
An Approach for Developing Adaptive, Mobile
Applications with Separation of Concerns

Nearchos Paspallis and George A. Papadopoulos
Department of Computer Science, University of Cyprus

75 Kallipoleos Str., P.O. Box 20537, CY-1678 Nicosia, Cyprus
{nearchos, george}@cs.ucy.ac.cy

Abstract

Modern mobile computing paradigms have set new
challenges for the development of distributed mobile
applications and services. Because of the variability
which characterizes the context of such environments,
it is important that mobile applications are developed
so that they can dynamically adapt their extra-
functional behavior, in order to optimize the
experience perceived by their users. This paper
proposes an approach for developing adaptive, mobile
applications. It is argued that this approach eases the
development effort by clearly separating the work
required for the development of the application logic
from that required for enabling its adaptive behavior.
It is argued that in addition to mitigating the
development complexity, this approach also enables a
new generation of distributed applications. The novelty
in the latter is that the applications can dynamically
and collaboratively adapt in an ad-hoc manner to
improve the quality of the services offered to mobile
users.

1. Introduction

Modern mobile computing paradigms have set new
challenges for the development of distributed mobile
applications and services. Because of their limited
resources and the high variability which characterizes
their environments, mobile systems are often required
to provide adaptive behavior, something which renders
their development process significantly more complex
and thus much harder.

Mobile computing is typically defined as the use of
distributed systems, comprising a mixed set of static
and mobile clients [13]. More refined and specialized
approaches have also been proposed, including the
ubiquitous [17], autonomic [6], and proactive [15]
computing paradigms. These approaches suggest a new
generation of distributed and adaptive mobile systems,

as a means for improving the quality of the services
delivered to end users.

Naturally, the development of software applications
featuring such a sophisticated behavior is not easy. It
has been suggested that while researchers have made
tremendous progress in almost every aspect of mobile
computing, still not enough has been achieved in
dealing with the complexity which characterizes their
development [6]. Rather, the necessary development
environments as well as system and tool support for
such scenarios are still an area of ongoing research [11,
12]. Furthermore, this paper argues that the
development complexity grows even further as the
boundary between cyber-space and real world becomes
increasingly obscured. Consequently, new
development approaches and tools are needed to
mitigate the increased complexity.

In this respect, this paper proposes an approach
aiming at taming the inherent development complexity
by separating the two main concerns: implementing the
functional requirements of an application and enabling
its adaptive behavior. Furthermore, it is argued that this
approach can optimize the utilization of distributed
devices and resources available to a user, by enabling
synergistic collaboration among them. The approach is
based on a custom component framework, which is
also presented.

The rest of this paper is organized as follows.
Section 2 discusses adaptive systems both in general,
and focusing on how and where adaptivity can be
applied. Next, section 3 describes a new approach for
developing adaptive applications with separation of
concerns. It starts with the description of a custom
component framework which is designed to enable the
development approach, and proceeds to the description
of the two development phases. This is followed by
section 4 which includes a case study example which
illustrates the development process. Finally, section 5
provides conclusions and pointers to future work.

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

2. Adaptive systems

This section studies different aspects of the services
offered by mobile, distributed systems. It first covers
how users perceive the interaction with a service as the
result of both its functional and non-functional
properties, and second, it discusses how and where
adaptivity is enabled.

2.1. Separation of concerns

In this paper, it is assumed that users experience the
service as the interactivity with the corresponding
service provider. For example, a worker uses her PDA
to access information on her dynamically updated
schedule. In this case the provided service requires the
utilization of a distributed system, where her PDA acts
as the service client and a corporate computer acts as
the service provider. In addition to the actual service,
the user also experiences its extra-functional behavior.
For example, a user can perceive the richness of the
data (e.g. whether high-quality or low-quality images
are attached to her assignments), or the network
latency and bandwidth (e.g. how long it took for the
PDA to get synchronized with the server).

Figure 1: The user’s perception of service.

Whether the effectiveness of a service is measured
by the existence of some perceived results or the lack
of such, as per the ubiquitous computing paradigm, a
service can be typically analyzed into two parts. The
first part refers to the functional requirements of the
service, or simply delivering what the service was
originally designed for. In the previous example, the
functional requirements include the service which
allows the user to dynamically access and update her
schedule.

As it has been already argued though, real world
services are also characterized by what is perceived by
users as extra-functional behavior. This behavior is
generally unpredictable, as it is affected by numerous
exogenous factors such as the user occupation, the user
location, the network availability, etc. For example, the
quality of the attached images and the network

latency/bandwidth are examples of how the user
perceives the service’s extra-functional behavior.

As shown in Figure 1, the user perceives the service
as the result of both the application logic functioning,
as well as its extra-functional behavior. The main goal
of this paper is to propose a software development
approach which enables the separation of the two
concerns, i.e. developing the application logic and
defining its adaptive behavior. With such an approach,
the developers would be enabled to concentrate on the
functional requirements of their project, rather than
mixing the two concerns in the same phase. The
adaptive behavior would then be an additional aspect
of the application, which could be independently
embedded, by exploiting reusable adaptive techniques.

2.2. Enabling adaptations

In [11] it is argued that there are generally two
approaches for realizing dynamic adaptations:
parameter and compositional adaptation. While
parameters can be used to instruct applications into
using different existing strategies, compositional
adaptations have an additional benefit: they allow
newly introduced components and algorithms which
can address concerns unforeseen during development.

This paper introduces separation of concerns in the
development methodology of adaptive software. This
approach requires and uses reflection and component-
orientation. Computational reflection allows a system
to reason and possibly alter its own behavior, and
component-orientation allows independent deployment
and composition by third parties [14].

While compositional adaptation is restricted to the
middleware and application layers, parameter tuning
also applies to lower layers, such as the operating
system, protocols, and the hardware [11]. For example,
at the protocol level, the TCP dynamically adjusts its
window to avoid or recover from network congestion.
Also, at the hardware layer, adaptations could target
ergonomics (e.g. adjust the display brightness), power
management (e.g. turn idle network adapters off), etc.

An adaptive system can be abstracted by a number
of layers. The hardware layer, which includes all
hardware devices, is right below the operating system
and protocols layer. These layers have the common
characteristic that any changes in them affect the whole
device. For example, if the display brightness or the
processor speed is adjusted, all applications using them
are affected. Similarly, changes at the operating system
layer also affect the whole device. For example, the
Windows Mobile operating system allows the
adjustment of the storage versus the program memory
balance. Clearly, any change in this balance affects the
device, and consequently all applications running on it.

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

On the other hand, changes performed at the layers
of components and component-based applications have
a more limited scope. For example, it is possible to
replace a component implementation, or adjust one of
its parameters, without causing any direct effect to the
applications that are not using it. At the application
layer, adaptations are typically achieved with dynamic
reconfiguration (classified as changes to the software
implementation, composition, or distribution [5]).

Finally, besides being limited to these layers,
adaptations can also extend beyond the boundaries of a
single hosting device. This type of adaptations, which
are quoted as distribution adaptations, is of particular
interest to this paper. It is argued that users can
experience great enhancements in the quality they
perceive in their software services if the used devices
are capable of synergistically sharing services and
components, thus better utilizing the available
resources.

3. Development approach

This section proposes an approach which can be
used for the development of adaptive applications, with
separation of concerns. The approach consists of two
phases: implementation of the application logic, and
definition of its adaptive behavior.

The proposed approach builds on component-
orientation, where components are defined as binary
units of composition, with contractually specified
interfaces and explicit context dependencies only [14].
While components implement services, and they can
be composed and deployed (even across devices),
services are merely points of component interaction.

3.1. Component framework

The presented component framework was designed
to enable the dynamic reconfiguration of component-
based applications. It uses Java annotations [1], and it
features reflection (i.e. dynamic access to information
describing the state, structure and behavior of itself, as
well as of its hosted components). The latter is
achieved with the use of specific metadata, which are
associated with the components in a way which allows
dynamic reasoning on their state and use at runtime.

3.1.1. Components and variation points

A prototype component framework has been
implemented, using the Java language [8]. The
components are defined as classes, annotated with both
required and optional metadata. Furthermore, the
framework implements standardized component

containers [3], providing runtime support for dynamic
adaptations and lifecycle management. Similarly to the
majority of industrial component models (e.g. CCM,
COM and EJB), the components are considered as
similar to object-oriented classes in the sense that they
are instantiated and their instances can be stateful.

Supporting dynamic compositional adaptations (i.e.
through dynamic reconfigurations) is a major research
area itself. Kramer and Magee have detected a number
of important issues for dynamic reconfigurations, most
notably the requirement for quiescence [9, 10]. This
paper does not aim at providing general solutions to
these issues but rather reuses existing ones, such as the
configurator pattern [7] which is implemented by the
prototype component framework.

The component framework defines a set of metadata
which are required to enable dynamic adaptations.
These metadata are defined inline with the code using
annotations. The attached metadata define information
such as a unique identifier, a list of roles they
implement and a list of roles they export.

@ComponentAnnotation(
 componentID = "cy.ac.ucy.test.AudioProcessor",
 description = “Transforms text to speech”,
 roles = { cy.ac.ucy.test.AudioProcessorRole },
 exports = { cy.ac.ucy.test.AudioProcessorRole }
)
public class AudioProcessor
 extends UnicastRemoteObject
 implements Component, AudioProcessorRole

Figure 2: Component annotation example.

In the example depicted in Figure 2, a single class is
used to implement a component. The class implements
the Component and the AudioProcessorRole interfaces.
The first interface specifies a set of methods, which are
used to support the component’s lifecycle control. The
latter specifies which Java interfaces are implemented
by the component.

Each component implementation is also annotated
with information such as a unique identification, an
optional description, a list of implemented roles and a
list of exported roles (which must be a subset of the
implemented roles). Consistency checks ensure that the
specified metadata are valid during the component load
time. For example, a consistency check verifies that the
implemented roles also appear in the class signature as
implemented interfaces.

The roles are the main abstraction artifacts, used to
enable dynamic application composition. They offer a
black box-abstraction, where the offered services are
explicitly specified, unlike the internal mechanisms
which implement them. In the presented framework,
the roles are defined in the form of Java Interfaces,

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

where the specified methods define the offered
services. Contrary to the offered roles, the required
ones are implicitly defined in the actual components,
and they depend on the implementation code rather
than the offered roles. With the use of these artifacts,
the composition of complex components is broken
down to the use of other elementary (or composite)
ones, in a recursive manner.

One of the main features of roles is that they can be
exported. In particular, certain roles can be shared with
applications in other remote devices. As it will be
shown, this is achieved by publishing the exported role
with a registry, along with its metadata describing the
service available by it. Then, other devices can access
the registry, and query the set of available services.

The component framework also provides support
for specifying binding points. Those are the points
where the components connect to each other (in this
case they are implemented as RPCs). When a service
offered by another component is required, a component
specifies and annotates a field of the corresponding
type, without assigning a value to it. The following
figure shows an example of this:

@VariationPointAnnotation(
 variationID = "MyAudioProcessor",
 description = "Requires text to speech support",
 mustBeLocal = false
)
private AudioProcessorRole audioProcessor;

Figure 3: Variation point annotation example.

As shown in Figure 3, a binding point can be
specified by simply annotating its corresponding field.
In this example, the service of an AudioProcessorRole
is required. For this reason, an un-initialized field of
the same type is defined and annotated. The specified
metadata include an identification which must be
unique within the component implementation, and an
optional description. Furthermore, the last attribute
specifies whether a non-local component (i.e. hosted
on a different device) can be used.

When a component is first loaded, the framework
extracts the attached (annotated) metadata and updates
the registry with the corresponding information. For
example, the lists of available and exported roles are
updated. Also, the framework extracts the metadata for
all the variation points defined by the component.

Finally, a component is considered to be valid [2]
when all its variation points are assigned (i.e. a suitable
service provider is available for each variation point
either locally or remotely). The components are
evaluated recursively, where basic components (i.e.
those without dependencies) provide the base cases.

3.1.2. Dynamic composition

The annotation-based mechanisms that were
presented in the previous section are used for
specifying both the offered and the required roles of
components. These roles are then used to facilitate the
dynamic composition of applications.

The framework achieves dynamic composition by
dynamically adding and removing bindings between
components, thus enabling the dynamic configuration
and reconfiguration of component-based applications.
In this manner, the framework acts as a broker,
managing the available and the required roles.
Different composition plans are formed by matching
required services to offered ones. The actual binding of
the components is achieved with the use of reflection,
which is a standard feature of Java.

With the use of the annotation mechanisms, the
components expose both their required and their
offered roles. Using these metadata, the components
can be connected to each other to form a composition.
Furthermore, hierarchical composition is achieved by
implementing the external view of a component
through another composition.

One of the main advantages of this framework is
that it allows the dynamic planning of compositions, as
opposed to frameworks which require a predefined set
of possible adaptations. While this paper focuses on
compositional adaptation, further adaptivity (e.g. at the
hardware layer) is also possible (i.e. parameter tuning).

3.2. Developing adaptive applications

In order to construct adaptive applications, the
developers specify how an application should be
composed, and when. The first part is achieved with
the construction of components with the use of roles
and variation points. The latter also requires a
mechanism to reason on the context and to select
variations.

Naturally, these two requirements separate the
development phase in two parts: developing the
application logic and defining the adaptive behavior.
An apparent advantage of this approach is that the
same components can be reused for the development of
additional, adaptive applications (naturally inherited
from the component-oriented approach). Furthermore,
the same adaptation strategies can be reused in the
context of different applications. For example, a
strategy which monitors the network requirements of
an application, as a function of its components, can be
reused for different applications as well.

Finally, because of the high variability which
characterizes mobile environments, it is important that
the adaptations can be decided and implemented in a

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

quick and efficient manner (i.e. to cope with frequent
and unpredicted disconnections). The following
paragraphs describe the two required phases.

3.2.1. Defining the application logic

Initially, the developers should specify the core
logic of their applications (which is referred to in the
literature as application or business logic as well). This
is achieved by defining a set of component roles,
which describe how the application can be composed.

First, a basic root component is defined. Typically,
the root component is fixed and it does not offer any
roles (i.e. services). All roles required by it are then
specified in the form of variation points which the
framework automatically tries to validate. The rest of
the application structure is defined in a recursive
manner, by the definition of components offering and
requiring services through variation points.

It is assumed that the components offering a role are
equivalent in the sense that they can be used
interchangeably without hurting the consistency of the
application. While the reuse of components featuring
the same roles is an important and active research
topic, it falls beyond the scope of this paper. It is
assumed rather, that the components are developed by
the same group and role identification is merely used
for allowing automated composition planning (as
opposed to enabling universal support with ontologies
and OCL technologies). Also, it is currently assumed
that all possible compositions are valid, i.e. there are
no inter-dependencies among components, which
cannot be modeled through the presented, recursive
approach.

Naturally, multiple components offering the same
role can be mapped to the same variation point. The
number of valid compositions can be recursively
computed using a function f which is defined as f(c) =
g(r1) + g(r2) + … + g(rn), where r1, r2, …, rn are the
roles corresponding to the variation points of the
component c. The base case of the recursion is f(c) = 1,
and applies to the case where a component c defines no
variation points. Similarly, function g is defined as
g(r) = f(c1) + f(c2) + … + f(cm), where c1, c2, and cm
correspond to the component implementations which
offer role r, either locally or remotely (if the variation
point allows remote bindings). The total number of
possible compositions can then be computed by f(cR),
where cR is the unique root component. This method
assumes no inter-dependencies among components (i.e.
all compositions are possible); otherwise, the
computed number corresponds to an upper bound
rather than an exact number.

3.2.2. Enabling the adaptive behavior

So far it has been illustrated how the application is
defined as a set of self-described components, and how
they can be composed to form a valid application.
Nevertheless, the application still lacks a mechanism
for reasoning on the context to choose an adaptation.

There are a number of policies which can be used to
enable such a behavior. These policies are categorized
based on their strategy into action-based, goal-based,
and utility-based adaptations [16]. This paper assumes
a utility-based approach, where each composition is
evaluated with the use of utility functions. The chosen
composition is the one which maximizes the utility.

In order to be able to reason about the state of the
system and decide on a suitable adaptation, the system
must be provided with information describing its
context, and the properties of its components.

The context is defined as “any information that can
be used to characterize the situation of an entity, where
an entity is a person, place, or object that is considered
relevant to the interaction between the user and the
application” [4]. The context data are used as
arguments in the utility functions, which are designed
to reason on the suitability of a composition for a given
point in the context space. While a context managing
mechanism is necessary, the description of one is
beyond the scope of this paper. Rather, it is assumed
that a suitable mechanism is reused, allowing the
framework to register for events concerning a
predefined set of context attributes.

In addition to the context, the decision-making
mechanism also requires to reason on the components
and their properties. The annotated properties of
components describe how the components behave in
certain contexts. For example, a component can be
annotated as “low in processing demands”. Similarly, a
different component can be defined as “high in battery
demands”. The exact units and the semantics of a
property depend on the component developers. For
example, if a component is annotated with a property
named “memory-footprint” and a value of “120”, it
should be understood (by the developers) that the
component has a memory footprint of 120Kb.

Thus, in order to specify the adaptive behavior of an
application, the developers should first annotate the
required components with properties. There is no pre-
defined set of properties to be assigned; the developers
are rather free to specify any properties which are
required by the utility functions.

Once the properties are defined, the next step refers
to defining the utility functions. These functions are
specified in terms of component properties, and
context data. The same utility function gives different
results for different compositions. In this way, the

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

system can search for the most suitable composition
for a given context state. The evaluation of the utilities
is triggered either when a relevant context change
occurs, or when the properties of the components
change (i.e. a new component is added, or an existing
one is deleted). Also, because of the tree-like structure
of the compositions, it is possible to evaluate (and
reconfigure) only a part of the application (i.e. starting
the recursion from a child, rather than the root).

The final requirement is to enable distributed
adaptations (i.e. adaptations that involve more than one
node). Technically, this is enabled with the use of
exported roles, and suitable RPC mechanisms (such as
Java RMI). It is assumed that the collaborating devices
form a group (e.g. using an existing membership
protocol), and that they advertise their exported roles to
their group. Adding or removing an offered role from
the group registry triggers an evaluation process in the
nodes which have at least one application depending
on that role. During the evaluation process, the utility
of a composition is computed as normally, except
when a role available to the group is considered, in
which case that is taken into consideration as well.

Of course, before this approach is useful in practice,
many issues still need to be resolved. Most notably,
suitable protocols are required to coordinate the
negotiation between distributed peers. Such protocols
should guarantee fairness (i.e. ensure the nodes provide
and receive services in a fair way), privacy and
security (e.g. prevent malicious users). While this is an
open issue requiring further work, it is currently
assumed that an appropriate membership protocol is
used and that the users are assumed to be fair and
trusted.

4. Case study

This section illustrates the proposed development
approach with the use of a case study example. This
refers to a scenario where a user manages her daily
agenda with the use of a PDA, which is capable of
interacting with other devices (e.g. through WiFi or
Bluetooth connections). Additionally, the application is
considered of being capable of interacting with the user
either visually or vocally.

4.1. Roles and components

The first step in the development process is the
definition of the required roles. An application is
always based on a root component. Such a component
implements no roles, but rather specifies one or more
variation points. In this case, a root component is used,
which is identified as cy.ac.ucy.test.ScheduleManager.

The main functionality of the application can be
abstracted with the requirements to synchronize the
user’s schedule with the corporate server, and interact
with the user to inform her about her schedule. This
implies that the root component requires the use of two
main roles, namely cy.ac.ucy.test.ServerAccessRole,
and cy.ac.ucy.test.UIRole. The first facilitates read and
write access to the server and the second abstracts
input and output interaction with the user. The roles are
implemented as Java interfaces, where the uniqueness
of their signatures is assumed to also imply the
semantics of their corresponding services.

The default component (providing the server access
role) is a brute-force implementation, using a thin-
client proxy to access a remote database. This
component is identified as cy.ac.ucy.test.ThinClient-
Proxy and requires one role (provided by the corporate
server). That role allows remote access to the database.
The corresponding role is identified with the interface
named cy.ac.ucy.test.DatabaseAccessRole.

An alternative implementation of this component is
one which implements a thick-client proxy, and which
is identified as cy.ac.ucy.test.ThickClientProxy. In
addition to providing read and write access to the
server while connected, this component also caches
write operations on the client side while disconnected
(i.e. to allow partial availability during disconnections).
Similarly to the thin-client implementation, the only
required role is the cy.ac.ucy.test.DatabaseAccessRole.

Then, two more possibilities are considered for the
implementation of the cy.ac.ucy.test.UIRole. First, a
default implementation provides visual input and
output functionality. For example, the information
about upcoming tasks in the user’s schedule is
displayed in a graphical list, and the user fills the
information concerning the completion of her tasks
with a visual wizard. This component is identified as
cy.ac.ucy.test.VisualUI.

An alternative implementation of the same role is
also provided to allow audio interaction with the user.
To achieve this, the component provides the option of
playing audio messages, and accepting vocal input
from the user (such as yes or no replies) through voice
activation. It is assumed that these components provide
sound playing, and voice recognition capabilities. The
latter functionality can be actually provided by separate
components, which are internally used by the main
implementation (i.e. hierarchical composition). This
component is identified as cy.ac.ucy.test.AudioUI, and
has one dependency: a service which transforms text to
audio stream, suitable for the player (i.e. implementing
the cy.ac.ucy.test.AudioProcessorRole role).

The last component refers to the implementation of
the AudioProcessorRole. This component is simply
used to convert text into a byte-stream of synthesized

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

speech. This component is identified as cy.ac.ucy.test.
AudioProcessor and it has no role dependencies.

4.2. Dynamic composition

At this point, the developer has specified a number
of component implementations, along with a set of
specifications about the roles they offer and the roles
they require. Given these, the framework can plan a set
of valid compositions, as illustrated by Figure 4.

Figure 4: Possible compositions for the
schedule manager application.

Assuming that all the components are locally hosted
and by using the recursive equations defined in the
previous section, it is computed that this example can
be configured in four different compositions.
Extending this example to allow an additional, remote
instance of the AudioProcessor role increases this
number to six.

As depicted by Figure 2, the ServerAccessRole can
be offered by two compositions (i.e. a thin and a thick
client). These compositions can be combined with two
more possibilities, depending on the component used
to offer the UIRole. Finally, the AudioProcessorRole is
offered by two possible component implementations
(i.e. one local and one remote). This adds two more
options (as it can be combined with the two
implementations offered for the ServerAccessRole)
accumulating to a total of six valid compositions.

So far, in this phase the developers have defined the
set of components, along with their offered and
required roles. These artifacts however, cannot result to
an adaptive application until the framework is
instructed on how and when each composition is
selected.

4.3. Enabling adaptivity

As it has been argued already, the task of defining
how the application is adapted is a different concern,
which should be kept as independent as possible from
the task of defining the core application logic. In this
respect, it is the responsibility of the second phase to
define which composition is more suitable for each
context in an independent and reusable manner.

Assume that the three context parameters which are
relevant to the adaptation decisions in this example are
the network availability, the memory usage, and the
CPU usage. For simplicity, also assume that these
parameters are described by floating-point values in the
range of 0 to 1. For example, a 0 value implies no
network coverage, minimal memory use and minimal
CPU usage, while a 1 value implies excellent network
coverage, no free memory and maximum CPU usage.

Given these attributes, the variation points can
define utility functions which aim to optimize the use
of resources. For example, the AudioProcessorRole
can define a utility function so that a local
implementation is favored when the memory and the
CPU usage are low. Otherwise (and if the networking
permits) a remote component is preferred. Such a
utility function can be defined, for example, as follows:
u(rA, c) = (1 - memory_usage) · (1 - CPU_usage) if
local, otherwise u(rA, c) = network_availability. This
utility function correlates the utility of a local
component to the product of memory and CPU
availability, and the utility of a remote component to
the availability of the network only. The actual
evaluation of the utility functions takes place when
relevant context changes occur. At that point, the
framework evaluates the utility as a function of the
new context and properties, and decides whether a new
composition can improve on the existing one.

5. Conclusions and future work

This paper has presented the current state of our
work, which aims at defining improved methods for
developing adaptive, mobile applications. It is argued
that separating the non-functional properties of
applications from their business logic, can significantly
raise the abstraction level of adaptivity and thus ease
the development effort.

A custom component framework has been
introduced, aiming to enable the proposed development
approach. This framework can be used to ease the
development process, and also to enable reusable
adaptation strategies. Also, because of the efficiency of
this approach, it is argued that it is beneficial for the
case of frequently disconnected, mobile environments.

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

While this approach aims to provide the core on
which the development approach is based, a number of
improvements are still necessary in order for this
approach to become practical for real scenarios. Most
notably, suitable negotiation protocols along with the
corresponding support infrastructure are required to
facilitate a fair and trusted method for sharing
resources in the form of exchanged services. Also, the
framework should be extended in order to cope with
adaptivity to additional layers (i.e. the operating system
and the hardware). All these issues, along with an
experimentation platform for testing and evaluating
different protocols, will be the topic of future work.

6. Acknowledgements

This work was partly funded by the European
Union as part of the IST MADAM project (6th

Framework Programme, contract number 4169).

7. References

[1] G. Bracha, “JSR 175: A Metadata Facility for the
Java(TM) Programming Language”, Sun Microsystems, Inc.,
http://www.jcp.org/en/jsr/detail?id=175, 2002.

[2] H. Cervantes, and R. S. Hall, “A Framework for
Constructing Adaptive Component-based Applications:
Concepts and Experiences”, 7th International Symposium on
Component-Based Software Engineering (CBSE 2004),
Edinburgh, UK, May 25-25, 2004, LNCS 3054, Springer
Verlag, pp. 130-137.

[3] E. P. D. Conan, N. Farcet, and M. DeMiguel, “Integration
of Non-Functional Properties in Containers”, 6th
International Workshop on Component-Oriented
Programming (WCOP), Budapest, Hungary, Jun. 19, 2001.

[4] A. K. Dey, “Understanding and Using Context”, Personal
and Ubiquitous Computing, Volume 5(1), Jan. 2001, pp. 4-7.

[5] C. Hofmeister, “Dynamic Reconfiguration of Distributed
Applications”, PhD Thesis, Computer Science Department,
University of Maryland, College Park, 1993.

[6] P. Horn, “Autonomic Computing: IBM's Perspective on
the State of Information Technology”, IBM Corporation,
http://www.research.ibm.com/autonomic/manifesto, 2001.

[7] P. Jain, and D. Schmidt, “Service Configurator, A Pattern
for Dynamic Configuration of Services”, 3rd USENIX
Conference on Object-Oriented Technologies and Systems,
Portland, Oregon, June 16-19, 1997.

[8] J. Gosling, B. Joy, and G. Steele, “The Java Language
Specification”, Addison-Wesley Professional, 2000.

[9] J. Kramer and J. Magee, “Dynamic Configuration for
Distributed Systems”, IEEE Transactions on Software
Engineering, Volume 11(4), 1985, pp. 424-436.

[10] J. Kramer, and J. Magee, “The Evolving Philosophers
Problem: Dynamic Change Management”, IEEE
Transactions on Software Engineering, Volume 16(11),
1990, pp. 1293-1306.

[11] P. McKinley, S. Sadjadi, E. Kasten, and B. C. Cheng,
“Composing Adaptive Software”, IEEE Computer, Volume
37(7), 2004, pp. 56-64.

[12] B. Noble, “System Support for Mobile, Adaptive
Applications”, IEEE Personal Communications, Volume
7(1), February 2000, pp. 44-49.

[13] M. Satyanarayanan, “Pervasive Computing: Vision and
Challenges”, IEEE Personal Communications, Volume 8(4),
August 2001, pp. 10-17.

[14] C. Szyperski, “Component Software: Beyond Object-
Oriented Programming”, ACM Press/Addison-Wesley
Publishing Co., 1998.

[15] D. L. Tennenhouse, “Proactive Computing”,
Communications of the ACM, Volume 43(5), May 2000, pp.
43-50.

[16] W. Walsh, G. Tesauro, J. O. Kephart, R. Das, “Utility
Functions in Autonomic Systems”, 1st International
Conference on Autonomic Computing (ICAC 04), New York,
NY, May 17-18, 2004, pp. 70-77.

[17] M. Weiser, “The Computer of the 21st Century”,
Scientific American 265(3), September 1991, pp. 94-104.

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

