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Abstract. Recommendations of products to customers are proved to boost
sales, increase customer satisfaction and improve user experience, making
recommender systems an important tool for retail businesses. With recent
technological advancements in AmI and Ubiquitous Computing, the benefits of
recommender systems can be enjoyed not only in e-commerce, but in the
physical store scenario as well. However, developing effective context-aware
recommender systems by non-expert practitioners is not an easy task due to the
complexity of building the necessary data models and selecting and configuring
recommendation algorithms. In this paper we apply the Model Driven Devel-
opment paradigm on the physical commerce recommendation domain by
defining a UbiCARS Domain Specific Modelling Language, a modelling editor
and a system, that aim to reduce complexity, abstract the technical details and
expedite the development and application of State-of-the-Art recommender
systems in ubiquitous environments (physical retail stores), as well as to enable
practitioners to utilize additional data resulting from ubiquitous user-product
interaction in the recommendation process to improve recommendation
accuracy.
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1 Introduction

As customers nowadays have the option to select from a huge variety of high quality
products at competitive prices, retailers are in need to provide better service to win the
trust of customers and achieve a sustainable customer relationship. Information systems
can play a significant role in “sensing” what customers like and the sales trend. When
information systems are not used and thus information cannot be acquired immediately,
customer demands cannot be met in real time, risking losing customers’ interest in
shopping [1]. As [1] notes, with the change of market patterns and customer demand, it
is particularly necessary for the retail industry to provide a pleasing, safe and conve-
nient shopping environment, with consideration for customers.
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Ambient intelligence (AmI) and ubiquitous computing characterize intelligent,
pervasive and unobtrusive computer systems embedded into human environments,
tailored to the individual’s context-aware needs [2]. While AmI facilitates users to
smoothly interact with the environment by means of intuitive interfaces embedded in
objects, still the information generated by these interactions is not fully utilized.
Another important aspect of AmI is intelligence by means of machine learning, agent-
based software, and robotics [3]. This paper proposes the application of AmI concepts
for the exploitation of generated user-product interaction information in physical stores,
as well as the usage of State-of-the-Art intelligent recommendation techniques in
physical and electronic environments for commerce.

Recommender systems (RSs) have been the answer to the information overload
modern life consumers experience for more than two decades. RSs are essentially
software tools able to discover the necessary knowledge about users in order to offer
personalized recommendations to them. It is proved that, in e-commerce settings,
recommendations of products to customers boost sales [4, 5], increase customer sat-
isfaction [4] and improve user experience [6]. Therefore, not only customers benefit
from recommender systems, but on-line retail stores as well [5].

While e-commerce sales grow exponentially1, physical shopping is still the main
shopping mode in comparison to e-commerce. Recent technological developments in
AmI and ubiquitous computing though suggest that the success of RSs in the virtual
world can be replicated in the real world, i.e., in physical retail settings. There already
is a trend towards personalisation in the physical retail market and RSs with ubiquitous
computing can be the means to make it more sophisticated and effective [5].

While RSs for e-commerce use information about user interaction on items online
such as product ratings and purchase history to compute personalized recommendations
of products to users, in ubiquitous settings other context-aware methods are applied to
track user interest on products, such as tracking customers’ in-store shopping path or
the customers’ staying time in the product area [12, 17]. The aim is to recommend to
users similar products or other related things such as brand stores in a shopping mall or
provide reviews and ratings on a product. However, to the best of our knowledge, none
of the works in the literature uses a combination of user-item interaction data from both
the physical scenario and the online scenario with the aim to enhance the recom-
mendation accuracy in both settings. This constitutes the first contribution of this work.

Although open source recommendation frameworks are available (e.g. EasyRec,
LensKit, LibRec2) for retail businesses to use as recommendation engines in building
their own RS applications, it is nevertheless difficult for practitioners (software engi-
neers, e-store developers) that are non RS experts to achieve such a task [7, 8]. These
frameworks do not offer an abstraction from the technical details concerning the
embedding of recommendations to an e-store, requiring from practitioners to work on
code level. Moreover, and more importantly, they do not deal with the ubiquitous
recommendation scenario to track user-item interaction at the physical store. Espe-
cially, since research has proven that Machine Learning (ML) algorithms are the most

1 https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/.
2 easyrec.org/, lenskit.org/, www.librec.net.
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efficient in providing recommendations, it is even more difficult for non RS experts to
utilize such algorithms in real applications because of their high complexity, especially
in physical stores where Ambient Intelligence is required. In addition, due to the
substantial number of ML algorithms and their variations proposed in the literature, a
clear classification scheme for them does not exist [9], making it even more difficult for
practitioners to select the ML algorithm that best fits their needs when developing a RS.
Even researchers may find it challenging to track how ML algorithms in RSs are used
[9]. Further, proof that expertise in recommendation technologies is needed to effec-
tively implement RSs in retail businesses, is that many companies (vendors) exist that
offer commercial proprietary RSs3. Such companies develop and deploy RSs in their
business clients’ websites or e-stores, aiming to increase their sales [10].

In this paper, we apply the Model Driven Development (MDD) paradigm on the
physical commerce recommendation domain and propose a novel UbiCARS (Ubiq-
uitous Context-Aware Recommender Systems) MDD Framework that aims: (i) to
reduce complexity, abstract the technical details and expedite the development and
application of State-of-the-Art context-aware RS in ubiquitous environments (physical
retail stores) by practitioners that are not recommender system experts (first contri-
bution of this work), and (ii) to enable these practitioners to track ubiquitous user-
product interaction in the physical store and use this information in the recommen-
dation process, together with user-product interaction data from the online scenario, a
combination which is expected to further improve recommendation accuracy (second
contribution of this work). A new graphical Domain Specific Modelling Language
(DSML) for UbiCARS is proposed that drives model-based design and dynamic
configuration of such systems for physical and online commerce, as well as system
integration with pre-existing e-stores. To the best of our knowledge, a DSML for
UbiCARS does not exist.

The paper is organized as follows: Sect. 2 provides the research background and
related work. Section 3 discusses the proposed UbiCARS methodology, while the
UbiCARS framework architecture is described in Sect. 4. In Sect. 5, we demonstrate
the modelling process using the proposed UbiCARS MDD framework and discuss a
use-case. The paper completes with conclusions and future work in Sect. 6. In the
remainder of the paper we will refer to practitioners as users of the system and cus-
tomers as end-users.

2 Background

2.1 Recommendation Methods for E-Commerce

Collaborative filtering (CF) constitutes the most adopted method for RS since is relies
on user’s behaviour history, such as previous transactions or ratings of items [11]. It is
also independent of any domain. The most efficient CF approaches are the Model based

3 Google Cloud Machine Learning (ML), SLI Systems Recommender, Azure ML, Amazon Machine
Learning, SuggestGrid, Yusp.
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that utilize intelligent Machine Learning techniques such as Matrix Factorization.
In e-commerce settings, CF is preferable since it relies only on user behaviour and,
therefore, explicit profiles for users and/or products are not needed [6]. Hence, users
can receive recommendations without firstly being asked to complete a profile, a task
users normally do not like. RSs for e-commerce use explicit user feedback on products
such as product ratings by users to elicit and model user preferences and offer per-
sonalized recommendations of products users would enjoy [6, 12]. In case explicit
feedback is not available, RSs use implicit user feedback on products by tracking user
behaviour such as user transaction data (purchase history), clickstream data, click-
through rate (CTR) and browser history information [13–16]. Problems with explicit
techniques are that they require cognitive effort from users, and they interrupt their task
at hand as they have to stop and rate items. A comparison between implicit and explicit
feedback [13] found that: (i) the more time users spend on a content indicates that the
more they like that content; (ii) more user visits on a content mean the user is interested
in it; (iii) multiple user accesses to the same content shows user interest in that content.
Yahoo proposed using dwell time on content items on the Yahoo home page as an
implicit technique to measure how likely a content item is relevant to a particular user,
and reported good results [16].

2.2 Recommender Systems in Physical Retail Stores

Research has been conducted on using the knowledge obtained from e-commerce RSs
to offer recommendations to customers while being in physical business locations like a
shopping mall or a grocery store. The authors in [12] suggest offering recommenda-
tions based (among other) on customers’ staying time in each shopping mall area to
recommend which shops customers should visit next. According to the authors, staying
time at each selling area is considered as an important piece of information on user
preferences in purchasing of goods. Evaluation of their RS performance against real
sales data showed that, not only sales history, but also the customers’ shopping path
data make a RS highly accurate. In [17], a mobile RS for indoor shopping is proposed
that uses indoor mobile positioning by using received signal patterns of mobile phones
to recommend brand stores to users in a shopping mall. The proposed RS records users’
past activities and context, among other the time spent in each store during every
shopping process. In [18] a RS that recommends shops in a mall is described. To detect
customers’ location, RFID devices and related infrastructure have been deployed in a
large-scale shopping mall. The work in [5] describes a scenario where the customer is
recommended with products in store via a store-owned device called personal shopping
assistant (PSA). The recommendations are based on the items that are currently in the
cart, on customers’ location, and on their purchase history. In [19], a RS for shopping is
proposed that estimates user preferences on items based on their physical distance from
the items, whether a user picks up an item or scans an object using a RFID reader
device. Pfeiffer et al. [20] present a RS that uses eye-tracking to (implicitly) elicit
preference information in a minimally intrusive manner in order to reduce users’ effort:
glasses are used as a more ubiquitous and personal object than smartphones.
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2.3 Related Work on CARS Modelling

Context-Aware Recommender Systems - CARSs utilize the context in the recom-
mendation process [11], making it more accurate, but also turning it into a complex (in
comparison to un-contextual RSs) multidimensional problem: user � items � con-
text ! ratings. In our prior work [21] we have defined the novel concept of UbiCARSs
as recommender applications that facilitate users on site through recommendations by
using context-aware intelligent recommendation algorithms that operate on multidi-
mensional datasets. In this paper, the concept of UbiCARS is used for enabling the
computation of context-aware recommendations on context-aware datasets from both
the physical store and the e-store scenario.

A number of works in the literature propose using modelling or other software
engineering techniques to tackle RS complexity. A recommendation framework for
assisting developers build CARSs and hybrid RSs is Hybreed [8]. Hybreed incorpo-
rates a set of standard recommendation algorithms and provides templates for com-
bining them into hybrids with a significantly reduced amount of effort. In [22], we have
proposed a context modelling system and learning tool to guide developers through the
process of CARS context modelling. In [9], the authors investigate how ML algorithms
in RSs are studied and used, as well as trends in ML algorithm research and devel-
opment. In [23], the authors deal with the problem of web developers needing assis-
tance, by means of proper methods and tools, for dealing with complexity issues in
adopting recommendation techniques in their web applications. They explicitly men-
tion the lack of model-driven methodologies for the specification of RS algorithmic and
interface elements. The authors use UML to model an un-contextual RS algorithm.
However, by modelling the recommendation algorithm itself, the complexity an
algorithm can have to be able to be used in the proposed model-driven process is
somewhat limited, in the sense that too complex recommendation algorithms will be
difficult to be modelled. In [7] a user modelling framework for CARS is proposed to
serve as a tool for developers and researchers to build data models for CARS. A CARS
model schema and UML class description is provided.

Although the above works have similarities with our work, our proposal differs in
five important aspects: (i) it defines a novel Domain Specific Modelling Language for
UbiCARS (UbiCARS DSML), (ii) it focuses on the ubiquitous scenario of UbiCARS
aiming to enhance product recommendation accuracy in physical commerce, (iii) it
supports complex algorithms and data models from the State-of-the-Art of RS litera-
ture, (iv) it is easily extendable and (v) it is directly integrable with existing e-stores.

3 UbiCARS Framework

Model-driven Development aims at the abstract representation of the knowledge and
activities of a particular application domain, as well as in automation. Application
models are defined at an abstracted level and, using automated transformations or
interpretations, they are converted into applications, eliminating or minimizing the need
to write code. In this paper, we apply the Model-Driven Development paradigm on the
physical commerce recommendation domain and propose the UbiCARS MDD
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framework. We define the UbiCARS app and CARS system as follows: UbiCARS app
is a mobile application that: (i) enables tracking of end-user interaction with products
on-location; (ii) displays product recommendations to end-user on-location. CARS is a
server-side system (including the recommendation engine) that: (i) enables tracking of
end-user interaction with products on-line; (ii) computes context-aware recommenda-
tions; (iii) displays product recommendations to end-users through the e-store.

3.1 UbiCARS Methodology

The proposed UbiCARS MDD framework defines a DSML for UbiCARSs for com-
merce and a corresponding graphical modelling editor. Via the editor, practitioners can
use the DSML to drive model-based design and dynamic configuration of UbiCARS in
commerce settings, as well as system integration with pre-existing e-stores. In Fig. 1
the multi-layered software architecture of the framework is presented. The
UbiCARS DSML acts on the Modelling layer via an editor for practitioners to design
their UbiCARS commerce applications. The DSML is cross-platform, meaning that
any platform specific implementation details are abstracted from the designers.

When UbiCARS design is completed, the framework generates configuration files
in eXtensible Markup Language (XML) for the Configuration layer, where a Parser
extracts all user defined information and passes it to the logic layer that undertakes the
engineering of UbiCARS. The Logic layer builds the necessary data models and
database (DB) tables, whereas it also implements the system configurations indicated
by the Configuration layer, including system integration with pre-existing e-stores. It
also configures the system for the execution of the UbiCARS app. The Data layer
prepares the necessary context-aware user-product interaction datasets to be fed to the
CARS system. To use the MDD framework to build UbiCARS, a practitioner only
needs to use the DSML editor to design the UbiCARS model. Then, automatically, the
UbiCARS app and CARS system are configured and deployed.

3.2 Enhancing Recommendation Accuracy

Assuming a retail business with an e-commerce website and physical showrooms with
products, our solution proposes that a UbiCARS app is used together with a CARS that
operates on the e-store to enhance the overall recommendation efficiency (in [15], it is

Fig. 1. Multi-layered software architecture.
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shown that users’ diverse implicit feedback data can be used to improve recommen-
dation accuracy). User’s implicit feedback data acquired within the physical store
complement user’s explicit and implicit feedback data in the online scenario to enhance
end-user preferences modelling and improve the overall recommendations for that user.
In addition to e-commerce methods for tracking user behaviour (user purchase history,
clickstream data and browser history information), we enable tracking of user’s
ubiquitous behaviour in real-time while in-store, aiming to acquire the ubiquitous user-
item interaction (Fig. 2). Specifically, similarly to the dwell time used in online settings
as user implicit feedback [14, 16], we propose utilizing the “staying time in front of a
product” and “scanning NFC tag of a product”.

A UbiCARS Scenario: RSs are most helpful in large shops with many product cat-
egories where the customer base is likely to be very heterogeneous [5]. We consider an
electronics store with a large variety of electronic devices and peripherals that each
requires a level of knowledge from customers in order to purchase the best suited
product for their needs and preferences. The store showroom is equipped with Blue-
tooth beacons placed on products to track end-user interaction with products via a
UbiCARS mobile app. While visiting a showroom, the user is not sure whether the
products she is currently looking at are the best for her to purchase in terms of meeting
her preferences. The store showroom cannot possibly host all the products that are
offered online. End-user needs assistance to narrow down her options to a product or a
selection of products that are most suitable for her. At this point the end-user can use
recommendations of products.

Nicolas is a regular user of the Public e-store; he has purchased a few products in
the past and also rated some of them online. When Nicolas uses the Public e-store, he
likes the personalized product recommendations the website offers. Most of the times,
the recommended products match his preferences so he checks them out. Nicolas is
now at a Public physical store showroom browsing the products. He is quite interested
in technology products and especially likes high end laptops. Public includes in its
showroom only a small portion of the products that are offered in total by the store.
Nicolas approaches a laptop on a shelf that he finds interesting. He reads a few specs
from the small label on the laptop; he would like to know more information on its
features, as well as receive product recommendations. Nicolas opens the Public Ubi-
CARS app on his smartphone. The app receives signals from the Bluetooth beacons

Fig. 2. Modelling user preferences.
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and sends related info to the server which (i) identifies the product Nicolas is in front of
and (ii) computes Nicolas “staying time in front of the product”. The Public UbiCARS
app recommends to Nicolas three products which he checks out: the two are located in
the same showroom, while the third can only be found online, so the app suggests
purchasing it online. Nicolas finds it easy and playful to receive recommendations in
store so he repeats the process for more products.

For Nicolas the e-store has recorded a number of ratings on products (explicit
feedback) and has tracked his online interaction with products: browser history and
online purchase history (implicit feedback). From such data, datasets are compiled to
be used in the recommendation process (Fig. 3). Browsing history refers to the number
of clicks on the product’s name or icon in webpages where many products are listed or
recommended, as well as the number of accesses in the product’s webpage, while
purchase history refers to number of purchases of the corresponding product.

The UbiCARS app contributes to the recommendation process by sensing the time
(in seconds) Nicolas has stayed in front of a product (e.g. left dataset in Fig. 4). After
Nicolas visit to the store, the UbiCARS app dataset will be available to the CARS for
use in the next recommendation computation, in addition to those in Fig. 3. Recom-
mendations for Nicolas the next time he will visit one of the Public physical stores or
the Public e-store can be more accurate, since more relevant information will be used
during their computation.

3.3 The UbiCARS DSML

We have implemented the UbiCARS DSML to offer the highest possible level of
abstraction from technical details for the ubiquitous product recommendation domain,
as well as to simplify usage and instantiation by practitioners. The DSML was designed
as an Ecore metamodel in Sirius4, an open-source Eclipse project which allows
leveraging the Eclipse Modelling technologies (EMF, GMF) to create custom graphical
modelling workbenches. Figure 5 presents part of the Modelling Language (due to
space limitations the full metamodel is referenced5).

Fig. 3. Datasets: ratings; browsing history; purchased history.

Fig. 4. User’s staying time in front of a product datasets.

4 http://www.eclipse.org/sirius/.
5 https://drive.google.com/file/d/1Dk7XgdCLusH0_AL7Aw-n8_FMupGI7KZY/view?usp=sharing.
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The Application element is the core element that represents a product rec-
ommendation system consisting of a CARS system and a UbiCARS app. CARS defines
the user Ratings on products as an explicit user feedback element, and the Pur-
chaseHistory, ClickStream and BrowsingHistory as those representing
the user implicit feedback on products. A CARS can instantiate zero or one of these
elements, while a number of custom NewUserFeedback elements can be defined by
the user which can be explicit or implicit (default value is explicit).

In the physical commerce (ubiquitous) scenario, a UbiCARS app uses two implicit
user feedback elements, the StayingTime element representing the staying time in
front of products and the Scanning element representing the scanning of NFC tags of
products. UbiCARS has zero or one of these elements, as well as a number of custom
explicit or implicit NewUserFeedback elements to be defined by the user if needed.

Each of the aforementioned elements uses a DatabaseResource and may use a
ContextParameter. A DatabaseResource specifies information about the
database resource, where the respective information will be stored and retrieved from
(timestamp may be also used as contextual information about time, defining thus the
exact time the user interaction on the product took place). A ContextParameter
captures the context of end-users while interacting with products. For instance, user
location in terms of GPS coordinates or any custom defined attributes, such as “store
electronics section” or “basement”, can be defined. Context is assigned with a Boolean
isAvailable to denote whether the corresponding context sensing mechanism is

Fig. 5. The proposed UbiCARS DSML.
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available or needs to be developed. A ContextParameter uses a DatabaseR-
esource to denote where the corresponding context will be/is already stored.

RecommendationEngine (See footnote 5) computes the recommendations.
The CARSKIT recommendation framework (Sect. 4) is the default engine in the
metamodel; however, other recommendation frameworks can be used. The engine uses
a RecommendationAlgorithm which the user can select from the available
algorithms offered by the selected engine. Provided that the user has selected CARS-
KIT to be the recommendation engine, the default algorithm used is context-aware
matrix factorization CAMF_CU, while two more recommendation algorithms are
available in the metamodel: CAMF_ICS and CPTF (Tensor Factorization) [24]. The
metamodel can be easily extended with more algorithms the CARSKIT framework
offers. In addition to algorithm selection, related algorithmic configuration parameters
can also be defined.

While RecommendationStorage defines the place where computed recom-
mendations are stored, RecommendationPresentation denotes the plat-
formOfPresentation of the recommendations to end-users – whether it is through
the e-store (via a Webpage) or through a smartphone screen (via UbiCARS app); the
visualizationFormat of the recommendations – whether the recommendations
will appear as a main or minor object in the screen, or as a widget (e.g. in Wordpress);
and whether explanation of recommendations will be enabled. Recommendation
explanations contribute to system transparency and trust, e.g. Amazon.com uses
“Customers Who Bought This Item Also Bought”. Although providing accurate
explanations when complex algorithms are used is a difficult task, a practitioner can
provide a simplistic, generic version of explanations, such as “These products are
suggested to you based on your previous transactions, product ratings and interaction
with products in our showroom”. topN denotes the number of recommendations to be
presented (e.g. top-5). It is used by algorithms that solve the top-N recommendation
problem, as opposed to those that solve the prediction problem.

UbiCARS Specific Elements. The ubiquitous technology to be used by the UbiCARS
app is determined by the UbiquitousTechnology element. The two supported
technologies are BluetoothBeacons and NFCScanning. Other technologies
could be used as well such as Wi-Fi6, or more innovative ones used for indoor posi-
tioning such as smart floors [25] (although some investment will be required).

Bluetooth beacons enable other Bluetooth devices in close proximity to perform
actions, indoor positioning among other. Depending on beacon type, their range may
vary from 7 m to a few hundreds of meters7. Smartphone software can find its relative
location to a Bluetooth Beacon in a retail store - retail stores already use beacons for
mobile commerce as beacons can create a more engaging in-store experience for
customers. Beacons have also been used for providing users with recommendations8.
An important point is that during indoor positioning, location tracking is done by the
smartphone software and not by the Bluetooth beacon, ensuring thus user privacy.

6 lifehacker.com/how-retail-stores-track-you-using-your-smartphone-and-827512308.
7 estimote.com/products/.
8 www.huffingtonpost.com/kenny-kline/how-bluetooth-beacons-wil_b_8982720.html.
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Since products in showrooms are usually positioned relatively close to each other,
by placing a Bluetooth beacon on each one of them, overlapping of signal coverage
occurs (Fig. 6). Hence, customer’s staying time in front of a product is calculated by
using the Received Signal Strength Indicator (RSSI) of a Bluetooth enabled client (end-
user smartphone) when Bluetooth beacons on products in the proximity are being
sensed. No user action is needed other than installing the app and running it. The RSSI
acts as a distance indicator between the device and the beacon, as devices closer to
beacons register higher RSSI values. Devices scan for beacons continuously, taking
about 10–15 s between two successive scanning cycles. For each end-user, based on
traces of sensed beacons and corresponding received RSSIs in the available
space/showroom (see Fig. 4), the system calculates an approximation of the distance
from the end-user’s device to each Beacon and is thus able to identify the products
the user has been staying in front of and for how long. Through the
RSSI_minDetectionThreshold parameter of the StayingTime element,
practitioners can specify the minimum RSSI value that needs to be sensed by the end-
user’s device for the end-user to be considered that she is close enough to the product
and therefore, she “has stayed in front of it”. After lab experimentation where we have
received RSSI values from −30 (corresponding approximately to 2 m) down to −120
(corresponding to approximately 8 m), we have specified the default value for the
RSSI_minDetectionThreshold to be −50. Note that sensing RSSI values
depends on the sensors used and room specifics, and is also sensitive to obstacles:
therefore, experimentation and adjustments will be needed in each specific use case
scenario. The MaxTimeInterval_BSD parameter specifies the maximum time
interval between successive detections of an end-user in front of a product in order for
these detections to be considered in the same “staying time session” in front of that
product. Default value is 20, meaning that successive detections of an end-user device
in front of a product beacon when less than 20 s apply between each detection result in
the system adding the total time and attributing it to the same session.

Using the above default values, the staying time reasoning algorithm functions as
follows (Fig. 7): when a device senses the same beacon for more than once and each
successive sensing has a time difference of less than 20 s with the previous one, and
furthermore at all times the RSSI value is higher than −50, then the system adds the
corresponding time difference between the first and the last sensing and assigns the sum
as the staying time of the end-user for that product. The above algorithm ensures that,
in case an end-user passes by a product and walks away, no staying time will be
assigned to her for the corresponding product.

7m

Fig. 6. Signal overlapping example: bluetooth beacons placed on products in a showroom.
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Users can be motivated to scan an NFC tag of a product to find out more infor-
mation on that product, visit its webpage, be recommended of similar products and read
reviews [1, 5, 12, 18–20]. NFC technology requires the user to hold the mobile device
in a 5 cm range from the product for an average of 3.3 s for detecting the product [20].
User’s staying time in front of a product is a truly implicit user feedback since it
happens without requiring user’s active participation and without interfering with
user’s task (user’s consent needs to be granted at a prior stage). Having users scan NFC
tags of products, however, needs user participation, similar to user ratings, whereas it
also interrupts users from their task. When a scan occurs, we can be certain that the user
has shown some interest on the product, but not that she actually likes it. The same
applies for staying in front of a product: the user may as well be looking at something
else other than the product in front of her. Nevertheless, implicit feedback is important
and can replace explicit techniques where the latter cannot be used.

4 UbiCARS Framework Architecture

The UbiCARS MDD Framework enriches an existing e-store with context-aware
recommendations. The framework architecture is shown in Fig. 8. The online store
frontend (client side) tracks user behaviour through the browser software and/or 3rd

party software running on the browser. Server side tracking of user behaviour is

Fig. 7. Staying time reasoning algorithm.

Fig. 8. Framework architecture.
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accomplished by analysing server log files. CARSKIT [24] is an open-source Context-
aware Recommendation Engine that offers State-of-the-Art recommendation algo-
rithms. CARSKIT has been selected among other recommendation frameworks due to
the many efficient recommendation algorithms it offers, its ease of use, and the flexi-
bility with which it can be fine-tuned to work with multidimensional datasets.

System implementation considers two of the most well-known, open source
e-commerce platforms, WordPress WooCommerce9 and Drupal Commerce10. Practi-
tioners may specify their platform of choice in the model to drive system configuration
(platformOfUse of configFile element). The system provides code snippets and
functional modules that can be installed in the corresponding platform and provide the
following functionality: retrieve explicit user feedback in terms of end-user ratings on
products, retrieve implicit user feedback in terms of end-user purchase history and
browsing history (product webpages accessed) on the website, as well as display
computed recommendations accordingly, as specified in the model. Integration with the
UbiCARS mobile app is provided. Custom e-store configuration is also considered.
Note that the cold start problem11 also applies here. In this sense, after system con-
figuration, the CARS system is not able to produce recommendations until customers
have interacted with the electronic and physical stores. In case customer interaction
pre-exists in a platform before system configuration, the system integrates and uses it, if
relevant. For instance, in case customers have already rated products in WooCommerce
before the system takes effect, the latter will consider the data during configuration and
use it during the recommendation process.

5 UbiCARS Instance Model and Demonstrator

The UbiCARS MDD framework provides practitioners with a toolset to model,
dynamically generate and configure a UbiCARS app and a CARS, as these were
described in Sect. 3. The toolset is comprised of a DSML along with its modelling
editor. Figure 9 shows the editor, its toolbox and a part of a model.

Through the properties view (right part of Fig. 9), information can be added/edited
about the selected element. The model displayed in Fig. 9 defines the Public Ubi-
CARS app that uses BluetoothBeacons and a STAYING TIME element that will
track customer-product interaction in the physical store and engineer it into a dataset for
the CARS to use in the recommendation process. The Staying Time Context adds
Indoor Location as a contextual element to each customer-product interaction (e.g.
the store department this interaction takes place). The right part of Fig. 4 shows a
snippet of a resulting dataset for staying time with context. Note that datasets where
implicit user feedback data (here the StayedInFronfOf) are not scaled as numbers
from 1 to 5, need to be normalized before used in the recommendation engine, e.g. the

9 https://wordpress.org/plugins/woocommerce/installation/.
10 https://drupalcommerce.org/.
11 Cold start is an inherent problem of RSs: to be able to produce meaningful recommendations, end-

user interaction with products first needs to take place.
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number of seconds can be scaled from 1 to 5 indicating 5 levels: 1 corresponding to
minimum staying time and 5 to maximum (these scales need to be defined by the
practitioner depending on the use case scenario). The UbiCARS app provided is
extendable and configurable. The system configures it to the level of communicating
with Bluetooth beacons to determine the product ID and access the DB to store the data.
A similar functionality is defined for scanning NFC tags. Next, context-aware multi-
dimensional datasets are compiled by the system and used by the CARS.

For testing purposes we have designed and applied a number of models. Due to
space limitations, a model example is referenced12. We have set up one example for
each e-store platform (WooCommerce and Drupal Commerce), in which we have
included electronic products, as these can be found in a real e-store. The datasets used
and displayed in this work are produced via interaction of lab personnel with the e-
stores. This interaction meant to simulate regular user activity on an e-store, such as
browsing products, purchasing products and rating them. To simulate a physical store
showroom, we have used a similar layout to the one in Fig. 6 to represent a mobile
smartphone showroom. The products were Bluetooth enabled Android and IoS
smartphones “for sale”, eliminating thus, in this case the need for Bluetooth beacons.
Beacons are expected to be more accurate than smartphones, however, when Bluetooth
is embedded in the products for sale, budget (for beacons) can be saved.

Utilizing the data from online and physical end-user interaction with products, the
system was able to produce 7 datasets: ratings, purchasing history, browsing history,
staying time, NFC scanning (when models specify NFC instead of Bluetooth beacons),
and two datasets for custom user feedback, one explicit and one implicit. Regarding
custom end-user interaction, practitioners may specify the feedback data according to
their needs, but the scoring scale still needs to be a number from 1 to 5. For instance,
such feedback could be the amount of times a customer has walked passed a product:
while the acquired end-user feedback can be a large number, e.g. 112, the dataset needs

Fig. 9. The UbiCARS instance model & modelling editor.

12 https://drive.google.com/file/d/13mXmGcCeImbpJ5G0oxP4Yj1z1bZiviyd/view?usp=sharing.
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to be normalized as shown in Fig. 10. With the generated datasets and the automati-
cally configured e-store, the system was able to compute recommendations and display
them to end-users. However, due to the limited data available in comparison with real
store data, cold start problems were experienced (Sect. 4).

6 Conclusions and Future Work

In this paper, we have presented our work on an MDD approach toward the devel-
opment of UbiCARS applications for physical commerce. The approach provides a
number of facilitators in the development of recommendations for commerce, aiming
for faster development time, enhancement of recommendations accuracy and utilization
of more efficient context-aware recommendation algorithms in relevance to existing
works. While problems exist when using implicit user feedback on products [6], it is
nevertheless important and can replace or complement explicit feedback techniques. In
this work we have proposed using additional user-product interaction data from the
physical store scenario to improve recommendation accuracy: users are expected to be
more satisfied by the recommended products.

As future work, similarly to the evaluation process in [8], we plan to engage
practitioners to use the UbiCARS MDD framework. Developers that have worked with
e-stores will be asked to use the UbiCARS DSML and editor to integrate State-of-the-
Art context-aware recommendations into their e-stores. We plan to use performance
metrics, i.e. task success (how well was the task completed), time-on-task (time needed)
[8], Lines-Of-Code (LOC) metric to measure effort, and SUS to measure system
usability. As opposed to [8] where a stand-alone evaluation without competitors was
conducted, we aim to compare our results with other frameworks by having users
conduct the same tasks with other open-source recommendation frameworks. We also
intend to study privacy aspects of collecting and utilizing user data, as well as
mechanisms to inform users and consider their preferences.
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