
Code-Injection Attacks in Browsers Supporting Policies

Elias Athanasopoulos, Vasilis Pappas, and Evangelos P. Markatos
Institute of Computer Science

Foundation for Research and Technology - Hellas
N. Plastira 100, Vassilika Vouton, GR-700 13 Heraklion, Crete, Greece

{elathan, vpappas, markatos}@ics.forth.gr

ABSTRACT
Code-injection attacks can take place in a large variety of
layers, from native code to databases and web applications.
The latter case involves mainly client-side code injection in
the browser environment, also known as Cross-Site Script-
ing (XSS). There are numerous ways to defeat XSS attacks,
from static and taint analysis to policy enforcement in the
web browser. In this paper, we enlist new forms of XSS
attacks that seek to bypass browser enforced policies. The
attacks outlined in this paper resemble the classic return-to-
libc attack in native code. We propose a new form of code
isolation, based on browser actions, in order to mitigate the
problem.

1. INTRODUCTION
Code injection is traditionally considered as a major

threat. A significant fraction of host compromising is
carried out using buffer overflow attacks [8]. In the
same fashion an adversary can compromise a database
using a SQL injection attack [1] or the web browser’s
environment using a Cross-Site Scripting (XSS) attack.

An XSS attack is typically carried out as follows. An
attacker injects some client-side code, usually JavaScript,
in a web document. The injection may performed, but
is not limited to, in a content submission. For example,
a user posts a comment in a blog story, which embeds
some JavaScript. The result is that every web browser
that renders the comment of the blog story will, also,
execute the attacker’s JavaScript. The attacker’s code
can steal the user’s cookies and, thus, hijack her session.

Our contribution. There are numerous proposals
for XSS attack mitigation. In this paper we explore
BEEP [6], which tries to defend against XSS attacks
using a policy enforcement framework in web browsers.
We spot limitations in the approach and develop new
XSS attacks that succeed to bypass the policy frame-
work. Finally, we propose our own framework which
is based on policies expressed as browser actions. Our
framework guarantees that all trusted client-side code
can be successfully isolated from possibly untrusted.

This paper is organized as follows. We review the
state of the art in current approaches for browser en-

forced policies in Section 2 and we enlist new forms of
XSS attacks in Section 3. We outline our XSS mitiga-
tion proposal in Section 4. We conclude and present
our future steps in Section 5.

2. BROWSER POLICIES
In this section we present the state-of-the-art ap-

proach for embedding policies in the web browser [6]
and we highlight the weaknesses of the methodology.
We then proceed, in the next section, and present XSS
attacks that cannot be captured by the current scheme.

2.1 Overview
Enforcing policies in the web browser aims at han-

dling and, possibly, aborting execution of untrusted client-
side code. Implementing policies in the browser, accord-
ing to [6], is based on the following assumptions:

1. Web browsers have all the required complexity in
order to detect (parse) and render a script.

2. The web application developer knows exactly which
scripts are trusted to be executed in the web browser.

We totally agree, as far as assumption (1) is con-
cerned. The complexity and the plethora of client-side
technologies have transformed a web document’s ren-
dering to a very sophisticated process, which can be
carried out, correctly, only by modern full-featured web
browsers. Consider, also, that it is a common prac-
tice for browsers to render a page in a best-effort ap-
proach, meaning that even grammatically ill constructs
(e.g. misplacement of HTML tags), sometimes, are ex-
ecuted. These arguments conclude our thesis: script
detection should be carried out in the web browser and
not in the web server.

On the contrary, we do not fully support assumption
(2). Considering that (a) modern web applications are
composed by thousands, or even millions, lines of code
(for example take into account applications like GMail
or Google Documents), (b) most web applications con-
tain code for server-side tasks, database access, layout

1

formatting (CSS), interaction with XML data and mul-
tiple client-side technologies and, finally, (c) most web
applications are developed by groups of programmers,
we feel that spotting all trusted scripts is not, by any
means, a trivial task. More precisely, as we explore in
detail in Section 4, we believe that an explicit code sep-
aration scheme should be applied in web development.

BEEP suggests that policies should be enforced in
the browser using a Whitelisting or a DOM Sandboxing
approach. We, shortly, review each one of them.

Whitelisting. Script whitelisting works as follows.
The web application includes a list of cryptographic
hashes of valid (trusted) client-side scripts. The browser,
using a hook, checks, upon execution of a JavaScript
snippet, if there is a cryptographic hash for the script
in the white-list. If the hash is found the script is con-
sidered trusted and the browser executes it. If not, the
script is considered non-trusted and the policy defines
if the script will be rendered or not.

Notice that there is no checking for the location of the
script inside the web document. Consider, for exam-
ple, the simple case where an attacker places a trusted
script, initially configured to run upon a user’s click (us-
ing the onclick action), to be rendered upon document
loading (using the onload1 action).

DOM Sandboxing. DOM sandboxing works as fol-
lows. The web server places trusted scripts inside div

or span HTML elements that are attributed as trusted.
For example, consider the construct:

<div class=’trusted’> ... script ... </div>

The web browser, upon rendering, parses the DOM tree
and executes client-side scripts only when they are con-
tained in trusted DOM elements. This method is vul-
nerable to the node-splitting attack, in which a mali-
cious script is surrounded, on purpose, by misplaced
HTML tags in order to escape from a DOM node. Con-
sider for example the construct:

<i>{ message }<\i>

which, denotes that a message should be rendered in
italic style. If the message variable is filled in with:

</i> bold message <i>

then the carefully placed <i> and tags should result
the message to be displayed in bold style, rather than
italic.

The authors of BEEP suggest a workaround for deal-
ing with node-splitting, but we consider it rather in-
efficient, since some client-side code should be emitted

1One can argue that the onload action is limited and usu-
ally associated with the <body> tag. The latter is considered
hard to be altered through a code-injection attack. How-
ever, note that the onload event is available for all elements
(images) included in the web document using the tag.

using a special coding idiom. We rather agree with a
more elegant approach suggested in [5] (some very sim-
ilar ideas have also been proposed in [7]).

Notice that DOM sandboxing requires the code injec-
tion to take place in an existing DOM tree. However,
as it was recently shown, this is not always the case;
a simple file upload and rendering is enough [2]. We
further investigate these attacks in Section 3.

3. ATTACK EXAMPLES
Based on the analysis we conducted in the previous

section, we proceed and present a form of XSS attacks
that defeats policies enforced in the web browser. We
first present attacks that escape whitelisting and then
attacks that defeat DOM sandboxing.

3.1 Defeating Whitelisting
Most XSS attacks are considered to happen by inject-

ing arbitrary client-side code in a web document. This
code is assumed to be foreign, i.e. not generated by the
web server. However, it is possible to perform an XSS
attack by placing code that is generated by the web
server in different regions of the web page. This attack
resembles the classic return-to-libc attack [3] in native
code applications. Return oriented programming sug-
gests that an exploit may simply transfer execution to
a place in libc2, which may cause again execution of
arbitrary code on behalf of the attacker. The difference
with the traditional buffer overflow attack [8] is that the
attacker has not injected any foreign code in the pro-
gram. Instead, she transfers execution to a point that
already hosts code that can assist her goal.

A similar approach can be used by an attacker in
order to escape whitelisting. Instead of injecting her
code, she can take advantage of existing white-listed
code available in the web document. Note that, typi-
cally, a large fraction of client-side code is not executed
upon document loading, but it is triggered during user
events, such as mouse clicks or mouse movements. Be-
low we enumerate some possible scenarios.

Forcing Logout. Assume a blog site that has a
JavaScript function logout(), which is executed when
the user clicks Logout from the web site’s menu. An at-
tacker could perform an XSS attack by placing a script
that calls logout() when a new blog entry is rendered.
A user reading a blog story will be forced to logout.

Redirecting. In a similar fashion, a web site that
uses JavaScript code to perform redirection (for exam-
ple using location.href) can be also attacked by plac-

2This can also happen with other libraries as well, but libc
seems ideal since (a) it is linked to every program and (b)
it supports operations like system(), exec(), adduser(),
etc., which can be (ab)used accordingly. More interestingly,
the attack can happen with no function calls but using avail-
able combinations of existing code [9].

2

ing this white-listed code in an onload event.
Data Erasing. In a similar fashion, a portal which

places user content that can be deleted using client-side
code (AJAX [4] interfaces are popular in social networks
like Facebook and MySpace) can be attacked by inject-
ing the white-listed deletion code in an onload event.
This can be considered similar to a SQL injection at-
tack [1], since the attacker implicitly grants access to
the web site’s database.

Complete Takeover. Theoretically, a web site that
has a full featured AJAX interface can be completely
taken over, since the attacker has all she needs to use
already white-listed by the web server. For example, a
bank web site that uses a JavaScript transact() func-
tion for user transactions is vulnerable to XSS attacks
that perform arbitrary transactions.

A quick workaround to mitigate the attacks presented
above, is to include the event type, during the whitelist-
ing process. For example, upon trying to execute script
S1, which was triggered by an onclick event, the browser
should check the white-list for finding a hash key for S1
associated with an onclick event. However, this can
only mitigate attacks which are based on using exist-
ing code with a different event type than the one used
initially by the web programmer. Attacks may still hap-
pen. Consider the Data Erasing attack described above
and an attacker that places the deletion code in onclick

events associated with new web document’s regions, not
initially designed by the web programmer.

Finally, attacks that are based on injecting malicious
data in white-listed scripts have been described in [7].

3.2 Defeating DOM Sandboxing
DOM sanbdoxing marks regions defined by div and

span tags as trusted or non-trusted. JavaScript code is
executed only if it is contained in a trusted region. We
assume that a technique like Noncespaces [5] is used to
prevent node-splitting.

We have two arguments against DOM sandboxing.
First, we believe that marking a region as trusted or
non-trusted may not always be that trivial. Especially,
if we take into account the complexity of modern web
sites, which are typically composed by hundreds of dif-
ferent div elements and thousands of JavaScript code.
But, even if the marking is carried out correctly, there is
no guarantee that a trusted div element will never host
code from an XSS attack. The site designer should take
care of this issue, programmatically. More precisely, the
site designer should, somehow, provide guarantees that
a trusted <div> element will never host user input. Sec-
ond, XSS attacks do not always need a DOM tree in or-
der to take place. For example, consider an XSS attack
which is carried in a PostScript file [2]. The attack will
be launched when the file is previewed. There is high
probability that upon previewing there will be no DOM

tree to surround the injected code.

4. PROPOSAL
This section presents a proposal to mitigate attacks

outlined in this paper. This proposal summarizes our
next steps in this work. We propose a framework that is
composed by three different elements: client-side code
separation, client-side code isolation and action based
policy enforcement. Below we present each element in
details.

Client-Side Code Separation. We propose that
client-side code should be separated from the rest of
the code base during development. Currently, this is
the case with every server-side technology, such as PHP,
ASP, Python (Django), Ruby (Ruby on Rails), etc. For
example, in PHP all server-side code is enclosed in:
<?php and ?>. If client-side code separation is applied,
then the second assumption (see Section 2) for policy
enforcement in web browsers is valid. Moreover, using
this type of separation assists in client-side code isola-
tion, as we will explain below. The reason is that code
separation assists in applying isolation operators to the
client-side code corpus.

Client-Side Code Isolation. We propose web servers
to apply isolation operators in all client-side code. An
isolation operator transposes all code in a new isolated
domain. For an example, consider the isolation operator
IS×A which denotes that the separated code is multi-
plied with a matrix, A. All client-side code, produced
by the web server, is isolated from any other client-side
code, which was injected in the web document. An-
other example of operator is a cryptographic function
or a simple transformation function based on the XOR

operation. Client-side code isolation suggests that all
legitimate code should be completely isolated from, pos-
sibly, injected code. The concept of isolation is not new.
An extensive study for various approaches in isolating
hypertext has been conducted in [10].

Action Based Policy Enforcement. We propose
that policies should be expressed using actions. More
precisely, we propose that the browser should handle
trusted code as apply I

−1 (de-isolation) and execute
and non-trusted code as no-execute or execute accord-
ing to the defined policies. The de-isolation operator
should be a matrix multiplication with the reverse ma-
trix, a decrypt function, or a second XOR operation, re-
spectively, for the examples of the previous section. In
all cases, the web browser and web server have to share
a key (the matrix, the cryptographic key or the value
which is used in XOR). This information should be re-
freshed frequently (for example, every time there is a
new session) and transmitted using an HTTP header. Us-
ing a policy enforcement scheme expressed as actions it
is guaranteed that the web browser executes only code
that is produced by the web server and the attacker, as

3

long as she misses the operator’s key, can not inject any
code, even existing code produced by the web server.

This proposal requires modifications in both server
and client, as it is also the case for BEEP.

Currently, we are at the stage of implementing the
client-side part of the proposal in Firefox (we are still
investigating Safari and Chromium). The server-side
part is almost complete for the Apache web server.

4.1 Challenges
One significant challenge in implementing the approach

outlined in this section is support for mashups. A mashup
is a web site that collects information from third par-
ties and presents it to the user. One could argue that
a mashup is essentially a code injection process. The
main site will fetch code from third party sites and in-
ject it to the web documents it generates. There is a
number of possible things that may produce confusion
or even have negative result.

A fraction of the third party web sites have imple-
mented the framework. This case will produce a mixed
up of client-side code in the web browser. Parts will be
isolated and parts, trusted or not, will be in plain text.
There will be confusion and the final web document will
be probably no functional. This issue can be addressed
if each web server reports, using HTTP headers, if the
framework is supported or not. This is also convenient
for an incremental deployment. However, the security
of the mashup, as far as XSS attacks are concerned, is
not fully guaranteed.

None of the third party web sites have implemented
the framework, but the main site. This case will produce
a negative result. The mashup will isolate all collected,
third party, client-side code in the final web document
and thus will advertise all generated client-side code as
trusted. The code will possibly include code injections
performed in any of the third party web sites. Thus, the
framework must not be, in any case, applied in proxy
environments on behalf of third party sites.

All third party web sites have implemented the frame-
work, but not the main site. This case is considered
healthy, since all authentic sources perform the isola-
tion. The isolated code is trusted, even if the main site
does not implement the framework. However, the main
site must also transfer the keys in order the browser to
be able to perform de-isolation. As long as the main site
is considered trusted, then the framework guarantees no
code injection incidents in the final web document.

5. CONCLUSION
In this paper we have investigated how current ap-

proaches for policy enforcement in web browsers, namely
BEEP [6], fail to defeat XSS attacks under specific cir-
cumstances. We have presented a series of web attacks,
based on injection of existing white-listed (trusted) code,

which resemble the well known return-to-libc attack.
Based on our findings, we propose a new policy scheme
for web browsers, which uses actions, in order to pro-
mote policies. More precisely, we propose (a) client-side
code separation during development, so that client-side
code is easily separated from the rest of the source, (b)
client-side code isolation using isolation operators, so
that trusted code is easily isolated from code injections
at browsing time and (c) action based policy enforce-
ment, so that browsers de-isolate and execute trusted
code. This framework guarantees that the web browser
executes only code that is produced by the web server
and the attacker, as long as she misses the key for the
isolation operation, can not inject any code, even exist-
ing code produced by the web server.

Currently, we are at the stage of implementing the
client-side part of the proposal in Firefox (we are still
investigating Safari and Chromium). The server-side
part is almost complete for the Apache web server.

6. ACKNOWLEDGEMENTS
Elias Athanasopoulos, Vasilis Pappas and Evange-

los P. Markatos are also with the University of Crete.
Elias Athanasopoulos is also funded by the Microsoft
Research PhD Scholarship project, which is provided
by Microsoft Research Cambridge.

7. REFERENCES
[1] C. Anley. Advanced SQL injection in SQL server

applications. White paper, Next Generation Security
Software Ltd, 2002.

[2] A. Barth, J. Caballero, and D. Song. Secure Content
Sniffing for Web Browsers or How to Stop Papers from
Reviewing Themselves. In Proceedings of the 30th IEEE
Symposium on Security & Privacy, Oakland, CA, May
2009.

[3] S. Designer. Return-to-libc Attack. Bugtraq, Aug, 1997.
[4] J. Garrett et al. Ajax: A new approach to web applications.

Adaptive path, 18, 2005.
[5] M. V. Gundy and H. Chen. Noncespaces: Using

Randomization to Enforce Information Flow Tracking and
Thwart Cross-Site Scripting Attacks. In Proceedings of the
16th Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 8-11, 2009.

[6] T. Jim, N. Swamy, and M. Hicks. Defeating script injection
attacks with browser-enforced embedded policies. In WWW
’07: Proceedings of the 16th international conference on
World Wide Web, pages 601–610, New York, NY, USA,
2007. ACM.

[7] Y. Nadji, P. Saxena, and D. Song. Document Structure
Integrity: A Robust Basis for Cross-site Scripting Defense.
In Proceedings of the 16th Annual Network and Distributed
System Security Symposium (NDSS), 2009.

[8] A. One. Smashing the stack for fun and profit. Phrack
magazine, 49(7), 1996.

[9] H. Shacham. The geometry of innocent flesh on the bone:
return-into-libc without function calls (on the x86). In CCS
’07: Proceedings of the 14th ACM conference on Computer
and communications security, pages 552–561, New York,
NY, USA, 2007. ACM.

[10] M. Ter Louw, P. Bisht, and V. Venkatakrishnan. Analysis
of hypertext isolation techniques for XSS prevention. In
Web 2.0 Security and Privacy 2008, May 2008.

4

