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Abstract. Agent technology has evolved rapidly over the past few years along a

number of dimensions giving rise to numerous “flavours” of agents such as

intelligent agents, mobile agents, etc. One of the most attractive and natural

fields for the development of agent technology is the Internet with its vast

quantity of available information and offered services. In fact, the term

“Internet agent” is effectively an umbrella for most of the other types of agents,

since Internet agents should enjoy intelligence, mobility, adaptability, etc. All

these different types of agents must be able to somehow interact with each other

for the purpose of exchanging information, collaborating or managing

heterogeneous environments. This survey presents some of the most common

models and technologies that offer coordination mechanisms for Internet

agents. It argues for the need of using coordination, then it presents some basic

infrastructure technologies before examining in more detail particular

coordination models for Internet agents, themselves classified into some general

categories.

1 Introduction

Agent technology has evolved rapidly over the past few years along a number of

dimensions giving rise to numerous “flavours” of agents such as intelligent agents,

mobile agents, etc. One of the most attractive and natural fields for the development

of agent technology is the Internet with its vast quantity of available information and

offered services. In fact, the term “Internet agent” is effectively an umbrella for most

of the other types of agents, since Internet agents should enjoy intelligence, mobility,

adaptability, etc. All these different types of agents must be able to somehow interact

with each other for the purpose of exchanging information, collaborating or managing

heterogeneous environments. This survey presents some of the most common models

and technologies that offer coordination mechanisms for Internet agents. It argues for

the need of using coordination, then it presents some basic infrastructure technologies

before examining in more detail particular coordination models for Internet agents,

themselves classified into some general categories.



The rest of this chapter is organised as follows. In the rest of this introductory

section we give some preliminary information regarding the relationship between

Internet agents on the one hand and the notion of coordination on the other. In the

process, we identify three main basic areas where the notion of coordination is

involved, namely: basic (coordination and communication) infrastructure,

coordination platforms (i.e. models and languages that offer coordination

functionality as a first class citizen) and “logical” coordination at the level of agent

behaviour. The next three sections present in more detail some representative

approaches in introducing coordination behaviour into these three levels. The chapter

ends with some conclusions and references.

1.1 Internet Agents

The issue of what is precisely a (software) agent is a rather hot topic of discussion and

has attracted much controversy. Traditionally, the notion of agents has its roots in

areas such as Distributed Artificial Intelligence, Distributed Computing and Human

Computer Interaction, as entities that enjoy such properties as proactivity, reactivity,

autonomous behaviour or adaptability. Thus, it is often taken as a default that an agent

is, in general, intelligent and a non-intelligent agent is, in a way, a contradiction in

terms. However, many people have questioned this approach (see for instance the

discussion in \{Petrie} where it is claimed that an agent can be autonomous without

being also intelligent and, in fact, intelligence is not always necessarily a useful

property); another related discussion can be found in \{Flores-Mendez}. The rapid

growth of the Internet has further complicated this issue, where now in addition to

being intelligent an Internet agent is also expected to be mobile.

Thus, in this chapter we will refrain from adhering to a particular definition or

assume that an Internet agent has some specific properties. In fact, for the purposes of

this work we do not have to do that since all definitions of what an agent (Internet or

otherwise) is, agree that an agent should be able to: (i) communicate with other

agents, and (ii) cooperate with other agents. In particular, an agent should be able to

engage in, possibly, complex communications with other agents in order to exchange

information or ask their help in pursuing a goal. The latter leads naturally to the

notion of a number of agents cooperating with each other towards the

accomplishment of some common objective. The need to communicate and cooperate

leads to the need for coordinating the activities pursued by agents in order to both

simplify the process of building multi-agent systems but also provide the ability to

reuse descriptions of coordination mechanisms and patterns.

1.2 Internet, WWW and Coordination

Recently, there has been an increase in the development of applications that need to

cooperate, coordinate and share their information with other applications, either with

or without user intervention. This is particularly true for Web-based applications that

operate in an open system environment and where data and resources are distributed.

This leads to the need for developing techniques that allow negotiation and



cooperation. In particular, it has been suggested that basic services for collaboration

that include the coordination of activities and the exchange of information should be

provided by the Web infrastructure and related enabling technologies. More to the

point, some approaches refer to the development of infrastructures for sharing

artifacts, the use of shared languages for exchanging information, and the creation of

shared working spaces for providing collaboration (\{Kotsis}). This leads to the

notion of having coordination architectures for the purpose of building collaborative

applications.

1.3 Coordination and Internet Agents

Coordination has been defined as the process of managing dependencies between

activities. In a seminal paper, Crowston and Malone (\{Malone}) characterise

coordination as an emerging research area with an interdisciplinary focus, playing a

key issue in many diverse disciplines such as economics and operational research,

organisation theory and biology. In the field of Computer Science coordination is

often defined as the process of separating computation from communication concerns

and a number of coordination models and languages have been developed

(\{Papadopoulos}).

From the discussion so far it has become clear that the need for coordinating

activities is inherent in both the case of building (multi-) agent systems and in the case

of developing Web-based environments, independently from each other. Therefore in

the case of Internet agents which combine the notion of multi-agent collaboration

with that of using a Web-based environment, the development of suitable

coordination technologies is of paramount importance.

In the rest of this chapter we present some representative approaches in developing

such coordination frameworks. However, before we embark on this era, we would

like to put the rest of the work into some perspective and we argue that one way to

classify these approaches is to group them into three categories as follows:

• Basic coordination infrastructure. The most primitive form of coordination is that

of communication. In this first, “lower”, level of coordination formalisms we

present the elementary enabling technologies for building coordination

frameworks. We can identify two such groups of enabling technologies: various

families of Agent Communication Languages (ACLs) such as KQML and its

variants, and support computing technologies that act as compositional platforms

for multi-agent systems executing in a distributed environment.

•  Coordination frameworks. In this second, “middleware”, level we examine some

representative frameworks that offer mechanisms for modeling coordination

activities and expressing them as first class citizens. At this level we have the

traditional approach to developing coordination models and languages, with

emphasis on issues particularly pertaining to Internet agents.

•  Logical coordination. In this third, “upper”, or user-level we present some

approaches which deal with the coordination functionality of the agents themselves

such as contracting, planning or negotiation. Such coordination agents include

cooperation domain agents, interface agents, and collaborative agents.



Thus, we approach the issue of coordination in Internet agents from a more general

perspective examining not only the mainstream coordination notions (the second

level) but also the issues of information exchange (the first level) and managing

interdependencies between agents (the third level). In the next three sections we

elaborate further on these three dimensions of coordination.

2 Basic Coordination Infrastructure

2.1 Agent Communication Languages

Aside from how one perceives the notion of an agent, one has to accept the fact that

an agent should be able to communicate with other agents and cooperate with them.

Typically, agent-based applications comprise many agents (possibly of different type

and functionality). In order to enhance such a multi-agent framework with

communication and cooperation capabilities we need an Agent Communication

Language (ACL) which will be used for the purpose of exchanging information,

intentions or goals. An ACL is also used to allow agents to ask for support from other

agents in order to achieve collectively some goal, monitor agent execution, report the

status of some computation, organize task allocation, etc. In other words, an ACL

offers the ability to formulate basic coordination patterns.

There are basically two main categories of ACLs (\{Nwana(a)}): Traditional third

generation multiple-purpose languages that are used, among other things, for agent

communication. Such languages are C and Java, AI languages such as Lisp, Prolog

and Smalltalk, and OOP languages. We will not elaborate further on this category.

The second category involves the development of language formalisms specifically

designed for the purpose of offering inter-agent communication and cooperation.

Below, we review some of these approaches.

KQML. The Knowledge Query and Manipulation Language (KQML) is probably

one of the most widely accepted and used ACLs (\{Finin}). It has been developed as

part of the DARPA Knowledge Sharing Effort project and is considered an evolving

standard. KQML is based on the notion of modeling illocutionary acts, such as

requesting or commanding an agent to perform certain things. These requests are

called performatives and can be classified into nine categories, some of which are

directly related to the notion of coordination. More to the point, there are

performatives that offer basic communication capabilities; for instance, the

networking  performative offers the primitives register,  unregister,

forward, broadcast, pipe , and break with self-explanatory functionality.

However, there is also the facilitation performatives with the primitives broker-

one, broker-all, recommend-one, recommend-all, recruit-one, and

recruit-all which offer more sophisticated coordination patterns. The

facilitation performatives are used by a special class of agents, called facilitators or

mediators, which are used effectively as coordinator agents for the rest, and whose



purpose is to manage various communication actions such as maintaining a registry of

service names, forwarding messages to named services, routing messages based on

content, providing “matchmaking” between information providers and clients,

providing mediation and translation services, etc.

KQML can be viewed as comprising three layers of abstraction:

•  The bottom layer, referred to as content layer, specifies the actual content of the

message. This can be represented in any programming language, as long as it is

ASCII-representable.

•  The middle layer, referred to as message layer, consists of the primitives that

comprise the nine classes of performatives, and forms the core of the language.

This layer specifies the protocol for delivering the message, whose contents are

specified by the previous layer.

•  The upper layer, referred to as communication layer, is used to encode

communication parameters such as the identities of senders and receivers.

The actual format of a KQML message is shown below:

(register

:sender agentA

:receiver agentB

:reply-with message

:language common_language

:ontology common_ontology

:content “something_to_do”

)

The first keyword identifies the particular performative that is being used (in this

case it is the register one), followed by the a number of parameteres. These

include the parameter ontology which identifies the ontology (i.e. the specification

scheme for describing concepts and their relationships in a domain of discourse) to

interpret the information in the content field of this message.

As a particular example, the agent customer could ask for all the different types

of 4x4 cars from an agent seller, as follows:

(ask-all

:sender customer

:receiver seller

:content “cars(4by4(Type,Price))”

:reply-with 4by4-request

:language Prolog

:ontology CARS

)

The agent seller receiving this message would interpret the request using the

ontology CARS and bearing in mind that the request was formulated in the language

Prolog. In due time, it will reply using the identification 4by4-request so that the

agent customer would know for which of its (potentially many) requests this

message constitutes a reply. Such a reply message could be the following:



(tell

:sender seller

:receiver customer

:content “[4by4(honda,15000), …]”

:in-reply-to 4by4-request

:language Prolog

:ontology CARS

)

A coordinator agent, monitoring continuously the changes in the 4x4 cars market

and informing the agent customer, could be defined as follows:

(monitor

:sender customer’s_agent

:receiver seller

:to customer

:content “cars(4by4(Type,Price))”

:reply-with 4by4-request-for-customer

:language Prolog

:ontology CARS

)

In the above example, the intermediary agent customer’s_agent has used the

performative monitor (which is an abbreviation for a combination of some other

primitives) to keep itself informed of all future changes to the 4x4 cars and inform the

agent customer.

Although KQML has been criticized for a number of shortcomings, such as the

lack of precise formal semantics, it is interesting to highlight the three layer

abstraction that separates the communication aspect of the language from the way the

actual information is being computed and presented. This separation of concerns is

one of the most important features of coordination languages and thus KQML can be

seen as a truly, if elementary, coordination language.

Agent Oriented Programming. AOP is a more elementary, compared to KQML,

framework for agent programming, and can be considered a specialization of OOP

where agents are viewed as objects with mental states (such as beliefs, desires and

intentions) and a notion of time. AOP is effectively a family of evolving formalisms.

A program written using the first member of this family, Agent-0 (\{Shoham}),

executes at each time step the loop comprising two steps: during the fist step

incoming messages are gathered and the mental state of the agent is updated

appropriately, and during the second step commitments (i.e. guarantees that the agent

will carry out an action at a certain time) are executed using capabilities (actions the

agent is able to perform). Basic communication in Agent-0 is achieved by means of

the primitives (INFORM t a fact), (REQUEST t a action),

(UNREQUEST t a action) and (REFRAIN action) where t specifies the

time the message is to take place, a is the agent that receives the message, and

action is any action statement. An INFORM action sends the fact to agent a, a



REQUEST notifies agent a that the requester would like the action to be realized. An

UNREQUEST is the inverse of a REQUEST. A REFRAIN message asks that an action

not be committed to by the receiving agent.

PLACA (\{Thomas}) extends Agent-0 with intentions (a commitment to achieve a

state of the world) and ability to plan composite actions. New syntactic structures

added to PLACA include the following: (INTEND x) intending to make sentence x

true by adding it to the list of intentions, (ADOPT x) adopting the intention / plan x

to the intention / plan list, (DROP x) dropping the intention / plan x, and the set

(CAN-DO x), (CAN-ACHIEVE x), (PLAN-DO x), (PLAN-ACHIEVE x),

(PLAN-NOT-DO x) which are truth statements used in mental conditions. For the

purposes of this chapter, we can view the primitives of Agent-0 as offering basic

coordination at the level of communication whereas those of PLACA as offering

basic logical coordination.

Agent-K (\{Davies) is an attempt to standardize the message passing functionality

of Agent-0 by combining the syntax of Agent-0 with the format of KQML. In the

process, the communication primitives of Agent-0 have been replaced by a single

generic message action kqml(time,message) where message is of the form

[performative,keyword(action)].

A simple communication pattern in Agent-K between two agents agent1 and

agent2 would be modeled as follows:

commit([clock(Now),b([Now,alive(agent2)])],

       kqml(Now,[‘ask-all’,sender(agent1),

            receiver(agent2),content(…),language(…)])

commit([clock(Now),b([Now,alive(agent1)]),

       kqml(Now,[reply,sender(agent2),

            receiver(agent1),content(…),language(…)])

where b(…) represents a belief and a predicate clock provides the current time.

Market Internet Format. We include in our survey the MIF (\{Eriksson})

formalism, as an example of how KQML can influence the design of more specialized

ACLs which are designed and oriented towards specific applications. In the case of

MIF this application is e-commerce which has attracted a wide interest and has shown

to be a natural application domain for both agent technology and coordination models.

In MIF agents share a common language which is a formalized subset of commerce

communication. MIF agents leave within the MarketSpace, a medium reflecting a

market place where consumer goods and services can be offered and bought.

Interaction between agents is modeled in MIF, a Lisp-like frame language, which has

both a textual and graphical representation. Typical MIF expressions of interest for e-

commerce transactions are the following one:

(def car “trade-object”

     color (instance “red”))

… )



(instance “contract”

   date(interval 1/1/2000 1/1/2001)

   buyer(instance “person”

         (name “John Brown”)

         (address …) …)

   goods(instance “car”

         color(instance “red”) …)

MIF expressions are exchanged using messages written in the Market Interaction

Language (MIL) which have the following format:

(offer

:from url

:to url

:in-reply-to message_id

:language “MIF 1.0”

:content <MIF expression>

)

The basic communication primitives that can be used to formulate complex

coordination patterns can be grouped into two categories: non committing messages

(ask (for an expression-of-interest), tell (an eoi) and negotiate (an eoi)) and

committing ones that are understood to make legally binding agreements (offer (an

offer), accept (an offer), and decline (an offer)). The involvement of specific

agents in such communication scripts can be parameterized, thus rendering frequently

used scenarios (such as auction protocols) reusable.

April. The Agent PRocess Interaction Language (\{McCabe}) is a process oriented

symbolic language influenced by the actor paradigm. April is oriented primarily

towards offering a basic language for modeling agent interactions rather than a high-

level set of agent related features such as planners, knowledge representation systems,

etc. In that respect April is used mainly for managing the processes representing

agents and their actions as the former interact with each other in a distributed system.

The following example shows how a broker agent can be modeled in April:

agent_record ::= (handle?agent,symbol[]?relnames);

subscription_record ::= (handle?agent,symbol?relname);

broker(){

   agent_record[]?has_rels := [];

   subscription_record[]?sub_for := [];

   repeat {

      (advertise,symbol[]?rels) -> { … }

    | (subscribe,symbol?rel) -> { … }

    | (remove_subscription,symbol?rel) -> { … }

    | …

   until quit ::= sender == creator()

}

The code starts with the declaration and initialization of the data structures that will

hold the data on those agents that have advertised or subscribed to the broker. The



process then enters a loop to handle the requests for its services, such as advertising

something, registering or removing a subscription, etc. (the particular actions taken

for each request are not shown above for reasons of brevity). This process executes

until its creator has sent it a quit message. Recently (\{Skarmeas}) April has been

used as a component-based platform for implementing KQML in a distributed

environment.

2.2 Compositional Platfoms

In this subsection we briefly describe some approaches that lend support in the

development of Internet agents-based systems. We refer to both general purpose

technologies that are used in distributed computing but also to those that have been

designed primarily to assist in the development of agent-based systems.

Java-Based Agent Toolkits. The rapid developments in object-oriented

programming and wide area networkings has led to the integration of these

technologies and the formation of distributed object-based computing platforms.

These platforms allow the development of systems as a synthesis of pre-existing

components. Furthermore, they provide a natural medium for constructing agent

layers. This has led to the development of agent toolkits that are typically Java-based.

One such toolkit is JavaSpaces (\{JavaSpace}) and its associated infrastructure Jini

(\{Jini}). JavaSpaces allows dynamic sharing, communication and coordination of

Java Objects. It is a loosely coupled cooperative marketplace model, based on the

metaphor of Linda like models (see next section), whereby producers store objects in

a shared working space and consumers lookup and retrieve objects from this shared

medium. The shared medium is effectively a networked repository of Java Objects

where the latter exist in the form of entries (serialized objects with both data and

behaviours) and their lookup is done via templates allowing type and value matching.

JavaSpaces is 100% pure Java-based and provides a simple solution to lightweight

distributed applications. Furthermore, it decouples requestors from providers, thus

relieving responsibilities and complexity and reducing the difficulty of building

distributed applications and maintaining them. The model supports five simple but

very powerful primitives:

• write, puts a copy of an entry into the space.

•  read  & readIfExists , (blocking and non-blocking versions) return a

matching entry from the space.

•  take & takeIfExists, (blocking and non-blocking versions) remove the

matching entry from the space.

• notify, sends an event when the matching entry is written to the space.

• snapshot, returns another entry object that contains the snapshot of the original

one.

As a basis technology, JavaSpaces uses Jini, a protocol allowing “plug and play”

functionality for new entities connected to the network. Such an entity can be a device

or a software service, which when connected to the network announces its presence.

Clients can then use lookup facilities to locate and invoke the services offered by such



entities. Thus, a Jini environment is made up of three main parts: the services offered,

the clients that will invoke the services, and a service locator that implements the

lookup capability.

There are a number of other similar toolkits which for reasons of brevity we will

not describe in this chapter. These include Concordia by Mitsubishi (\{Concordia}),

IBM’s Aglets (\{Aglets}), Odyssey by General Magic (\{Odyssey}), and Voyager by

ObjectSpace (\{Voyager}). The interested reader can consult the relevant references

for further details.

Law Governed Interaction. One of the most important problems that must be faced

in open distributed systems, such as Internet (multi-) agent ones, is that of security. A

framework based on specifying and enforcing “laws” which must be obeyed by all

entities involved in an application and which provide, among others, safe

communication is described in \{Minsky}. The model has a wide applicability, but is

particularly attractive to the case of Internet agent-based systems. In Law Governed

interaction protocols, there exist a set of controllers, one controller per entity involved

in an application, which intercept all communication between this entity and the rest

in the apparatus. Each controller executes a copy of the law which defines in precise

ways how the communication between the entities must be realized. The controllers

monitor all message exchanges and allow the completion of only those which do not

violate the law. As an example, the following is part of a law which establishes a

secure bidding policy between agents involved in an e-commerce transaction:

R1. sent(C1,out([requester(C2),service(S)]),ts :-

C1==C2, do(forward).

R2. sent(C1,in([requester(C2),service(S)]),ts :-

C1==C2, do(forward).

R3. sent(C1,in([offerFor(C,S),fee(f),provider(P),

provider(P),contact(Addr)]),ts) :-

C1==C2, do(forward).

In the above example we assume that the agents communicate via a common

medium, referred to as ts; furthermore, a message can be sent to ts by means of an

out primitive and retrieved from there by means of an in primitive. Assuming

further that a controller monitoring an agent C1 executes the above law, then the first

rule of the law says that C1 can request a service provided it is for himself, the second

one allows the withdrawal of the request, and the third rule allows C1 to retrieve an

offered service if it has been posted to ts (by some other agent) for C1’s sake.

IMPS. The Internet-based Multi Agent Problem Solving (IMPS, \{Crow}) is a

compositional platform for developing Internet multi-agent systems. It features the

use of Problem Solving Models (PSMs) which may be used in ontology construction

and knowledge acquisition. A knowledge library is available to all agents containing

information about PSMs in terms of their competencies and domain knowledge

requirements, and about types and locations of domain knowledge sources and how to

extract different kinds of information from them. This library can be distributed over

the Internet and is designed to be modular and extensible by means of ‘plug-and-play’



new classes written in Java. More to the point, knowledge sharing in IMPS is realized

by means of using emerging standards such as KIF, KQML and Java, thus ensuring

interoperability.

IMPS is built on top of JAT (Java Agent Template), an agent-level architecture

featuring the use of two specialist server agents; these are the Knowledge Extraction

Agent (KexA) and the Ontology Construction Agent (OCA) which are used for

providing on-demand knowledge to Inference Agents (IAs). IAs specialize in

performing particular process or inference steps; thus, IMPS enhances cooperation

between agents collaborating towards the achievement of a common goal, reduces

redundancy and increases reusability of agent cooperation patterns. The use of

KQML allows the dynamic configuration of agents and further enhances the

coordination capabilities of this framework. IMPS can be viewed as an enabling

technology for modeling logical coordination (see section 4 below).

ADK. The AgentBean Development Kit (ADK, \{Gschwind}) is a component-based

framework for developing mobile multi-agent systems with some emphasis on

network and system management issues. In ADK an agent is understood to be

composed of components belonging to one of the following three sets:

•  Navigational components. They are responsible for managing the itinerary of an

agent which may be static of dynamically modifiable at run time.

•  Performer components. They are responsible for carrying out the management

tasks that should be executed at the host of the currently visited place. Tasks

performed by agents comprise one or more components.

•  Reporter components. They are responsible for delivering agents’ results to

designated destinations. Delivery can be a simple point-to-point exchange of

messages of more complicated — for instance, collecting a number of messages

(possibly from different sender agents) and forwarding all of them to some

recipient agent.

For the purposes of this chapter, the above separation of concerns between the

three categories of components enhances the coordination capability of the system.

For instance, the reporter components can be seen as encapsulating the coordination

activities of some ensemble of agents, thus separating them from other concerns, but

also rendering useful coordination interaction patterns reusable. The interaction

between components is done in an event/action-based fashion: events generated by

one component may trigger actions to be performed by another.

JGram. JGram (\{Sukthankar}) is another multi-agent development platform using

the component-based approach. Agents’ services are specified in the JGram

Description Language and automatically converted into Java source templates. These

services may then be invoked synchronously or asynchronously in a manner

transparent to the services’ implementation. Compositionality of tasks is realized by

means of the notion of pipelining: an agent may dynamically delegate tasks to other

agents and chain together their results. Thus, the complexity of handling a task is

distributed across a number of agents, each being aware of only part of it. This notion

of pipelining can be seen as an extension of the Unix pipes where the agents involved



in a pipeline can be distributed across the network. Furthermore, it is possible to form

hierarchies of pipelines with transparent propagation of results.

Communication between the agents involved in pipelines is realized by means of

JGram slates, consisting of a header specifying addressing information and delivery

instructions and a body containing a set of typed entities. Slates are passed over from

one agent to another for the purpose of accessing and if necessary modifying the

entries in it. The system adheres to elementary coordination principles by taking the

responsibility itself for performing parameter checking, thread management,

authentication, agent name service and error handling. Thus, the user can concentrate

only on creating and using agent services. In particular, the JGram Description

Language provides high-level concepts for agent behaviour in the form of (offered)

services and requests (for services). A user expresses an interaction scenario among a

number of involved agents using these two notions and the underlying system handles

the low level communication details.

RETSINA. The REusable Task Structure-based Intelligent Network Agents

(RETSINA, \{Giampapa}) system plays particular emphasis to the process of

formulating planning actions between a number of agents involved in the pursuing of

a common goal. The RETSINA system architecture is composed of four autonomous

units as follows:

• Communicator. It is responsible for exchanging requests between agents in KQML

format.

• Planner. It transforms goals into plans that solve these goals.

• Scheduler. It schedules for execution the tasks representing the plans.

• Monitor. It monitors the execution of the plans.

The above separation effectively provides elementary coordination capabilities to

the system. Furthermore, the system employs a planning and refinement algorithm

which decomposes a complex plan into a Hierarchical Task Network (HTN) of more

elementary plans. Every partial plan in the HTN is handled by the planner (and the

rest of the units as listed above) of some agent, irrespective of how other agents deal

with the rest of the plans. Thus, at any moment in time each agent is aware and

interested only in his own local partial plan with the positive consequence that agents

may dynamically join and leave the system. This mechanism provides further

potential for developing parametric and reusable coordination patterns between

cooperating agents.

Domain Specific Languages. The advantages of using Domain Specific Languages

(DSLs) for modeling collaboration scenarios between Internet agents is discussed in

\{Fuchs}. DSLs provide a common communication language between all types of

agents (human or other) involved in Internet applications. In DSLs a clear separation

is enforced between syntax and semantics, so that each agent in a collaboration is

capable of applying a behavioural semantics appropriate to its role (e.g., buyer, seller,

etc.). Thus, DSLs support the development of multi-agent applications from

heterogeneous agents, an issue of importance to coordination frameworks.



Language semantics in DSLs are separated into two levels: the abstract semantics

refer to the objects in the domain itself whereas the operational semantics refers to

how the messages received by objects will be processed by the machine. What

differentiates DSLs from ordinary languages in that respect, is that the “machine” is a

specialized computational entity according to what precisely is the domain in

question. So, this entity could be a machine specialized in playing bridge or a whole

corporation with workflow infrastructure, databases and Internet communication

mechanisms, according to the application framework.

\{Fuchs} uses SGML/XML as a metagrammar for defining DSLs. The following

piece of code defines the grammar of part of the scenario that models a game of

bridge:

<!ELEMENT bridge (player+,deal,bidding,dummy,play)>

<!ELEMENT player #EMPTY>

<!ATTIST player position (north|south|east|west) #REQ

name cdata #REQ>

<!ELEMENT deal (card+)>

<!ELEMENT card #EMPTY>

<!ATTIST card suit (spades|hearts|diamonds|clubs) #REQ

face cdata #REQ>

… … …

Part of an actual scenario (for dealing only), based on the above grammar is shown

below:

<bridge>

<player position=’north’, name=’george’> …

<deal><card suit=’spades’, face=’king’>, … </deal>

… … …

</bridge>

In a distributed realization of this game, each agent will receive and interpret a

bridge string as the one shown above. This string may be parsed as a data structure by

a computational agent or be presented to a human agent in some visual and interactive

form. The instance of a bridge game, as specified by the code enclosed in the

<bridge>…</bridge> tags, will be played according to the rules for bidding,

passing and using trump cards (not shown above) as they have been defined in the

grammar above.

3 Coordination Frameworks

In this section we describe a number of approaches where coordination between

Internet agents is supported as a “first class citizen”. Contrary to the previous section

where the emphasis was on systems whose principles have the potential of developing

coordination frameworks, here we concentrate on genuine coordination models and

languages that have specific features for Internet agents. Many of these models have

evolved from earlier, more conventional versions, that deal with non (Internet) agent-

based distributed computing (\{Papadopoulos}). Most of the models in this section



adopt the notion of a Linda-like shared dataspace; however, some follow a more

control-driven approach (\{Papadopoulos}) and a few are based on other notions such

as using graphical notations.

3.1 Shared Dataspace Models

TuCSoN. TuCSoN (\{Cremonini}) addresses in particular two important problems

that must be faced in open Internet agents-based systems: those of security and

authentication. The model is an extension of the Linda framework and it uses the

same set of primitives for dealing with tuples. As in other variations of the vanilla

model, TuCSoN introduces multiple tuple spaces, referred to as tuple centers. Thus,

an ordinary Linda tuple operation op(tuple) is now parametric to the particular

tuple center tc  which is being accessed and takes the form tc?op(tuple).

Furthermore, the tuple centers are associated with their own policies for being

accessed by agents; an agent attempting to access some tuple center will undergo an

authentication screening according to the particular policies of the tuple center that it

tries to access. Thus, the tuple centers become programmable media that define

locally the way agents will interact with them. TuCSoN views the Internet world as a

hierarchical collection of different tuple centers. For instance, one tuple center can be

the main gateway of some Web site (e.g. the gateway for some organization),

comprising a number of subordinate tuple centers (e.g. local departments within the

organization). This allows the optimization of enforcing security policies in the sense

that the programmable “logic” of a tuple center for some tree hierarchy regarding how

it is being accessed by external agents, may refrain from authenticating an agent that

tries to access a sub-domain of the tree if that agent has already received security

clearance from the top domain.

The consequences of the tuple space acting as a programmable medium means that

there exist now two different levels of perception: that of the agents accessing it and

that of the medium itself handling the queries. Thus, every logical operation at the

level of the agent must be mapped onto one or more corresponding system actions at

the level of the medium and vice versa. This introduces the notion of reactions and

the primitive reaction(Operation, Body) where every logical Operation

is mapped onto one or more system operations (Body). As an example, consider the

problem of coordinating the well-known dining philosophers to access their forks:

reaction(out(forks(F1,F2)),

(in_r(forks(F1,F2)), out_r(fork(F1)), out_r(fork(F2))))

reaction(in(forks(F1,F2)),(pre,out_r(required(F1,F2))))

reaction(in(forks(F1,F2)),(post,out_r(required(F1,F2)))

)

reaction(out_r(required(F1,F2),

(in_r(fork(F1),in_r(fork(F2)),out_r(forks(F1,F2))))

reaction(out_r(fork(F)),(rd_r(required(F1,F)),

in_r(fork(F1)),in_r(fork(F)),out_r(forks(F1,F))))



reaction(out_r(fork(F)),(rd_r(required(F,F2)),

in_r(fork(F)),in_r(fork(F2)),out_r(forks(F,F2))))

In the above modeling of the problem in TuCSoN, two points of reference are

being involved. The agent philosopher perceives the fork resources as pairs and asks

for them in that fashion, namely forks(F1,F2). The programmable medium

however must map the agent’s perception of pairs-of-forks to single forks and

furthermore, ensure that these are accessed atomically and in a way that is fair to all

philosophers. This is achieved by means of a number of reaction rules. The first one

changes a release of the left and the right fork as a pair to two single releases. The

next two rules refer to the case of an agent requesting a pair of forks in which case a

request is posted to the medium (first rule of this group) and is retracted when the

forks have been allocated to the agent (second rule of this group.). These requests are

handled by the last three rules; the first rule of this group allocates immediately the

two forks if they are both available whereas the last two rules handle the case when

only one of the two forks can be immediately given to the requesting agent.

KLAIM. The Kernel Language for Agent Interaction and Mobility (KLAIM,

\{Nicola}) is another Linda variant for coordinating Internet agents with similar

characteristics to TuCSoN. A KLAIM program is a net, comprising a set of nodes.

Each node has a name and is associated with a process component and a tuple space

component. The name of a node is effectively an Internet site and allows access to the

network. Processes access tuple sites via symbolic locality references; in other words,

they need not know explicit network references. Thus the net can be seen as a

distributed infrastructure for coordinating processes in accessing and sharing

resources.

In particular, each node in a net is of the form e {P | T} where e is an

allocation environment that maps symbolic locality references to actual tuple spaces,

P is a set of running processes, and T is a tuple space. Consider the following piece of

KLAIM code:

def Client = out(Q)@l ; nil

def Q = in(‘foo’,!X)@self ; out(‘foo’,X+1)@self ; nil

def Server = in(!P)@self ; eval(P)@self ; nil

In the above example, the first line of code defines a process Client that outs a

process Q to the environment l. The actual definition of Q is given in the second line

and involves the increment of the value of some variable X. The third line of code

defines a process Server which retrieves a process P from its own tuple space and

executes it. The idea in this example is that Client sends an increment process Q to

some other process Server which will then execute Q and send the new increment

value back to Client. Assuming that Client and Server run on the nodes s1

and s2 respectively, this will work provided that l is mapped to s2 and the self

references of Client and Server map themselves to s1 and s2 respectively.

Furthermore, we assume that before the execution of these processes commences, an

initial tuple <’foo’,1> exists in the tuple spaces involved in the scenario. These are

achieved by the following piece of code:



node s1 :: e1 {Client | out(‘foo’,1)} ||

node s2 :: e2 {Client | out(‘foo’,1)}

When Client sends Q for execution to Server’s tuple space, it will appear

there as the process:

Q’ = in(‘foo’,!X)@s1 ; out(‘foo’,X+1)@s1 ; nil

Thus, Server will execute Q’ in its own tuple space s2 but post the result to the

tuple space s1, i.e. will effectively send the result back to Client.

KLAIM has a capability-based type system to express and enforce access control

policies and thus provide security. These types provide information regarding the

intention of some process with respect to producing or using tuples, creating new

nodes or activating processes. Permissions have a hierarchical structure in the sense

that if a process is allowed to perform an operation of a certain generality or

“strength”, then by default it is also allowed to perform all other operations that are

less general or weaker. For instance, if it is allowed to read a real value then it is also

allowed to read an integer value, and if it is allowed to remove a tuple (in) then it is

also allowed to simply read it (rd). As an example, the following KLAIM code

specifies access control rights for the processes Client and Server:

def Server = out(<l:void,Top>)@self ; nil

def Client = read(!u:<[self –> e], ac>@l-S;

             eval(P)@u ; nil

According to the above definitions, Server adds a tuple containing the locality l

to its own tuple space; no access restrictions are specified on l. The process Client

first accesses the tuple space l-S to read an address u before sending process P to

execute at u. However, this will only be possible to achieve if P is of type ac,

because the second rule states that only processes of this type are allowed to be sent

from the site of Client to the site u.

LIME. Linda in a Mobile Environment (LIME, \{Picco}) is yet another extension of

the Linda model for coordinating Internet agents. However, contrary to the previous

two models that develop fully-fledged languages, LIME offers only a minimalist set

of constructs. The philosophical difference between models like the previous two and

those such as LIME is that in the former case the user has direct and explicit control

on how to deal with coordination matters specific to Internet agents (such as mobility

or security) while in the latter case the user only implicitly expresses the intended

actions to be performed and it is the system that is primarily responsible for dealing

with such issues.

The fundamental abstraction provided by LIME is that of a transiently shared tuple

space. In particular, each agent is associated with its own personal tuple space,

referred to as interface tuple space (ITS). An agent may have one or more ITSs

identified by a separate name. The union of the ITSs with the same name that belong

to all the agents that are co-located at some host form the transiently shared tuple

space for that host with respect to the currently residing there agents. When a new

agent moves to some location, the LIME system recomputes the transiently shared

tuple space for that location taking into consideration the ITSs of that agent. This



process is called engagement. When an agent leaves the host, LIME again recomputes

the transiently shared tuple space for that host by removing those tuples that belong

only to the ITSs of the departing agent. This reverse process is called disengagement.

Thus, if two agents A and B reside on the same host and A performs the operation

out(t) to its own ITS (we assume for simplicity here that only one ITS per agent is

involved in our scenario), then because the two agents are co-located and the two

ITSs form a common transiently shared tuple space, B can perform the operation

in(t) and retrieve the tuple t (which can be seen by B through his own ITS). Care

must be taken when, after performing the operation out(t), A migrates to some

other host. In this case, the transiently shared tuple space between the ITSs of A and B

does not exist any more and the tuple t would go along with A and would not be any

more accessible to B for retrieval. In order to allow access to t  even after the

departure of A, the latter must out it to the ITS of B, rather than to its own ITS by

means of executing the primitive out[B](t). In this case, t becomes part of B’s

ITS and will remain there even after the departure of the agent (A) which created it,

although the two agents are not co-located on the same host any more.

Berlinda. Berlinda (\{Tolksdorf}) is a meta-coordination Linda-based platform

developed in Java. The system offers a highly abstract model of coordination that can

be used as the basis for developing more concrete coordination frameworks for

Internet agents. As in all Linda models, there exists a common communication

medium in the form of multisets, which comprises a collection of elements. Elements

carry signatures with meta information and provide a matching function for their

access by agents according to the semantics of the particular coordination framework

that is being employed. All these entities are implemented as Java classes that form a

hierarchical structure and provide appropriate operations that realize the functionality

of the coordination framework.

The Berlinda platform has been used for developing coordination frameworks for

Linda and KQML. As an example, the following piece of code creates a set of agents

in a Linda coordination framework that traverse a file system and remove unnecessary

files, i.e. those files that can be generated from some other file:

public class SweepAgent extends LindaAgent {

public static void main (String argv[]) {

// create tuple space

TupleSpace ts = new TupleSpace();

// create agents

for (int i=1; i<=walker; i++) ts.eval(new Walker());

for (int i=1; i<=sweeper; i++)ts.eval(new

Sweeper());

// allocate work to agents

ts.out(new Tuple(“Sweeped”, new Integer(0)));

ts.out(new Tuple(“Walker”,start_directory_path));

… … …

}

…

}



The Walker agents traverse a directory, spawning themselves to traverse in

parallel any subdirectories. The results of their search are passed on to the Sweeper

agents that remove the selected files.

PageSpace. The PageSpace platform (\{Ciancarini}) is effectively a meta-architecture

or reference architecture for developing Internet agents-based applications.

Applications are composed of a set of distributed agents and are conceived as

comprising three layers: a client layer, a server layer and an application layer, that

coordinate modules belonging to client agents, server agents or intranet applications

respectively. These applications may be distributed transparently across a network

and used in serving several users who independently access a shared Linda-like

environment via their WWW browsers. Independently progressing applications may

interact with each other in order to cooperate towards the achievement of a common

goal. Furthermore, the configuration of users, applications and hosts may change

dynamically without disrupting the offered services.

Depending on their functionality, PageSpace distinguishes several kinds of agents,

such as user interface agents, application agents (that manage the running of some

application), gateway agents (that provide access to the outside world), kernel agents

(that perform management and control tasks), etc. PageSpace is effectively the

product of combining related research at the University of Bologna and the Technical

University of Berlin and it thus uses a number of more specialized software

architectures and associated coordination models and languages that have been

developed by the two groups such as MUDWeb, Shade/Java, or MJada (\{Rossi}). As

an example of Internet agent coordination in PageSpace, we show extracts of a

Shade/Java program that coordinates the process of bidding in an e-commerce

scenario involving three groups of agents: an auctioneer agent that sells items to

participant agents while some observer agents passively watch the process.

Shade/Jada is a combination of Java with the Linda-based coordination language

Shade. A Shade program is a collection of classes and each object in a Shade

application is a class instance. Objects communicate by means of Linda-like

communication primitives. Thus, Shade/Java is a syntactic extension of Java with the

coordination features of Shade (\{Rossi}). Regarding the example in question, the

code is part of the auctioneer agent functionality:

class auctioneer extends ShadeObject {

in (“begin”);

out (“bid”,”bid1”), (“next_item”,”next1”),

(“cartoon”,”car1”), (“display”,”dis1”),

(“BasePrice”,5000), (“next_init”,”init_2”),

(“item#”,1);

#

in (“BasePrice”,?i:base_bid);

out ((“display”,?s:display), (“item#”,?i:num);

send [bid, (“begin_auction”,”auctioneer”,base_bid,0),

(“item#”,num)],

send [display, (“begin_auction”,”auctioneer”,base_bid,

0)];



out (“auction_active”), (“first_timer”),

(“current_bid”,base_bid), (“TimeStamp”,0);

#

… … …

The above piece of code shows two of a number of methods that the auctioneer

agent comprises (the code for each method is separated by ‘#’). The auctioneer starts

the auction when it receives the tuple begin in which case the first method above is

activated. This method broadcasts a number of initialization tuples that activate the

agents to be engaged in the scenario. Furthermore, when the first item goes on sale, it

is displayed by the agent dis1 of class display. The second method commences

the coordination of the bidding process. An auction starts from a base price which is

sent to all participating agents (the tag item# on some item denotes that that item is

to be sold). Further methods receive bids, validate them and modify appropriately

offered prices for sellable items.

MARS-X. MARS-X (\{Cabri(b)}) is a programmable coordination architecture for

Internet agents based on a combination of XML and a Linda-like communication

mechanism. The XML component enhances interoperability by separating the

treatment of data from its representation. The Linda-like communication mechanism

offers the required coordination mechanisms for modeling cooperation between

agents. MARS-X is a four layer architecture: at the lowest layer lays the actual

information being manipulated and in the next level the XML dataspace; the third

layer comprises the Linda-like interface (based on Sun’s JavaSpaces) and at the upper

(application) level lie the executing agents. There exists a local per node in the

network XML dataspace, and when a mobile agent arrives at a node it is provided

with a reference to this dataspace. Groups of nodes can create shared federated

dataspaces. Access to a dataspace is realized by means of the operations read, take

and write which correspond directly to Linda’s rd, in and out. There are also the

aggregate variants readAll and takeAll which retrieve all matching tuples. The

following piece of codes illustrates the modeling of agents in MARS-X:

<?XML version=”1”?>

<course>

…

<lesson>

<lessonname>Introduction</lessonname>

<lessonnumber>1</lessonnumber>

<abstract>…</abstract>

…

</course>

class_lesson extends AbstractEntry {

static private URL DTDfile = new URL(http://…);

public String lessonname;

public Integer lessonnumber;

public String abstract;

… }



lesson tmplesson = newlesson(); // template lesson

tmplesson.abstract=”networks” // partially def field

for (i=0; i<number_of_federation_sites; i++)

{go(site[i]; // current site in the federation

if(lesson=S.read(tmplesson,…) // if a lesson with

go(home); // the right keyword is found go home

}

In the above example, the first part of the code describes in XML the structure of a

lesson, as part of some course. The second part defines as extended Java classes the

MARS-X tuple corresponding to a lesson. Finally, the last part makes use of the

Linda like primitives to define the behaviour of an agent which roams a federated site

(i.e. a collection of local XML dataspaces) in order to find and retrieve the lesson with

the keyword “networks”.

3.2 Other Coordination Models for Internet Agents

We present below some other coordination models, particularly suited to Internet

agents, which however are not based (at least directly) on the Linda model. Here we

find a variety of flavors: those that use a point-to-point communication mechanism

and can be characterized as being control-oriented (\{Papadopoulos}), or others

which are based on extension of existing programming paradigms such as logic

programming or visual programming.

STL++. The Simple Thread Language ++ (STL, \{Schumacher}), an evolution from

earlier coordination languages, is a control-driven coordination formalism for Internet

agents which is based on the Encapsulation Coordination Model (ECM). Unlike the

members of the previous category of coordination models in this section which are

variants of Linda (and therefore they are relying on a notionally shared dataspace),

ECM and its associated language ECL++ are relying on point-to-point

communication. In particular, there exist five building blocks:

• Processes, as a representation of active entities.

•  Blops, as an abstraction and modularization mechanism for a group of processes

and ports.

• Ports, as the interface between processes/blops and the outside world.

• Events, as a mechanism for synchronizing the execution of processes and blops.

• Connections, as a means of connecting ports.

A coordination ensemble in STL++ is a collection of agents, themselves grouped in

blops, with well defined port-based input-output interfaces which communicate via

their respective ports by means of port-to-port connections, and synchronize their

activities by means of events. The language is object-oriented and has been realized

as an extension of C++. As an example, the following is an extract from an STL++

program coordinating the activities in a restaurant:



void Waiter :: start() {

Agent :: start();

int income;

tablr_port = new BB_Port<int>(this,nV(“MealBB”),INF);

int i, j;

for (i=0; i!=nbrOfClients; i++) {

j=(i+1)% nbrOfClients;

createAgent(Client,&i,&j); // Create the clients

}

// Restaurant closes - take the money

income=table_port->get(“money”);

while (income) {

total_income+=income;

income=table_port->get(“money”);

}

stopMe();

}

The above code refers to a Waiter agent which manages the diner area in a

restaurant. It is responsible for organizing a place for each newly arriving customer. It

initializes the scenario by creating an initial number of customers. Finally, it collects

the money for providing dinner and closes the restaurant. Waiter creates a port

table_port with the name MealBB which will be used to collect money. Then it

creates a number of clients, and finally it receives the money through table_port

and sums up the income. The setting up of a connection between an appropriate port

of the agents of type Client and table_port so that the money can be received,

is not shown above and is part of the code for Client.

Mobile Streams. Mobile Streams (\{Ranganathan}) is a middleware platform for the

development of distributed multi-agent systems. What is of particular importance to

the issue of coordination, is that Mobile Streams is especially suitable for applications

that require dynamic (re-) configuration. Furthermore, the system is event-driven in

the sense that its components (namely mobile agents) synchronize their cooperation

by means of sending and receiving events. The combination of these two features

(event-driven dynamic reconfigurability) is typical of a particular class of control-

driven coordination formalisms (\{Papadopoulos}) and Mobile Streams can be seen

as being a mobile version of them.

A Mobile Stream (MStream) is a globally unique name for a communication end-

point in a distributed system that can be moved from machine to machine, during the

course of a computation and preserving the order of messages. A MStream is part of a

hierarchical tree structured logical organization whose root is a Session, namely a

distributed application. A Session comprises a set of Sites, at each one of which a

number of agents execute and communicate via one or more MStreams. Each agent

comprises a number of Event Handlers which handle events. This apparatus separates

the logical design of a distributed application from the physical placement of

components. A distributed application is constructed by first specifying the

communication end-points as MStreams and attaching agents to them. The latter



create event handlers, one (and only one) for a different event associated with an

agent. When an event occurs, the appropriate handler in each agent is concurrently

and independently invoked with appropriate arguments. When a MStream moves

from one site to another, it (logically) moves the code of all the agents attached to it to

the new site along with their state. The code can have initialization and finalization

parts that execute once the agent first arrives at a site or when it is about to be killed.

As an example, consider the following piece of code:

stream_create foo

stream_create bar

stream_move foo 1

stream_move bar 2

# external input

stream_open bar

stream_append foo “Hello World”

register_agent foo () {

stream_open bar

on_stream_append {

stream_append bar $argv

}

}

register_agent bar () {

on_stream_append {

puts $argv

stream_relocate 1

}

on_stream_relocation {

set my_loc [stream_location]

puts “I am at $my_loc”

}

}

The above script initially defines two streams, foo and bar, and locates them at

different sites (1 and 2). We further assume that a string is sent to foo from an

external source. The MStream foo receives the string message and sends it to the

MStream bar, which outputs the message via its handler. Finally, bar moves to the

site of foo and prints an appropriate message to announce its new location.

GroupLog. The agent coordination language GroupLog (\{Barbosa}) is based on an

extended Horn Clauses formalism. Elementary agents in GroupLog are modeled as

(possibly perpetual) processes which receive messages and react to them by invoking

appropriate methods. A clause can have AND-conjunctions with sequential or parallel

operational semantics. Sets of clauses defining the overall behaviour of agents are

grouped into modules. In that respect, GroupLog is very similar to object-oriented

concurrent logic programming languages such as POOL. What is particularly relevant

to the notion of coordination however is the notion of group, which effectively



structures the communication space of agents and allows the modeling of various

cooperation patterns between them. Agents can dynamically join and leave groups

and can be members of multiple groups at the same time. Group communication can

be either broadcast or point-to-point. The following code defines such a group:

group meet_schedule {

context().

interface(begin).

meet_schedule(Id) : begin :-

members(meet_schedule(Id),[H,I]),

rd(meet_schedule(Id),meet(MeetId)),

H << begin(I,MeetId) || I << begin(H,MeetId)

| meet_schedule(Id).

meet_schedule(Id) : new | meet_schedule(Id).

}

The group meet_schedule defines a broadcast communication mechanism

between a number of agents [H,I] belonging to the same group MeetId. Using the

communication operation <<, and the predefined primitives members (returns the

agents belonging to the same group Id) and rd (returns the subset from a set of

agents belonging to the same group), meet_schedule sets up communication

paths between all members of this group so that they can exchange messages in a

broadcast fashion. An agent joining the group meet_schedule will automatically

become part of this communication apparatus. Furthermore, the communication

strategy of this group may change dynamically without the agents belonging to it

realizing any difference.

Little-JIL. We end this section with a brief description of Little-JIL (\{Jensen}), a

visual language for agent coordination. Little-JIL has been designed to address in

particular the problem of knowledge discovery in databases, an issue of particular

interest to Web environments, especially with regard to aspects of traffic analysis,

fraud detection, etc. Activities of processes in Little-JIL are represented as steps,

decomposed into substeps. Substeps belonging to a step can be invoked either

proactively or reactively. Steps may have guards to be executed upon entering or

exiting a step, as well as handlers to deal with exceptions. They can also include

resource specification. One special resource associated with each step is an agent

which is responsible for initiating and carrying out the work of the step.

Coordination of agents is achieved by means of an agent management system

(AMS). An AMS is based on the metaphor of to-do lists for activities to be performed

by agents, human or automated. Assignment of tasks to be executed by some agent(s)

are placed on the to-do lists of those agents. Agents monitor to-do lists (they may be

associated with more than one list if they are involved in performing several disjoint

processes), in order to receive tasks to perform. Any changes in the to-do list cause

notification to be sent to the interested agents which then execute the corresponding

tasks. Task execution causes changes to the system state and these changes are

recorded by the AMS. Thus, the AMS provides language-independent facilities that

allow coordination to take place in a way that separates the concerns about why and



when coordination should occur (handled by AMS) from how it will be achieved

(handled by the agents).

4 Logical Coordination

The previous two sections have dealt with a rather “technical” aspect of coordination,

as it applies to the field of Internet agents. In particular, we first examined some

enabling technologies that provide the necessary infrastructure for building

coordination frameworks. We then presented some approaches in developing models

and languages for Internet agents where coordination is treated as a first class citizen.

However, the concept of coordination exists also at a higher, more logical, level

where we are interested in organizing the cooperation behaviour between the

members of a multi-agent ensemble. In this case, middle agents are used with the sole

purpose of acting as coordinators managing the activities of other agents. Such

coordination can be done centrally or in a distributed fashion. Depending on precisely

what sort of coordination these agents realize, they can belong to a number of

different categories, some of which are the following (\{Flores-Mendez}):

• Facilitators or Mediators, which satisfy requests on behalf of other agents, usually

by offering certain services to these agents.

•  Brokers, which also satisfy requests received by other agents but often by using

services provided by third parties rather than themselves.

• Matchmakers (Yellow Pages), which offer look-up services.

•  Blackboards, which are repository agents that receive and hold requests for other

agents to process.

•  Local area coordinators, which are agents responsible for assisting the other

agents in some well defined area to initiate and conduct inter-agent communication

and interaction.

• Cooperation domain servers, which provide agents in some domain with facilities

to subscribe, exchange messages and access shared information.

Logical coordination techniques have been classified by \{Nwana(b)} into four

main categories:

•  Organisational Structuring, which provides a framework for activity and

interaction through the definition of roles, communication paths and authority

relationships; here classic master-slave or blackboard coordination techniques are

being employed.

• Contracting, which involves the use of manager agents who break a problem into

subproblems and assign each one of them to some contract agent to deal with them.

This apparatus is often referred to as contract-net protocol.

•  Multi-Agent Planning, where the agents build a plan that defines all current and

future interactions among them in such a way that avoids inconsistent or

conflicting actions. There are two ways to execute the plan: in centralized

planning, a coordinating agent is responsible for setting up and executing the plan,

whereas in distributed planning each agent is aware of the plans of the other agents

and acts appropriately.



• Negotiation, involves a particular form of coordination where a number of agents

interact with each other in order to reach a mutually accepted agreement on some

matter. Negotiation techniques can be game theory-based, plan-based, or human

inspired.

In the rest of this section we will present some approaches in realizing logical

coordination at the level of modeling the behaviour of agents. The models in this

section try to address such questions as how agents communicate and coordinate

themselves in achieving a common goal, how are problems stemming from dynamical

evolutions of agents or incomplete knowledge handled during the coordinated

behaviour, or how patterns of interaction and interoperation that characterize

coordinated behaviour are modeled. A major consequence of addressing these issues

is the ability to reuse descriptions of generally useful coordination mechanisms.

COOL. The COOrdination Language (\{Barbuceanu}) is part of an effort to develop

a more general Agent Building Shell that will provide reusable languages and services

for agent construction that will relieve developers from the burden of developing from

scratch essential interoperation, communication and cooperation services. The COOL

architecture comprises three layers, with a basic KQML-like communication

mechanism at the lower level, an agent and conversation management at the middle

level for defining and executing agents and coordination structures, and an upper level

that supports in context acquisition and debugging of coordination knowledge. We

will not elaborate on the lowest level which is covered adequately by the material in

section 2. Regarding the way the agent and conversation management models the

behaviour of agents, we note that every agent is associated with a name and an

interpreter which then selects and manages its conversations. The interpreter applies

continuation rules to determine which conversation to work on next. The interpreter

may also invoke more specialized agents for knowledge acquisition and/or debugging

services. Such a scenario is shown below:

(def-agent ‘customer

:continuation-control ‘agent-control-ka

:continuation-rules ‘(cont-1 cont-2 cont-3 cont-4))

(def-agent ‘logistics

:continuation-control ‘agent-control-ka

:continuation-rules ‘(cont-1 cont-2 cont-3 cont-4))

(def-agent ‘plant

:continuation-control ‘agent-control-ka

:continuation-rules ‘(cont-1 cont-2 cont-3 cont-4))

In the code above three agents are defined, part of a supply chain application. The

execution and control of these agents is managed by a conversation manager like the

one below:

(def-conversation-manager ‘m1

:agent-control ‘execute-agent

:agents ‘(customer logistics plant …))



This manager decides which agent to run next, manages message passing, etc.

Agents interact with each other by means of carrying out conversations; such a

conversation for the agent customer is defined below:

(def-conversation-class ‘customer-conversation

:name ‘customer-conversation

:content-language ‘list

:speech-act-language ‘kqml

:initial-state ‘start

:final-states ‘(rejected failed satisfied)

:control ‘interactive-choice-control-ka

:rules ‘( (start cc1) (proposed cc-13 cc-2)

(working cc-5 cc-4 cc-3)

 (counterp cc-9 cc-8 cc-7 cc-6)

(asked cc-10) (accepted cc-12 cc-11)))

The above code associates with some agent the conversation rules that govern its

interaction with other agents. What particular activities are performed during the

execution of such a rule is illustrated by the following code:

(def-conversation-rule ‘crn-1

:current-state ‘start

:received ‘(propose :sender customer

:content(customer-order :item ?l))

:next-state ‘order-received

:transmit ‘(tell :sender ?agent

:receiver customer

:content ‘(working on it)

:conversation ?convn)

:do ‘(put-conv-var ?conv ‘?order

(cadr(member :content ?message)))

:incomplete nil)

This code defines the behaviour of the agent logistics in our scenario of

supply chain management. When logistics is at the start state, it receives a

proposal for an order and informs the sender (customer) that it is working on it

before going to the next state order-received. The language also allows the

formulation of two other coordination dimensions, cooperative information

distribution and cooperative conflict management, but for reasons of brevity we do

not discuss them here.

Agent Groups. The model described in \{Baumann(a)} introduces the notion of

Agent Groups, comprising agents working together on a common task. Agent groups

may be arbitrarily structured and highly dynamic. Communication and

synchronization between the agents of a group is event-driven; the model assumes the

existence of a mechanism for sending and receiving events. The group model used

involves the following types of agents:



•  A Group Initiator, which creates the agent group, an activity that involves

assigning agents to groups, defining group coordinators, administrators and

receivers of results.

• Group Members, which is the collection of agents forming a group, according to a

common task pursued.

• A Group Coordinator, which models dependencies within an agent group but also

between the group and the outside world. Dependencies are implemented as

condition-action pairs, where the condition is defined by means of event types

received and the action can be internal to the group or external, in the latter case

involving entities existing outside the group.

•  A Group Administrator, which manages the group as a whole and decides on

issues such as the life span of the group or orphan detection.

• A Results Receiver, which is an agent collecting the results of the agents forming a

group.

The above logical organization of a multi-agent system has been applied by the

authors to their system Mole (\{Baumann(b)}) while allows migration of agents and

supports a distributed event service.

Dynamic Agents. Dynamic Agents (\{Chen}) is a similar model to the one presented

above, based on the dynamic modification of the behaviour of agents. In an ordinary

(mobile) agent its behaviour is fixed at the time of agent creation, and in order for this

behaviour to change this agent must effectively be replaced by another agent with the

newly required behaviour. A dynamic agent, however, is not designed to have a fixed

set of predefined functions, but instead to carry application specific actions, which

can be loaded and modified on the fly. In that respect, dynamic agents can adjust their

capabilities to accommodate changes in the environment and requirements, and play

different roles across multiple applications.

Dynamic agents are created by an agent factory running on each local site. Each

such agent is identified by a symbolic name and an Internet address (including a

socket number) which are unique within the boundaries of some agent space, itself

defined in terms of the agents residing within. The agent space is managed by an

agent coordinator which maintains the agent name registry of this space. The

coordinator is the first agent to be created within an agent space. When it is created, it

publishes its socket address to a designated location and in that respect it makes it

known to all other dynamic agents. A dynamic agent that is being created, first

registers its (unique) name and address with the coordinator. In that respect, any other

agent who wishes to send a message to the agent in question and does not know its

address, consults the coordinator. The coordinator keeps also an address list for any

services offered in its space (e.g. program utilities) and any agent wishing to use some

service can again consult the coordinator. The address list of agents is kept up to date,

so any agent termination, for instance, results in the name and address of the agent

being removed from the list. The coordinator also broadcasts an appropriate message

to all the agents in the agent space so that they become aware of the termination of

that agent. Hierarchical groups of agent spaces with associated coordinators can also

be formed.



Finally, the proposed system offers other types of coordination services in terms of

more specialized dynamic agents. In particular, there exist resource brokers that

provide global resource management services, request brokers that provide look up

services for service requests, and event brokers that manage event-based

synchronization between agents.

Role Models. In \{Kendall}, it is argued that a way to express coordination and

collaboration relationships between agents is by means of roles. A role model

identifies and describes an archetypal or recurring structure of interacting entities in

terms of roles. The latter define a position and a set of responsibilities within role

models. External interfaces are used to make a role’s services and activities

accessible. In addition to responsibilities and external interfaces, an agent role

comprises a number of other parameters such as collaborators (roles it interacts with),

and coordination and negotiation information related to communication protocols,

conflict resolutions, permissible actions, etc. The author presents a UML-based

formal notation (which can be also presented in terms of Patterns) for describing

agent roles and shows how executable code can be generated using Aspect Oriented

Programming techniques. She further argues that the model can be used at the

systems analysis and design phase of developing a multi-agent system.

TRUCE. The TRUCE (\{Jamison}) coordination language can be seen as a concrete

realization of some of the above mentioned notions such as roles, groups and dynamic

agents. TRUCE is a scripting language where scripts define a protocol specification

for coordination. Such a script is given to all agents that are members of some

collaboration group and they interpret it in a concurrent fashion. An agent receiving a

script does not execute it in its entirety, but chooses to execute only that part which is

relevant to its activities, as the latter are defined from the role that has been assigned

to it. Every instruction in a script has two components: an action to be executed and a

set of collaborators that participate in carrying out this action. Every such

collaborator has a specific role, e.g. initiate the action, receive the result of the action,

etc. Depending on the state of the system, an agent may execute different parts of the

script and play different roles, thus exhibiting behaviour similar to that of dynamic

agents (see above). The following fragment of code shows the modeling of some

coordination scenario:

protocol selling-protocol {

when { $selling=true {

sellers.if {myturn=true} {

set $“current-seller”=_me;

}

retract {selling-protocol};

facilitator.set {$selling} false;

auction {facilitator, $“current-seller”

{buyers, sellers} };

recover {selling-protocol};

facilitator.proceed {$“current-seller”};



}

}

This code is part of a more elaborate scenario on auctions. Roughly speaking, the

protocol is triggered by a global property $selling which is set by some seller

agent. Only sellers test the value of their local parameter myturn. They then set

current-seller to _me which causes the temporal suspension of the protocol

until the selling has taken place (not shown above) in which case the protocol is re-

activated. The roles facilitator, buyers and sellers are bound to agent

names according to other parts of the rest of the script.

E-Commerce Mediators. The survey paper by \{Guttman} discusses a rather

important type of Internet agents which act as coordinators, the Electronic Commerce

mediators. The authors define a set of characteristics that these mediators should

possess, namely need identification that assists the consumer to define precisely his

needs, product brokering that helps to determine what must be bought, merchant

brokering that helps to determine where to buy from, negotiation that determines the

terms of conducting a business transaction, purchase and delivery of the bought

product, and post analysis of quality of service. A number of tools and products are

then analyzed against these parameters, namely Personal Logic, Firefly, Bargain

Finder, Jango, Kasbah, Auction Bot and Tete-a-Tete. According to the authors’

survey, only the last model addresses all the requirements they have defined.

5 Conclusions

In this survey chapter we have presented an overview of the various types of models

and technologies that enable the use of coordination principles in the development of

Internet (multi-) agent systems. As in another survey of similar nature

(\{Papadopoulos}) we have advocated a rather liberal approach in what constitutes a

coordination framework. In particular, for the case of Internet agents we have

identified three broad categories of associated coordination models and languages.

The first category comprises those approaches which can be viewed as providing the

basic coordination infrastructure. The models in this category do not deal with

coordination mechanisms per se, but instead they provide the means necessary to

build fully-fledged coordination frameworks. We can identify two subcategories here;

the first one deals with the most fundamental issue of coordination, namely that of

communication. Therefore this subcategory comprises the Agent Communication

Languages, where prominent members are KQML and its derivatives. The second

subcategory comprises those approaches which provide useful infrastructure to other

important aspects of developing Internet (multi-) agent systems such as security or

basic mechanisms for building compositional environments.

The second main category presents some fully-fledged coordination models and

languages where coordination principles are treated as first class citizens. Historically,

many of these models have evolved from more traditional (non-agent-based) versions

that have been developed as proposals to advance the Software Engineering



techniques for building Parallel and Distributed Information Systems. Here we can

also identify two subcategories. The first deals with those approaches that have been

inspired from the Linda model of coordination and the use of a Shared Dataspace.

Many researchers agree that the concept of having a common forum of

communication and cooperation among a number of processes (or agents) is

particularly appealing to the case of Internet-based Information Systems. The second

subcategory comprises the rest of the proposals, which use some alternative approach.

The final main category is concerned with those approaches which deal with

coordination at a higher, logical or algorithmic, level. In this category we review

some models whose main aim is to program coordination techniques into the

behaviour of the agents that comprise an application. This leads to the creation of

specialized types of Internet agents that deal with one or another aspect of inter-agent

coordination (contracting, negotiation, etc.), and languages able to express

coordination patterns of agent behaviour at a higher level.

Needless to say, the above three-level organization of the presented approaches in

this chapter is hardly the only one that has been suggested. There is a number of other

survey papers that the interested reader may want to consult. \{Nwana(b)} present a

survey on the basic infrastructure technologies for developing agent-based systems

with emphasis on the Agent Communication Languages. \{Cabri(a)} present a similar

in scope survey where the taxonomy used is based on the criterion as to whether a

model is independent or not in time and/or space. \{Gomaa} presents another survey

where the main aspect of coordination which is of concern in this work is that of the

different cooperation patterns employed by the various systems examined. The author

focuses his analysis on the issue of application frameworks suited to each model with

particular emphasis to e-commerce ones. A similar survey, with even more emphasis

on e-commerce issues, is reported in \{Kerschberg}. However, all these surveys deal

with only one aspect of coordination, as this notion is conceived in this chapter.

Effectively, \{Nwana(b)} deals with the first level of our taxonomy, \{Cabri(a)} is

focused on the second one, and \{Gomaa} and \{Kerschberg} examine models

belonging to the third level.

It should be clear from the various trends that have been presented in this chapter,

that the notion of coordination is inherent and important in building Internet multi-

agent systems. We believe we will see in the future more models and languages that

will advance this framework in all three dimensions as we have used them to classify

the different approaches. At the lower level, we will see more advanced techniques

for dealing with issues of basic inter-agent communication (i.e. more powerful and

expressive KQML or otherwise based ACLs), security, etc. The middle level will

continue to populate with know-how from mainstream coordination technologies and

further associated coordination languages will be proposed. The upper level will also

evolve, driven by the needs for coordination patterns from important Internet-based

applications such as e-commerce or Cooperative Information Systems.

Finally, one should note that one of the aims of this chapter is to become a

roadmap for the more focused and specialized chapters that follow and which shed

even more light in the usefulness and importance of using coordination principles in

developing Internet-based multi-agent systems.
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