. We argue that the approach
can be more beneficial in the long term, as developers learn
the specifics of the generated implementation.

Figure 6. The BookStore Web Service Deployed on Different Devices.

Finally, the key contribution lies in the ability to address
device heterogeneity and portability across platforms,
while at the same time alleviating the computation burden
from the clients (especially for mobile devices) via the
Web platform. In addition, the need to overcome the inher-
ent limitations of HTML (see section I) when developing
client applications directed us towards a model-driven,
Web Service oriented approach. Fig. 6 demonstrates the

cross-platform nature of the proposed approach through
the deployment of the prototype on different platforms.

VII. CONCLUSION

This research work showcases that the model-driven
development of device-aware Web Services is both fea-
sible and applicable. In particular, the proposed approach
reveals that by combining the MDA paradigm with the
Web Services technology, we can exploit their potential
and overcome their limitations. First, the MDA paradigm
provides the desired platform-independence, while the
Web Services technology ensures interoperability amongst
platforms and lessens the clients computational load. The
initial prototype demonstrated the cross-platform applica-
bility and the development efficiency obtained. An inher-
ent limitation of the approach, is the necessity to learn how
to use the languages and realise the code generated from
the models; so as to extend it. Our immediate objective is
to extend this work by considering user preferences and
performing also a performance analysis evaluation.

REFERENCES

[1] G. M. Kapitsaki, D. A. Kateros, G. N. Prezerakos, and
I. S. Venieris, “Model-driven development of composite
context-aware web applications,” Information and Software
Technology, vol. 51, no. 8, pp. 1244–1260, 2009.

[2] D. Dern, “Cross-platform smartphone apps still difficult,”
IEEE Spectrum, 2010.

[3] M. Bloice, F. Wotawa, and A. Holzinger, “Java’s alter-
natives and the limitations of java when writing cross-
platform applications for mobile devices in the medical
domain,” in Proceedings of 31st ITI Conference, 2009.

[4] Y. Singh and M. Sood, “Model driven architecture: A
perspective,” in in Proceedings of IEEE ACC Conference,
6-7 2009, pp. 1644–1652.

[5] G. Ortiz and A. G. de Prado, “Adapting web services
for multiple devices: A model-driven, aspect-oriented ap-
proach,” IEEE Congress on Services, pp. 754–761, 2009.

[6] S. Sauer, M. Drksen, A. Gebel, and D. Hannwacker,
“Guibuilder: A tool for model-driven development of mul-
timedia user interfaces,” 2006.

[7] S. Link, T. Schuster, P. Hoyer, and S. Abeck, “Focusing
graphical user interfaces in model-driven software devel-
opment,” in Proceedings of the ACHI Conference. IEEE
Computer Society, 2008, pp. 3–8.

[8] F. T. Balagtas-Fernandez and H. Hussmann, “Model-driven
development of mobile applications,” in Proceedings of the
ASE Conference. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 509–512.

[9] J. Dunkel and R. Bruns, “Model-driven architecture for
mobile applications,” in Proceedings of the 10th BIS Con-
ference. Springer-Verlag, 2007, pp. 464–477.

[10] G. Ortiz and A. G. de Prado, “Mobile-aware web services,”
in Proceedings of the IEEE UBICOMM Conference, vol. 0,
pp. 65–70, 2009.

[11] A. Achilleos, K. Yang, and N. Georgalas, “A model driven
approach to generate service creation environments,” in
Proceedings of IEEE GLOBECOM, nov. 2008, pp. 1 –6.

556559540

