
Control-Driven Coordination Based Assembling of Components

Avraam Chimaris and George A. Papadopoulos

Department of Computer Science
University of Cyprus

75 Kallipoleos Str, P.O.B. 20537, CY-1678
Nicosia, CYPRUS

E-Mail: {cspgha,george}@cs.ucy.ac.cy

Abstract

The coordination paradigm has been used extensively as a
mechanism for software composition and integration.
Consequently, a number of associated models and languages
have been proposed which address issues of CBSE from the
coordination point of view. In this paper we use the control-
driven approach to coordination and we present a
framework within which it is possible to assemble
components written in contemporary programming
environments. In particular, we show how the coordination
model IWIM, advocating a black-box approach to
component development, can be realized in ActiveX. We map
the fundamental building blocks of the IWIM model to
ActiveX controls and we then show by means of an example
the applicability of our approach, presenting also the results
in a visual way, thus taking advantage of the features offered
by the ActiveX environment.
Keywords: Coordination Languages and Models; System
and Software Architectures; Distributed Software
Composition; Reusability; Component-Based System
Integration; Visual Programming.

1. Introduction

The concept of coordinating a number of activities,
possibly created independently from each other, such that
they can run concurrently in a parallel and/or distributed
fashion has received wide attention and a number of
coordination models and associated languages ([6]) have
been developed for many application areas such as high-
performance computing or distributed systems. In general,
coordination models and languages fall into two main
categories ([6]). The first one, we can call data-driven or
shared dataspace approach. Its main characteristic is the use
of a notionally shared medium via which the processes
forming a computation communicate. The most notable
realization of this approach is of course Linda ([1]). In Linda,
the underlying view of the system to be coordinated (which
is usually distributed and open) is that of an asynchronous
ensemble formed by agents where the latter perform their
activities independently from each other and coordination
between them is achieved via some medium in an
asynchronous manner. Linda introduces the so-called notion

of uncoupled communication whereby the agents in question
either insert to or retrieve from the shared medium the data to
be exchanged between them. This shared dataspace is
referred to as the Tuple Space and information exchange
between agents via the Tuple Space is performed by posting
and retrieving tuples. The shared dataspace approach, as
expressed by Linda and the many other related coordination
models ([6]), is “data-driven” in the sense that processes
wishing to communicate with each other have to use
primitives which retrieve or post data to the shared medium.
This effectively means that the communicating components
have to actually examine the sent or received data. The
negative consequences of this approach are: (i) the
coordination code of a program is intermixed with the
computation code; (ii) it is difficult to re-use both the code as
well as the general coordination pattern; (iii) as a result of
these two reasons, the components are rather “glass boxes”
(as opposed to being “black boxes”) with whatever negative
results this fact entails.

As a result of the above, another philosophy to developing
coordination models and languages was proposed based on a
“control-driven” approach ([6]). Contrary to what is
happening in the shared dataspace approach to coordination,
here processes communicate in a point-to-point manner by
means of well-defined interfaces. Such a system evolves
dynamically by means of raising and receiving control
events. The coordinated components do not necessarily
examine the data that is being transmitted through these
point-to-point connections and therefore these components
can be viewed as black boxes. This category, in its general
form, encompasses many Software Architecture models,
Architecture Description Languages (ADLs), Dynamic (Re-)
Configuration Languages, etc. ([6]).

In this paper we show how one such model of control-
driven coordination can be used as a “blue print” for
developing component-based systems. In particular, we use
the IWIM model ([2]) and we present a methodology
whereby it is possible to build reusable components in any
state-of-the-art programming environment such as ActiveX.
The rest of the paper is therefore organized as follows: In the
next section we describe the IWIM model; we then describe
a general methodology of how the fundamental building
blocks of IWIM can be realized in ActiveX. We show the
applicability of our approach by means of an illustrative

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

mailto:,george}@cs.ucy.ac.cy

example, also taking advantage here of the visual capabilities
of the ActiveX environment. The paper ends with some
conclusions and reference to future work.

2. The IWIM Coordination Model

The Ideal Worker Ideal Manager (IWIM) model ([2]) is a
control-driven coordination framework, as the latter has been
defined above. In IWIM there exist two different types of
processes: managers (or coordinators) and workers. A
manager is responsible for setting up and taking care of the
communication needs of the group of worker processes it
controls (non-exclusively). A worker on the other hand is
completely unaware of who (if anyone) needs the results it
computes or from where it itself receives the data to process.
Manager processes are written in Manifold, which is a
concrete realization of the IWIM model (see below), whereas
worker processes may be written also in Manifold or in some
computational language (typically C, Fortran). In this latest
case, these worker processes are called atomics. In particular,
IWIM possesses the following characteristics:
• Processes. A process is a black box with well-defined

ports of connection through which it exchanges units of
information with the rest of the world.

• Ports. These are named openings in the boundary walls of
a process through which units of information are
exchanged using standard I/O type primitives analogous
to read and write. Without loss of generality, we assume
that each port is used for the exchange of information in
only one direction: either into (input port) or out of
(output port) a process. We use the notation p.i to refer
to the port i of a process instance p.

• Streams or channels. These are the means by which
interconnections between the ports of processes are
realised. A stream connects a producer process to a
consumer process. We write p.o -> q.i to denote a
stream connecting the port o of a producer process p to
the port i of a consumer process q.

• Events. Independent of channels, there is also an event
mechanism for information exchange. Events are
broadcast by their sources in the environment, yielding
event occurrences. In principle, any process in the
environment can pick up a broadcast event; in practice
though, usually only a subset of the potential receivers is
interested in an event occurrence. We write e.p to refer
to the event e raised by a source p.
Activity in an IWIM configuration is event driven. A

coordinator process waits to observe an occurrence of some
specific event (usually raised by a worker process it
coordinates) which triggers it to enter a certain state and
perform some actions. These actions typically consist of
setting up or breaking off connections of ports and channels.
It then remains in that state until it observes the occurrence
of some other event, which causes the preemption of the
current state in favour of a new one corresponding to that
event. Once an event has been raised, its source generally
continues with its activities, while the event occurrence
propagates through the environment independently and is
observed (if at all) by the other processes according to each

observer’s own sense of priorities. The figure below shows
diagrammatically the infrastructure of an IWIM process.

s1

s2

s3

in1

in2

out

e1 e2

e3 e4

s4

s5

P

The process p has two input ports (in1, in2) and an
output one (out). Two input streams (s1, s2) are connected
to in1 and another one (s3) to in2 delivering input data to
p. Furthermore, p itself produces data, which via the out
port are replicated to all outgoing streams (s4, s5). Finally,
p observes the occurrence of the events e1 and e2 while it
can itself raise the events e3 and e4. Note that p need not
know anything else about the environment within which it
functions (i.e. who is sending it data, to whom it itself sends
data, etc.).

As has been already mentioned, the IWIM model has
been realised by means of a concrete coordination language,
namely Manifold. However, the purpose of this paper is not
to introduce this language; this is done extensively in many
publications (see, for example, [4, 7]). Instead, we argue that
IWIM is in fact independent of its concrete realisation and
provides a complete — and tested! (due to the very existence
of Manifold) — methodology for building component-based
systems using any modern programming environment.
Nevertheless, for illustrative purposes, but also for the reader
to be able to follow and appreciate the work presented in the
next section, we present below the Manifold version of a
program computing the Fibonacci series.

manifold PrintUnits() import.
manifold variable(port in) import.
manifold sum(event)
 port in x.
 port in y.
 import.
event overflow.

auto process v0 is variable(0).
auto process v1 is variable(1).
auto process print is PrintUnits.
auto process sigma is sum(overflow).

manifold Main()
{
 begin:(v0->sigma.x, v1->sigma.y,v1->v0,sigma->v1,sigma-
>print).
 overflow.sigma:halt.
}

The above code defines sigma as an instance of some
predefined process sum with two input ports (x,y) and a
default output one. The main part of the program sets up the
network where the initial values (0,1) are fed into the

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

network by means of two “variables” (v0,v1). The
continuous generation of the series is realised by feeding the
output of sigma back to itself via v0 and v1. Note that in
Manifold there are no variables (or constants for that matter)
as such. A Manifold variable is a rather simple process that
forwards whatever input it receives via its input port to all
streams connected to its output port. A variable “assignment”
is realised by feeding the contents of an output port into its
input. Note also that computation will end when the event
overflow is raised by sigma. Main will then get
preempted from its begin state and make a transition to the
overflow state and subsequently terminate by executing
halt. Preemption of Main from its begin state causes the
breaking of the stream connections; the processes involved in
the network will then detect the breaking of their incoming
streams and will also terminate. Please note that a visual
presentation of this setup is shown in section 3.2.

In the example above note that both the computational
process sigma and the coordination process Main, treat
each other as black boxes: Main is only concerned with the
input/output dependencies of sigma, and sigma operates
completely unaware of Main’s doings. Note also that the
actual data being produced and transmitted between the
components of this apparatus (namely the Fibonacci
numbers) do not play any role in the setup. Therefore, both
Main and sigma are black boxes: Main is an Ideal
Manager that can coordinate any computational process
sigma assuming the above coordination pattern is reusable
and applicable in other cases, and sigma is an Ideal Worker
that will compute according to its specification without any
knowledge of its surrounding environment. It is precisely
these benefits that we want to convey to the development of
component-based applications in the ActiveX environment
(or any other such environment for that matter).

3. Realising IWIM concepts in ActiveX

In this section we show how the basic functionality of
IWIM can be expressed in the ActiveX world. To that end,
we created some general components (ActiveX and Classes)
that support the IWIM functionality, simply and efficiently.
These components are easily interconnected by the use of
TCP/IP ports through which components can exchange
messages. The main component control of our platform can
raise an event, triggering an execution process that is linked
on that event. These components are used as black boxes and
the flow of the execution is separated into single steps on
each control’s triggered event. Because in visual
environments the main controller is the form object, we used
the form object as the Manager of the model and a helping
class for connecting and handling the other controls. Below
we will try to analyse the main Controls and Classes that we
used in our framework.

3.1. Analysis of the proposed approach

Realizing ports and port connections is one of the most
important aspects of the IWIM model. We know that
communication in IWIM is implemented by the use of one-

direction ports (input port, output port). We use TCP/IP
sockets in order to implement ports that could be able to
exchange control and data signals between our components.
In order to separate them by their role, we use the
communication model of Client/Server to create logical
channels between ports that would have the role of clients
(output ports) and ports that would have the role of servers
(input ports). We use the library CPSockets that contains
the most important classes that compose the communication
in a Client/Server fashion. This library includes Client/Server
classes that can send and receive messages using a defined
port. For class Client the most important properties are
ServerHost and ServerPort that are used to define the
Server that will accept and instantiate a communication
channel. The main methods for creating and destroying the
communication channel of the Client are Connect and
CloseClient. The most important method of this class is
RequestCustomResponse that is used for sending a
stream message to a Server class. This method sends a
given message and gets a reply from the Server that is
connected to it. Easily with the use of the previous properties
and methods, the Client class can be connected to a certain
port and exchange messages by the use of method
RequestCustomResponse. Similarly, the Server class
has properties LocalPort and ServerName to determine
the information of the Server that will be used from the
Client for connecting to the class. Methods StartServer
and StopServer are used for instantiating and destroying
the communication channel. The OnCommand event is
triggered when the Server is receiving a message from a
Client class and a returned message is created to reply to
the Client about the execution status. So, the Server is
instantiated by using a given name and port. After the start
method, the Server is able to accept connections and
OnCommand events, and a reply message is sent to the
connected Client.

The connectivity of the above classes is very simple.
However they do not include any relative information for
visual representation. Thus we implement two improved
classes that contain Client class and Server class
respectively, in order to assign information about their
spatial position in the ActiveX space. The new classes are
PORT_IN and PORT_OUT, which are using the properties
XPoint and YPoint in order to define their position on
their representation. Both classes have a Port property that
is a Client type for the PORT_OUT class and a Server type
for the PORT_IN class.

After we implemented the classes of communication, the
next step was the creation of general visual components
(ActiveX Controls). The components, due to their attributes
and main functionality, can be separated into four categories:
• Input Components: responsible for the import of data

from keyboard or files. They should use output ports to
send data to other components.

• Output Components: responsible for the printing of data.
They should use input ports to read data from other
components and print them on an output unit (screen,
printer, etc.).

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

• Process Components: responsible for executing a
computational process on entered data and forwarding
results to other components. This type of components is
the Ideal Worker in the IWIM model. These components
use both input and output ports in order to read data from
the connected neighbours and after processing forward
results to certain recipients.

• Managing Components: managing connections of
components and raising global events. This type of
components is the Ideal Manager in the IWIM model.
The four categories above specify respectively the four

general components that should be created for the
implementation of our framework. Their attributes, methods
and events were implemented in the controls: INPUT,
OUTPUT, WORKER and MANAGER respectively. Below we
give a general analysis of these controls.
• INPUT: This component is in charge of importing data

from keyboard or files, and sending this data to some
other components. This component has a P_OUTPUT
property, which is a PORT_OUT class, and uses a
READ_FILE method to receive data from an input file. A
double-click event is used to activate input from the
keyboard. The P_OUTPUT is public in order to be
handled by the MANAGER component. A MANAGER
component is using the publicly defined ports to connect
Client/Server Classes and also to visually connect ports
by drawing a line. The colour of the line is changing from
blue to red when this channel no longer exists.

• OUTPUT: This component is in charge of printing data.
Data is printed in a multi-line RTF Control. This
component has a P_INPUT property, which is a
PORT_IN class, and prints its received data in the RTF
Control.

• WORKER: This component is in charge of executing
calculations on entry data and forwarding the processed
data to other components. At the initialisation of the
component, the developer must use a method
(SetPorts), which defines the number of In/Out ports
that will be used. The main method of calculation is
executed after a certain event (the event Comp_Step).
This event is raised automatically when the initialised
entry ports contain data. So, every time new data arrives
on input ports, is stored in variables till all ports contain
data. At this point Comp_Step is raised, triggering the

code in the event handler to execute and the variables are
cleared for new data inputs. In order to avoid any loss of
data between ports we use semaphores on input ports; in
that way, we avoid overwriting input data in entry ports if
the components have not as yet collected (i.e. removed
from the ports) this data. The entry ports are continuously
polled while there is data stored in them. Above is the
diagram of the communication states of entry ports. When
an output port is ready to send data, it checks if the
connected to it input port of the other component is ready
to receive data. Only if the semaphore of the port is
unlocked a data stream is sent to the port. Otherwise the
output port is waiting until the input port is unlocked after
the connected control raises the step event
(Comp_Step). In this way we have an asynchronous
flow of streams in our connected diagram of components.
Data packets are forwarded or delayed after a step event
occurs or not. This control has four input ports
(P_INPUT1… 4) and four output ports
(P_OUTPUT1… 4). The main method of this control is
the SetPorts method that is used to determine the
input/output ports that will be used. We declare three
methods for reading and sending data through the ports.
Method DATA_P_INPUT is used for reading data that is
recorded in a given entry port. This method is used in
event CompStep, in order to make calculations on input
data. The SEND_TO_OUTPORT method is used for
sending data to a given output port. For avoiding fault
executions of the CompStep event, we use a clock in
each output port to make a small delay before raising the
event. This methodology is changing the serial execution
of events to a semi-threaded execution by using clocked
events. INITIALIZE_INPORT is initialising an entry
port with the initial values of the execution plan.
Sometimes certain ports must start with a predefined data.
Because we don’t have any variable classes as Manifold
does, we created this method for initialising a given value
on an input port. The last method is DISABLE_COMP
witch is used for disabling the component from receiving
new data in the entry ports. To call the process that will
be executed, the control is raising the CompStep event.

• MANAGER: This Class is in charge of the networking of
components. It includes the method ConnectPorts
that connects input/output ports by assigning an available
port number to the given ports. It also connects

Input Port
can be
locked?

No

Yes

1. Lock Port
2. Message__

Message __

Busy Waiting

Is it a
LOCK
Message?

Yes

No

All Input
ports have
data?

No
Yes

1.Execute
2. Give
Response
Message to
the connected
port.
3. Unlock all
semaphores.

Give Response
Message to the
connected port.

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

graphically the components with lines. At the activation
of this class, it detects the IP of the computer that is
running the application, and initialises a socket port at a
starting value. While new connections are created, the
port number is increased in order to avoid any conflicts
between communications among the involved ports.
At this point we should mention that in the first three

visual components, the shapes that are assigned to the ports
can change colour. Colour indicates if there is data stored on
input ports or if an output port is waiting for an input port to
get ready for new data. These coloured ports present a visual
flow of data on the graph of connected components.

3.2. Modelling the Fibonacci Example in IWIM-
compliant ActiveX

In this section we show how the Fibonacci example,
introduced in the previous section, can be implemented in
IWIM-compliant ActiveX. In order for the reader to
appreciate the visual presentation that we were able to
generate in the ActiveX environment, immediately below we
show the setup that the involved processes create.

The above diagram shows that we need to create three
WORKERs and an OUTPUT control in order to create the
coordination diagram. Component v1 will be a WORKER
control with one input port and two output ports, component
v0 will be a WORKER control with one input port and one
output port, and component sigma will be another WORKER
control with two input ports and two output ports.

In our ActiveX form we will use a Manager class in
order to connect the components between them. In the
Design Mode the connections of ports are not presented. The
Manager links at run time the ports between them and the
interconnection lines are created. Below, is the form, at
design time, in the Visual Basic environment with the
various components. The button on the form contains the
code for the initialisation of components v0 and v1. The
OUTPUT component is a simple PRINT control with a single
input port.

The equivalent to section 2 coordination code is shown
below. The code of the class SUM is excluded; it simply adds
a given pair of numbers. In our application we need an event
that will denote to the MANAGER (form) the end of the

application. We use a class (clsFibonacci) that is linked
to our form (frmFibonacci) and contains the code that is
executed by this event. Below is the code of our application:

clsFibonacci

Private WithEvents mForm As frmFibonacci

Public Property Get Form() As Form
'Reference to Form

 Set Form = mForm
End Property

Public Property Set Form(ByVal NewForm As Form)
 Set mForm = NewForm
End Property

Private Sub mForm_TooBig()
'Code of Event

 MsgBox "The Limit was reached", vbInformation,
"Fibonacci"
End Sub

frmFibonacci

Option Explicit

Dim Manager As clsManager
Private cFibo As clsFibonacci
Event TooBig()

Private Sub cmdStart_Click() 'Initializing
Application
 Me.cmdStart0.Enabled = False
 Me.v0.INITIALIZE_INPORT 1, "0" 'Initializing v0
 Me.v1.INITIALIZE_INPORT 1, "1" 'Initializing v1
End Sub

Private Sub Form_Activate()
 Me.v1.SetPorts 1, 2 'Initializing Ports of v1
 Me.v0.SetPorts 1, 1 'Initializing Ports of v0
 Me.sigma.SetPorts 2, 2 'Initializing Ports of sigma
 With Manager
 .ConnectPorts Me, Me.v0, Me.v0.P_OUTPUT1, _
 Me.sigma, Me.sigma.P_INPUT1
 .ConnectPorts Me, Me.v1, Me.v1.P_OUTPUT1, _
 Me.v0, Me.v0.P_INPUT1
 .ConnectPorts Me, Me.v1, Me.v1.P_OUTPUT2, _
 Me.sigma, Me.sigma.P_INPUT2
 .ConnectPorts Me, Me.sigma, Me.sigma.P_OUTPUT1, _
 Me.print, Me.print.P_INPUT
 .ConnectPorts Me, Me.sigma, Me.sigma.P_OUTPUT2, _
 Me.v1, Me.v1.P_INPUT1

'With the code above we connect the four components
'As we saw in the diagram above there are 5 connections.
 End With
End Sub

Private Sub Form_Load() 'Initialize and connect
Event Class
 Set Manager = New clsManager

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

 Set cFibo = New clsFibonacci
 Set cFibo.Form = Me
End Sub

Private Sub sigma_CompStep() 'sigma execution step
Dim dblFib As Double
 'Reading input ports, add values and sending to
output port.
 dblFib = CDbl(Me.sigma.DATA_P_INPUT(1)) + _
 CDbl(Me.sigma.DATA_P_INPUT(2))
 If dblFib > 1000000 Then 'Checking Limit (1000000)
 RaiseEvent TooBig 'Calling Event if limit reached
 Else
 Me.sigma.SEND_TO_OUTPORT 1, dblFib
 Me.sigma.SEND_TO_OUTPORT 2, dblFib
 End If
End Sub

Private Sub v0_CompStep() 'v0 execution step
 Me.v0.SEND_TO_OUTPORT 1, Me.v0.DATA_P_INPUT(1)
End Sub

Private Sub v1_CompStep() 'v1 execution step
 Me.v1.SEND_TO_OUTPORT 1, Me.v1.DATA_P_INPUT(1)
 Me.v1.SEND_TO_OUTPORT 2, Me.v1.DATA_P_INPUT(1)
End Sub

The state of the application at run-time, before the
initialisation of v0 and v1, is shown below in the first
figure. Notice the similarity between the figure of our form
and that of the diagram at the beginning of this subsection.
After we press the Start button the components begin
receiving and sending messages up to the final situation
(second figure) where the Manager (form) receives the event

TooBig.

4. Conclusions

In this paper we have presented a methodology for
building component-based software, using the coordination
paradigm. More to the point, we have shown how the IWIM
model can be realized in a state-of-the-art programming
environment, namely ActiveX. We have developed
techniques, particular to the ActiveX environment, which
model the basic building blocks of the IWIM model. We
then showed how these can be used to implement a simple,
but hopefully illustrative, example.

The realization of the IWIM model in other (than its own
language Manifold) programming environments has been
attempted twice (to our knowledge) before. In [5] we show
how the basic Linda model can be adapted to function
according to the IWIM philosophy, using a set of tuple
communication protocols that resemble the point-to-point
communication infrastructure of IWIM. In [3], the authors
report of an adaptation of the IWIM model in Java, where
point-to-point communication is realized by means of
JavaPorts, a set of tools that they have developed for that
purpose. It appears that their model, though, does not support
the events functionality of IWIM and, consequently, it is
unable to support dynamic evolution of a component setup.
This is not the case of the approach described here or in [5].

The next step in our work is to move from the “blue print”
to the building of an environment, which will automatically
create IWIM compliant ActiveX components and assemble
them together using a visual interface as the one presented in
the third section. Interfacing those components with other
components, also IWIM compliant and written in a variety of
languages, is another interesting aspect of our future work.

5. References
[1] S. Ahuja, N. Carriero and D. Gelernter, “Linda and Friends”,

IEEE Computer 19 (8), 1986, pp. 26-34.
[2] F. Arbab, “The IWIM Model for Coordination of Concurrent

Activities”, First International Conference on Coordination
Models, Languages and Applications (Coordination’96),
Cesena, Italy, 15-17 April, 1996, LNCS 1061, Springer
Verlag, pp. 34-56.

[3] E. S. Manolakos and D. G. Galatopoulos, “JavaPorts: An
Environment to Facilitate Parallel Computing on a
Heterogeneous Cluster of Workstations”, Informatica, Vol.
23 (1), April, 1999, pp. 97-105.

[4] G. A. Papadopoulos and F. Arbab, “Coordination of Systems
With Real-Time Properties in Manifold”, Twentieth Annual
International Computer Software and Applications
Conference (COMPSAC’96), Seoul, Korea, 19-23 Aug.,
1996, IEEE Press. pp. 50-55.

[5] G. A. Papadopoulos and F. Arbab, “Coordination of
Distributed Activities in the IWIM Model”, International
Journal of High Speed Computing, World Scientific, 1997,
Vol. 9 (2), pp. 127-160.

[6] G. A. Papadopoulos and F. Arbab, “Coordination Models and
Languages”, Advances in Computers, Marvin V. Zelkowitz
(ed.), Academic Press, Vol. 46, August, 1998, 329-400.

[7] G. A. Papadopoulos, “Distributed and Parallel Systems
Engineering in Manifold”, Parallel Computing, Elsevier
Science, special issue on Coordination, 1998, Vol. 24 (7), pp.
1107-1135.

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

