Exploiting Mixed Binaries

MICHALIS PAPAEVRIPIDES and ELIAS ATHANASOPQOULQOS, University of Cyprus, Cyprus

Unsafe programming systems are still very popular, despite the shortcomings due to several published memory-
corruption vulnerabilities. Towards defending memory corruption, compilers have started to employ advanced software
hardening such as Control-flow Integrity (CFI) and SafeStack. On the other hand, there is a broad interest for realizing
compilers that impose memory safety with no heavy run-time support (e.g., garbage collection). Representative
examples of this category are Rust and Go, which enforce memory safety primarily statically at compile time.

Software hardening and Rust/Go are promising directions for defending memory corruption, albeit combining the
two is questionable. In this paper, we consider hardened mized binaries, i.e., machine code that has been produced
from different compilers and, in particular, from hardened C/C++ and Rust/Go (e.g., Mozilla Firefox, Dropbox, npm,
and Docker). Our analysis is focused on Mozilla Firefox, which outsources significant code to Rust and is open source
with known public vulnerabilities (with assigned CVE). Furthermore, we extend our analysis in mixed binaries that
leverage Go and we derive similar results.

The attacks explored in this paper do not exploit Rust or Go binaries that depend on some legacy (vulnerable)
C/C++ code. In contrast, we explore how Rust/Go compiled code can stand as a vehicle for bypassing hardening in
C/CH++ code. In particular, we discuss CFI and SafeStack, which are available in the latest Clang. Our assessment
concludes that CFI can be completely nullified through Rust or Go code by constructing much simpler attacks than
state-of-the-art CFI bypasses.

CCS Concepts: o Security and privacy — Browser security; Software security engineering.

Additional Key Words and Phrases: Memory Safety, Rust, Go, CFI, SafeStack

ACM Reference Format:
Michalis Papaevripides and Elias Athanasopoulos. 2020. Exploiting Mixed Binaries. ACM Trans. Priv. Sec. 1, 1,
Article 1 (January 2020), 31 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Software can be written in unsafe or safe programming systems. Unsafe systems allow software to utilize
freely the address space and therefore memory corruption, due to wrong programming decisions, is possible.
Memory corruption can be combined with several techniques for building exploits that can compromise and
fully control a vulnerable program [73]. Despite the rise of safe systems, unsafe systems are still prevalent
today [60], since: (a) they are faster, (b) a huge (unsafe) code base is already out there and needs maintenance,
and (c) this free-access memory model is attractive, especially for low-level software, such as operating

systems, compilers, or even web browsers.

Authors’ address: Michalis Papaevripides, mpapae04@cs.ucy.ac.cy; Elias Athanasopoulos, eliasathan@cs.ucy.ac.cy, University
of Cyprus, P.O. Box 20537, Nicosia, Cyprus, 1678.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner /author(s).

© 2020 Copyright held by the owner/author(s).

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 M. Papaevripides and E. Athanasopoulos

For addressing the security issues of unsafe code (typically C/C++ binaries without run-time memory
management), we employ software hardening. Technically, this involves taking an unsafe system and adding
safety on-top of it by means of introducing certain checks that prevent a vulnerability from becoming an
exploit. Several methods have been proposed for software hardening and some of them are now included in
most of the available CPUs, operating systems and compilers. As a short list, all modern CPUs support
non-executable data [37], all modern OSes support process relocation and randomization [66], and many
modern compilers support stack canaries [46], and some more recent hardening proposals, namely CFI [2]
and SafeStack [3].

On the other hand, researchers have also considered the possibility of creating fast, system-oriented
programming languages, which realize safety with no run-time support. L This is certainly attractive, since
programs written using these systems are generically fast, inherit safety by design, and if they want to be
more flexible in terms of memory access, they can take a risk, which is still partial. One such example is
Rust [59], a programming language/system developed by Mozilla. Rust realizes all safety checks at compile
time. This means, that the Rust compiler ensures statically that no memory corruption is possible by
emitting certain code in the final binary or constraining the use of pointers. The programmer is allowed to
use certain directives to escape the constraints imposed by the compiler, but this should be done explicitly
(e.g., by writing code in an unsafe block). In a similar fashion, another example is Go [9], which is a fast
systems language with many security protections, primarily developed by Google.

Additionally, code written in Rust or Go can co-exist with (unmanaged) code written in C/C++. This
makes these languages further attractive, since several components of an unsafe system can be outsourced
to Rust or Go and, thus, become safe. Moreover, both Rust and Go are shown to be highly preferred among
developers. In particular, in the 2020 edition of an annual survey conducted by Stack Overflow [13], Rust and
Go are ranked first and fifth, respectively, for the most loved programming language. As the survey mentions,
Rust holds the first place in the aforementioned list for five consecutive years. This shows that Rust and
Go are starting to gain wider adoption in the community. As a concrete result, more projects have started
replacing unsafe code using Rust or Go. For example, Mozilla Firefox, one of the most well-known and
established web browsers, is written primarily in C/C++, however, several components are being migrated
to Rust explicitly for safety reasons [11, 28]. Key modules are the CSS engine (now replaced by Stylo), the
rendering module (now replaced by parts of Servo), and the WebAssembly compiler (now realized by Crane).

In this paper, we perform a thorough look at the security gains that stem from outsourcing certain unsafe
parts of a hardened system to a safe system, such as Rust and Go. Typically, one expects that (a) Rust/Go
code that calls unsafe code should be considered dangerous and (b) unsafe code that implements parts of the
functionality in Rust/Go should be considered safer compared to having all code base written in C/C++. In
this paper, we are not interested in (a), since it is well established that when Rust/Go calls unsafe code,
memory safety is not guaranteed. Instead, we thoroughly deal with (b) and we conclude that there is no
trivial answer, while the technical details are important. That is, there are certain cases where the security

of a binary is degraded exactly due to the safe part, which can be realized in Rust or Go.

'In this paper, run-time support is considered code that runs in parallel with the program and takes certain decisions (e.g., a
garbage collector). Code that is produced statically at compile-time and may kick in, when certain conditions are met, at
run-time (e.g., an array’s bound check), is not considered as run-time support. We explore both options, namely Go which
implements a lightweight garbage collector and Rust which implements the notion of the borrow checker in order to eliminate
the need for a garbage collector.

Manuscript submitted to ACM

Exploiting Mixed Binaries 3

For arguing about the security of mixing safe and unsafe code, we consider C/C++ binaries with modern
hardening techniques in place. We further investigate the possibilities of using safe parts of the code to
hijack, otherwise secure due to hardening, parts of the unsafe code. In other words, we argue that a hardened
C/C++ binary is more secure than a similar one with outsourced parts in Rust. Precisely, we explore
how certain hardening mechanisms, CFI and SafeStack in Clang, behave when Rust/Go code is present
in the process’ address space. We experimentally show that CFI can be bypassed using Rust/Go code for
developing clearly more straight-forward exploits than current state-of-the-art CFI bypasses [57, 70]. Our
exploits do not rely on respecting the statically computed Control-flow Graph (CFG) for bypassing the
enforced CFI and are much simpler to implement. On the other hand, we demonstrate that SafeStack, in
practice, is much harder to bypass using Rust or Go.

Throughout this paper, we consider hardened mized binaries. These are binaries that have been produced
by compilers of different memory-access models. In particular, we consider mixed binaries of (hardened)
C/C++ and Rust or Go. A typical binary of this category is a recent version of Mozilla Firefox. Despite the
fact that there is an increasing number of companies (e.g., Dropbox, yelp [12] and npm [26]) that re-write
parts of their software in Rust, we chose to focus our analysis on Mozilla Firefox. This stems from the fact
that Mozilla Firefox is not only a very well-known open source project but also because we have publicly
available vulnerabilities (CVE). This is important because it allowed us to deliver a proof-of-concept exploit
based on a real-world vulnerability in order to demonstrate the severity of such attacks. Mozilla is the
company that develops both Firefox and Rust which makes Firefox a good reference project for other projects
to look at when trying to combine C/C++ with Rust. As a result, Mozilla Firefox is a good landmark to
examine mixed binaries. Furthermore, we extend our analysis in mixed binaries that utilize Go instead of
Rust and we derive similar results. In principle, our techniques can work directly to binaries and exploit
proprietary software, as well, however reverse engineering often is prohibited by the terms of use of programs.
Therefore, for making it easier for the community to reproduce our findings without violating the terms of
use of software, we focus on exploiting open-source projects (Mozilla Firefox and go-stats).

In this paper, we analyze mixed binaries and we explore if it is possible to bypass hardening using the
unhardened but safe part. We develop several techniques that are based on fundamental properties of
Rust/Go and aim to simply bypass hardening countermeasures imposed in the rest of the mixed binary.
Again, we stress here that in the absence of the safe part (Rust/Go code), the unsafe part cannot be trivially
exploited.

How fundamental are these attacks? In this paper, we explore the feasibility of making an unfortunate
combination in security defenses. On the one hand, a C/C++ binary can be hardened using standard
compiler features, on the other hand, some code can be re-written in a safe programming language. Both these
directions increase the security of the program, but their combination may have the exact opposite result. As
we show in this paper, re-writing parts of a program in a safe system should be carefully combined with some
hardening features that the safe system is not aware of, since the safe part can render the hardening less
effective. One natural observation is that Rust/Go can be hardened in the same fashion of C/C++. However,
this has several shortcomings. First, both Rust and Go realize different programming-language concepts
for enforcing memory safety at compile time. In other words, these systems follow a different approach
to counter memory errors. Second, adding standard hardening techniques to these systems will introduce

additional overheads, which are not, at the moment, explored. Third, applying hardening techniques, such
Manuscript submitted to ACM

4 M. Papaevripides and E. Athanasopoulos

as CFI for instance, in a mized binary is not currently explored and cannot be trivially enabled. For
instance, considering that the Rust compiler targets LLVM, enabling CFI by using the -fsanitize=cfi
is not possible, since an entirely different analysis needs to be carried out for resolving the targets of all
indirect branches originating from Rust. Finally, this analysis should be merged with the analysis of the
C/C++ code. Therefore, hardening safe systems has to consider several aspects (so far unexplored), such
as performance, accuracy, and additional labor to perform the analysis of the CFG. We further discuss
this issue in Section 8.2. Finally, we stress that, at least, the Rust community has explored enabling some
hardening techniques, but has done so only for the very basic ones [15, 16, 23], and not for any of the

advanced ones available today [17, 19, 31].

1.1 Contributions

In this paper, we make the following contributions.

(1) We argue that outsourcing certain functionality of an unsafe program to safe code may actually degrade
the overall security of the program. Especially for hardened (unsafe) processes, the consequences
may be negative, since vulnerabilities of the unsafe part, which otherwise could be contained by the
hardening (e.g., CFI/SafeStack) involved, can be laundered through the safe part in order to attack
the whole process.

(2) We demonstrate Contribution (1) through a proof-of-concept exploit, based on CVE-2018-6126 [22],
which can bypass state-of-the-art hardening, namely CFI (available in all recent versions of Clang)
and attack the browser, through the Rust sub-part of Mozilla Firefox. Using a similar approach, we
construct proof-of-concept attacks for bypassing SafeStack (also available in all recent versions of
Clang), and we conclude that such code patterns are unlikely to be found in actual software. We
experimentally show that in Mozilla Firefox. We extend our analysis in Go [9] and we derive similar
results by exploiting go-stats [§].

(3) The PoC exploits of Contribution (2) are not based on using Rust to call code, which is explicitly
annotated as unsafe or using Go to call code which is explicitly imported using import "C" by the
developer, but on standard Rust/Go code constructs (we explore all of them for both systems). In
fact, some exploits require zero interaction between C/C++ and Rust/Go. This is important, since,
the part of Rust/Go that is manipulated to deliver the attack is considered explicitly safe and it is
explicitly used for increasing the safety of the program and not for degrading it [11, 28].

(4) Finally, we deliver tools that can scan Rust/Go software for identifying safe code that, if co-located

with (hardened) unsafe code, can be leveraged to exploit vulnerabilities of the unsafe code.

1.2 Paper Organization

Beyond the standard sections, this paper is organized as follows. Section 2 can be skipped by anyone with
basic understanding of memory corruption in unsafe systems, hardening, and safety imposed at compile time
(just make sure to skim the threat model, as presented in Section 2.4). Section 3 is important to understand
the fundamentals of the attack presented in this paper, while Section 4 and Section 5 can be read only from
those interested in diving more in the low-level constructs used by Rust and Go compilers, respectively
(a good read of Section 3 can help, and then skimming Section 4 and Section 5 should be just fine). In

Manuscript submitted to ACM

Exploiting Mixed Binaries 5

Section 6, we outline a methodology for finding attack primitives in actual code, such as web browsers, and
in Section 7 we show how our findings can be used to compromise a hardened Mozilla Firefox through Rust
using an exploit based on CVE-2018-6126 [22]. In Section 8 we present a PoC exploit for a hardened mixed
binary attacked through the Go library go-stats, we also discuss several important points that stem from
the PoC exploits presented and we discuss the major differences between the two memory models in terms of
compile time and run-time checks. In Section 9 we discuss some techniques that could potentially mitigate

the attacks discussed in this paper. The rest of the paper has the typical structure.

2 BACKGROUND AND THREAT MODEL

This section provides some background information in exploiting unsafe systems, in software hardening,
and in code safety with no run-time support. It can be freely skipped by readers familiar with software
exploitation. However, at the end of this section, we provide the threat model that is relevant to this paper,

which is important for all readers.

2.1 Exploiting Unsafe Code

Programs can be written in both safe and unsafe code. The latter form is much more attractive for systems
software or for unrestricted, and often fast, execution with no constraints in accessing memory. For example,
a web browser may realize an environment for executing scripts; such scripts are usually developed in
JavaScript. Sometimes, the browser may choose to compile the script in native code at run-time. Compilation
may involve low-level features, such as changing permissions of memory pages and injecting executable code
on the fly. Thus, the browser is fairly dependent to this unrestricted memory access, and, of course, the
browser is just an example of such software.

Unrestricted memory access may have security consequences, since an attacker may leverage vulnerabilities
for forcing the program to arbitrarily overwrite (or overread) its own memory. The memory of the executing
process may contain control data (for instance return addresses or VTable pointers) or sensitive data (for
instance cryptographic keys). Changing control data or reading sensitive data can both degrade the security
of the program. For example, by changing control data, an attacker can launch a control-flow attack and

redirect the program to executing their code.

2.2 Hardening Unsafe Code

Software hardening aims at protecting code from memory corruption, without entirely losing the flexibility
related to the aforementioned unrestricted memory-access model. Several techniques are enforced on top of
unsafe systems with a goal to increase the difficulty of exploitation. As an example consider stack canaries [46].
These are random values injected in the stack of functions that contain local buffers. The random canary
is copied from a hardware register to the stack, close to the return address. A linear overflow that aims
at overwriting the return address, will also overwrite the canary, something which can be checked at the
function epilogue (the program will crash upon inferring that the canary has been modified).

Notice that the canary does not change the memory-access model. The program is still unrestricted,
and unsafe. A vulnerability can still take place and overwrite the stack. However, with a canary in place,
a simple linear overflow is not enough anymore. The attacker needs to find new ways for bypassing this

simple defense (leak the canary value, overwrite other control data, or perform the overwrite in a non linear
Manuscript submitted to ACM

6 M. Papaevripides and E. Athanasopoulos

fashion). Beyond stack canaries, compilers, nowadays, implement advanced hardening techniques such as
Control-flow Integrity (CFI) [2] and SafeStack [3].

2.3 Safe Code

Other options towards memory safety is constructing software that it is either memory safe at compile
time or during run-time through a very limited run-time support. In the first case, the final binary may
include checks injected by the compiler for preserving safety at run-time, however, there is no run-time
support that takes certain decisions according to the execution of the program (e.g., such as a garbage
collector). Constructing such programs may require radical changes in software engineering, since many
common programming patterns are prohibited.

As an example, consider Rust, which enforces garbage collection without actually using run-time memory
management. Rust assigns a tight scope to variables and prohibits compilation if multiple (writable) pointers
point to a given memory address. This is important, since during deallocation of an object, Rust has ensured
that only one reference points to it and, therefore, there are no concerns for violation of temporal safety [73].
The ideas behind this, which is generically known as the borrow checker, are central to the language design
and are not covered in this paper. For more information, we refer the reader to the official documentation [32]
and other reviews of the programming language [42, 59].

Another example of such memory safe system is Go, which imposes memory safety by implementing
a limited run-time support through a lightweight garbage collector [53]. An example of how Go provides
memory safety is by implementing bounds checks [44] which are triggered during run-time. These checks
ensure that the program will not behave abnormally by accessing invalid memory segments and thus, abusing
spatial safety.

At this point, we just stress that programs with limited or no run-time support at all, are generically fast
and can be easily combined with unsafe programs. For instance, a web browser implemented in C/C++
may outsource some of its functionality (usually, the one that is prone to software bugs, such as complex

parsing, for example) to Rust code.

2.4 Threat Model

In this paper, we assume software that has memory-corruption vulnerabilities (aligned with similar re-
search [48, 57, 65, 70]), which may be transformed to powerful read and write primitives [73]. The particular
software that we are interested in comes in the form of a mizxed binary. This means that multiple compilers
have been used to produce the final machine code, and each of these compilers follows a different memory
model, as far as safety is concerned. As an example, we consider binaries that have been assembled by
compiling C/C++ with no run-time management, and Rust, a programming system that has no run-time
support, but imposes safety at compile time. One example of such a binary is Mozilla Firefox.
Furthermore, we assume that standard hardening techniques are in place, namely non-executable data [37],
ASLR [66], and stack canaries [46], and, additionally, advanced hardening techniques that only lately have
been enabled to standard compilers. These include CFI [2] and SafeStack [56] in Clang. As mentioned, we
assume that software has memory-corruption vulnerabilities, however as software we refer only to the mixed
binary, and not to side products, such as the Rust compiler [21] or the CFI implementation in Clang.

Manuscript submitted to ACM

N =

Exploiting Mixed Binaries 7

typedef void (xint_arg fn) (int);

void func_int(int a){

}

void func_ float(float a){

}

int main(int argc, char xargv([]){
int_arg_fn f = func_int;
bug () ;
/* This call is prevented by CFI. */
£05
return O;

}

Fig. 1. Example of how Clang with CFI prevents a control-flow attack in C/C++ code. In main, a function pointer, of a
compatible prototype, points to func_int (at line 12). Then, the function bug is called, which, under the scenes, overwrites
the function pointer to point to a non-compatible function, specifically to func_float. Once the function pointer is called
(at line 17), the program crashes and prevents the function pointer from calling the non-compatible function.

void bug (void (x*fpC) (int)) {
#*fpC = (void () (int)) ⌖
}

Fig. 2. The bug() function used to simulate the mechanics of the example attacks presented in this paper. This function
emulates an arbitrary write primitive acquired by an attacker. The attacker can write any memory address (input of the
function) and set it to target () function of their choice. Typically, these memory addresses contain control data and the
primitives are granted by abusing spatial or temporal safety [73]. This function is used only for conveying the mechanics of
the example attacks. In Section 7 we use a real vulnerability (CVE-2018-6126 [22]) for delivering the actual PoC exploit.

The type of vulnerabilities we assume are standard memory-corruption bugs [73]. For instance, we build
exploits for Mozilla Firefox based on CVE-2018-6126 [22], although similar vulnerabilities could serve our

purpose.

3 HIGH-LEVEL ATTACK MECHANICS

In this section, we discuss the mechanics of the attack presented in this paper. Later, in Section 7, we discuss
the end-to-end proof-of-concept exploit for Mozilla Firefox. We begin by shortly reviewing the CFT [34] and
SafeStack [3] support found in off-the-shelf industrial compilers, such as Clang. We then discuss some Rust
basics, and how Rust can be mixed with unsafe code, and then we conclude with a toy example, which

highlights how and why the attack works in principle.

3.1 Control-flow Integrity

One of the most promising hardening techniques is Control-flow Integrity (CFI), originally proposed almost
one decade ago [34]. The technique suggests that a program is statically analyzed for estimating a legitimate
Control-flow Graph (CFG), which should be enforced at run-time, whenever indirect branches take place.
In short, CFI computes all possible (legitimate) targets of an indirect branch. An attacker that overwrites

control data used in an indirect branch is constrained to follow only the (legitimate) flows that were a priori
Manuscript submitted to ACM

8 M. Papaevripides and E. Athanasopoulos

SafeStack-Disabled SafeStack-Enabled
High-memory Addresses
Function Arguments Function Arguments
Return Address Return Address
Environment Rust Environment Rust
Buffer_Rust Buffer_Rust

Low-memory Addresses SafeStack Unsafe Stack

Fig. 3. Example of how SafeStack influences the stack frames of a Rust and a C function. In the SafeStack-disabled case,
the stack frame of each function is stored in a single stack. In contrast, in the SafeStack-enabled case, the C function’s
return address is stored in the safe stack and its buffer in the unsafe stack. Nonetheless, since Rust is not influenced by
SafeStack, its buffer remains in the same stack (safe) as before.

computed. For instance, changing the control flow of a program to point to a ROP gadget [72] is not possible,
since such flow will never be part of the computed CFG.

CFT has been realized in practice, especially for the forward edge [75] (i.e., for constraining the targets of
function pointers and VTable-based calls in C++ programs) and it now ships with standard compilers, such
as Clang [2]. In particular, as part of an upstream Clang future, CFI can protect all indirect branches or a
subset of it (i.e., focus only on virtual calls). In all programs demonstrated in this paper, we have compiled
C/C++ code using the -fsanitize=cfi option (for enabling all CFI checks), ~fvisibility=hidden (for
additional CFI checks in classes without visibility attributes) and with Link-time Optimizations (i.e., ~f1to).

As a very short example, consider the code listed in Figure 1, which belongs to a C program, compiled with
Clang and CFI enabled. Beyond the main function the program contains two functions, namely func_int
and func_float, which take as an input an integer and a float, respectively. In main, a function pointer, of a
compatible prototype, points to func_int (at line 12). Then, the function bug is called, which overwrites the
function pointer to point to a non-compatible function, specifically to func_float. Once the function pointer
is called (at line 17), the program crashes and prevents the function pointer from calling the non-compatible
function.

Last but not least, we briefly expand on the nature of the bug function (see Figure 2). We use this function
in several examples of this paper and its role is to emulate a vulnerability of the program. According to
the threat model of this paper (see Section 2.4), the attacker can write any memory address (input of the
function) and set it to a target function of their choice. Typically, these memory addresses contain control
data and the primitives are granted by abusing spatial or temporal safety [73]. Notice, that several papers
have employed similar bug functions [48, 57, 65, 70] to demonstrate their attacks.

Manuscript submitted to ACM

Exploiting Mixed Binaries 9

3.2 SafeStack

SafeStack [3] is a hardening technique which suggests that a program’s stack is separated into two different
stacks, the safe and the unsafe one. The safe stack stores the return addresses and variables which are
considered safe, meaning that they cannot be used for changing any control data, while everything else is
stored in the unsafe stack. This way, a buffer overflow cannot be used to overwrite any control data like a
function’s return address since these two are located in two different stacks. In all programs demonstrated in
this paper, we have compiled C/C++ code using the -fsanitize=safe-stack option for enabling SafeStack.

In Figure 3 we depict an example of how the stack is influenced when SafeStack is enabled for a stack
frame of a Rust and a C function. In the SafeStack-disabled case, the stack frames of both Rust and C
functions that store their return addresses and local variables, are located in the same stack. As a result,
this could cause an unwanted behaviour if the return address of one of the functions gets overwritten by a
buffer overflow. In contrast, in the SafeStack-enabled case, the C function’s return address is stored in the
safe stack and its buffer in the unsafe stack. Nonetheless, since Rust is not influenced by SafeStack, its
buffer remains in the same stack (safe) as before and as a result, the control data are still vulnerable to a

buffer overflow.

3.3 Rust Basics

Rust is a systems programming language developed by Mozilla with safety imposed at compile time. This
essentially means that Rust has no heavy run-time support for ensuring that memory accessing does not
violate safety. In contrast, Rust applies a different programming model where memory addresses have owners
and ownership can be borrowed following very specific rules. The ideas behind this, which is generically
known as the borrow checker, are central to the language design and are not covered in this paper. For more
information, we refer the reader to the official documentation [32] and other reviews of the programming
language [42, 59]. In this paper, we only expand on particular features of Rust, which are central to the
attacks we present, and these are: (a) mixing Rust with C/C++ unsafe code (covered in Section 3.4), and
(b) code constructs of Rust that force the compiler to emit indirect branches in the final binary (covered in
Section 4).

3.4 Rust Calling Unsafe Code

All Rust code is considered safe, since otherwise the Rust compiler would have rejected the input. However,
Rust supports calling C/C++ code, which generically is considered unsafe. For making this explicit, Rust
provides the programmer with a very specific code block, called unsafe { };, for any direct calls to C/C++
code. Additionally, Rust provides certain directives for declaring non-Rust function prototypes. All this
functionality is known as Foreign Function Interface (FFI) [30].

Nevertheless, Rust supports function pointers (as well as Closures and Traits, which we discuss in the next
section). These function pointers can be used to call indirectly any code available in the executing process,
no matter if this code has been produced by the Rust compiler or a C/C++ one. In fact, a Rust function
pointer, if altered correctly, can point to anywhere, even to ROP gadgets [72], bypassing all CFI-based

solutions, which normally require much more complicated exploitation mechanics [70].

Manuscript submitted to ACM

OO0 U WN —

OOV~ Uk W+

=

10 M. Papaevripides and E. Athanasopoulos

/* C/Unsafe part. */
extern void frust (void (*)(int),
void (*) (void (*x)(int)));
void func_int(int a){
}
void func_float(float a){
}
int main(int argc, char sxargv([]) {
frust (&func_int , &bug);
return O;
}
/* Rust/Safe part. */
#[no_mangle]
pub extern fn frust(f: fn(i32), bug: fn(&fn(i32))){
let a: i32 = 0 ;
bug(&f) ;
/* CFI should prevent this call. */

f(a);

Fig. 4. Toy example of how Rust can attack hardened C/C++ code. In the upper part of the figure (lines: 1-16) we depict
the C/C++ part and in the bottom one (lines: 1-10) the Rust part. Once compiled, all code is mapped to a single address
space. The attack alters a Rust function pointer, through a memory-corruption vulnerability (see Figure 2), to point to a
new target. Unlike all C/C++ function pointers that are CFl-protected, this pointer is not constrained and can be used to
call any function (including ROP gadgets [72]).

To conclude, in the absence of bugs, there are two ways of calling unsafe code from Rust: (a) directly,
using an unsafe block, and (b) indirectly, by using Rust function pointers, which point to (compatible)
C/C++ functions. In all such cases, there is no warning emitted by the Rust compiler, as long as function

pointers are compatible with the function prototypes that are allowed to point, legitimately, at compile time.

3.5 Toy-attack Example

CFI. In Figure 4 we depict an attack example in a program that contains code both written in C/C++
and Rust. The attack is based on modifying a Rust function pointer to call a C function with a different
prototype compared to the original prototype as declared in the Rust code. In the upper part of the figure
(lines: 1-16) we depict the C/C++ part and in the bottom one (lines: 1-10) the Rust part. We compile this
program with Clang (CFI enabled) and the Rust compiler, producing zero warnings from both compilers.
Once the final binary is run, all code is mapped to a single address space.

The C/C++ part (lines: 1-16) contains two C functions, namely func_int and func_float (lines: 4-10),
exactly as the example of Figure 1, and additionally declares the prototype of a Rust function (lines: 2-3),
namely frust. This function’s prototype takes two function pointers as arguments, one that can point to
functions taking one integer as an input and one that can point to functions taking, further, a function
pointer as an input. The Rust function is called in main (line: 13) given two inputs: (a) the address of the
func_int function, and (b) the address of the bug function. On the other hand, in the Rust part (lines: 1-10),
the Rust function frust will use the two input function pointers in the following way. The second function

pointer will be called with the first function pointer as an argument. The result is that the bug function will
Manuscript submitted to ACM

N O U WN =

OO UhA W~

Exploiting Mixed Binaries 1

/* C/Unsafe part. */
extern void frust (void (*) (char=x));
int main(int argc, char *xargv[]) {
frust (&bug) ;
return O;
}
/* Rust/Safe part. */

use std::os::raw::c_char;

#[no_mangle]
pub extern fn frust (bug:fn(&[c_char;20])) {

let buffer:[c_char;20] = [0;20];
bug(&buffer);

Fig. 5. Toy example of how Rust can attack hardened C/C++ code. In the upper part of the figure (/ines: 1-7) we depict
the C/C++ part and in the bottom one (lines: 1-9) the Rust part. Once compiled, all code is mapped to a single address
space. The attack alters the frust function return address through a buffer overflow attack, to point to a new target. Unlike
all C/C++ buffers that are moved to the unsafe stack, the Rust buffer remains in the safe stack with all the control data.

change the first function pointer to point to a different (incompatible) function, namely func_float. As a
result, func_float is called, indirectly, using a non compatible function pointer at line 9.

Observe, that the Rust function pointer can, legitimately, point to functions that take as input a single
integer. Due to a memory-corruption bug, this pointer is used to call a function that takes a single float. A
Rust compiler would have rejected a program that points a function pointer to a non-compatible prototype,
while a CFI-protected C/C++ program (see Figure 1) would have crashed when the overwritten function
pointer is used.

This is the easiest attack discussed in this paper, it is fairly artificially driven, but it encapsulates the core
problem of all further (and more involved) attacks that we discuss in the next sections. In short, control
data used by Rust code in indirect branches is not safeguarded, since the memory model used by Rust
enforces both spatial and temporal safety at compile time. However, this memory model is not preserved
when parts of code that adhere to a different memory model are present in the process space. And this can
be devastating, since it is the non safeguarded control data produced by the Rust compiler which permits
malicious control flows in the hardened executing process.

A final remark is that the particular control data that was modified (the Rust function pointer) was
allocated in the stack of the program and, additionally, there was very specific interaction between the
Rust and the C/C++ part. This is overly constrained, since performing the attack needs a very specific
code pattern in place. It is questionable if real-world programs employ such coding style. From our study
(see Section 6) this is not happening in Mozilla Firefox. However, we illustrate this example here just for
understanding the root cause of the problem and alert developers who use particular features of Rust when
the program is combined with unmanaged C/C++ code. In the next sections, we will deliver realistic attacks
and we will ultimately overwrite VTable-like pointers, produced by the Rust compiler, stored on the heap of
the process and influenced by C/C++ code, through memory corruption, and with zero interaction with the
Rust part.

SafeStack. In Figure 5 we depict an attack example in a program that contains code both written in

C/C++ and Rust. The attack is based on modifying the return address of a function written in Rust using
Manuscript submitted to ACM

12 M. Papaevripides and E. Athanasopoulos

a buffer overflow attack. In the upper part of the figure (lines: 1-7) we depict the C/C++ part and in
the bottom one (lines: 1-9) the Rust part. We compile this program with Clang (SafeStack-enabled) and
the Rust compiler, producing zero warnings from both compilers. Once the final binary is run, all code is
mapped to a single address space.

The C/C++ part (lines: 1-7) contains one C function, namely main (line: 4) and additionally declares
the prototype of Rust function (line: 2), namely frust, which has a prototype that takes one function
pointer that can point to a function taking a char buffer as an input. The Rust function is called in main
(line: 5) given one input, the address of the bug function. On the other hand, in the Rust part (lines: 1-9),
the Rust function frust will use the input function pointer to call the bug function with a c_char buffer
as an argument created in frust. Then, the bug function will overwrite the return address of frust by
overflowing the Rust buffer. As a result, frust returns to a malicious control flow.

Observe that the Rust function (frust) is calling a C function (bug) without the use of the unsafe block.
A Rust compiler would have rejected a program that could potentially used for buffer overflow, while a
SafeStack-protected C/C++ program would not let a modification of return addresses happen since the

buffers originated from C/C++ would be separated from all the control data.

4 ATTACK PRIMITIVES IN RUST

In Section 3 we have discussed how code of Rust and C/C++ can co-exist in the address space. We observed
that Rust contains indirect branches that are not safe-guarded and therefore memory corruption can leverage
them for bypassing hardening, such as CFI. In this section, we further elaborate on other Rust programming
concepts, which can provide the attacker similar primitives. In practice, the attacker, by means of memory
corruption, seeks to influence indirect branches for introducing malicious control flows in the process, that

are not contained by CFI.

4.1 Function Pointers

Programs that need to call a different function implementation at a particular call site may utilize function
pointers. These are variables that can point to function entry points, can dynamically change during the
process’ life-time, and can call a set of functions, depending on their value. Like C and C++, Rust supports
function pointers, and they should be declared in advance following a particular prototype. For instance, £,
below, is a function pointer that can point to any function that takes a single 32-bit integer as an input, and

returns nothing.
f: fn(i32);

Function pointers are dangerous when memory corruption is possible, since a vulnerability can overwrite the
value of a function pointer and force the program to call arbitrary code. Software hardening, such as CFI,
can safe-guard these pointers, so that they can, at least, point only to functions with a compatible signature.

As we discussed in Section 3, function pointers used in Rust are not safe-guarded, since the memory
model of Rust is immune to memory corruption. However, when Rust shares the same address space with
C/C++, this is not true anymore. A memory-corruption error can change the value of a Rust function
pointer and force the program to call arbitrary code.

Manuscript submitted to ACM

OO U W~

Exploiting Mixed Binaries 13

#[no_mangle]
pub extern fn frust(fp: fn(i32),
bug: fn(&Fn(i32))) {
frust_cl(fp, bug);
pub extern fn frust_cl<F>(fp: F,
bug: fn(&Fn(i32)))
where F: Fn(i32) {
let a: i32 = 0;
bug(&fp) ;
fp(a);

Fig. 6. The attack presented in Section 3.5 using Rust closures instead of function pointers. This listing can be used to
replace the safe part in Figure 4 if the vulnerable program contains closures instead of function pointers.

4.2 Closures

Rust supports closures [25] which are functions that can capture their enclosing environment as well as
inferring both their input and return types. For instance, increment, below is a closure that takes i as an
input, increments it by x and returns it. In contrast with regular functions, closures can interact with the

variables of their enclosing scope without receiving them as input, like in this case, x.

let x = 1;
let i = 1;
let increment = | i | i+x

increment (i)

In Figure 6, we depict an example code that involves Rust closures. Function frust takes as input two
function pointers, the second one takes as input an Fn [24] trait which is used for taking a closure as an input
parameter, in this case the function pointer received by frust. Next, in line 11 we assume that frust calls a
C/C++ vulnerable function, namely bug, which alters the Rust Fn trait (fp), through a memory-corruption

vulnerability to point to a new target. Finally, in line 13 the altered fp will call the new target.

4.3 Traits

Rust support a powerful concept for abstracting code, called traits [33]. By constructing certain traits, the
programmer creates methods, which can be called by objects of different types. Rust’s traits resemble very
much the notion of interfaces that can be found in several object-oriented languages. One of the differences
is that, through Rust traits, developers can create interfaces of existing types.

What is of interest to this paper is the way traits are actually implemented by the Rust compiler, and
what are the complications related to security and software exploitation. For a thorough review of Rust
traits, we refer the reader to the standard manuals [32].

Rust traits can be implemented using static dispatch, pretty much like C++ templates, but also using
dynamic dispatch, which resembles very much VTable-based dynamic dispatch of virtual methods in
C++ [54]. For dynamic dispatch, a level of indirection is usually involved. Assume an interface that converts
an object to a string. All types that support this interface have to implement the particular method that
converts them to a string, let’s assume that this method is called to_string. Now, consider a list that

contains several objects of different type, but all of the types implement the particular interface. Iterating
Manuscript submitted to ACM

OO0 U WN —

14 M. Papaevripides and E. Athanasopoulos

#[no_mangle]
pub extern fn frust (){
let dog: Dog = Dog;
let cat: Cat = Cat;
let mut v: Vec<Box<Animal>> = Vec::new();
v.push(Box::new(cat));
v.push(Box ::new(dog));
unsafe {
let x: usize = &v[1] as xconst _ as usize;
bug (x) ;

for animal in v.iter () {
println! ("{}", animal.make_sound());

}

trait Animal {
fn make_ sound(&self) —> String;

}

struct Cat;
impl Animal for Cat {
fn make_ sound(&self) —> String {
"meow" . to__string ()
}
}

struct Dog;
impl Animal for Dog {
fn make_sound(&self) —> String {
"woof".to_string ()
}
}

Fig. 7. In lines 18-20, the trait, called Animal, is defined and supports a method called make_sound implemented by Cat
(lines 22-27) and Dog (lines 29-34). Furthermore, in lines 9-12 we assume that frust calls a C/C++ vulnerable function,
namely bug. The bug function, internally (not shown in the figure), corrupts memory and when make_sound is called (line
14), control can reach any place the attacker likes. Exploitation is possible due to the co-location of Rust and C/C++.
A Rust-only program, equivalent to the one in Figure 7, protects all (Rust) VTable pointers (at compile-time), while a
hardened C/C++ program protects all VTable pointers using CFI.

the list and calling the conversion method for each object involves calling a completely different method, but
using the same naming conversion (i.e., call the to_string method for an object x, as long as x is of a type
that supports the interface). Compilers realize dynamic dispatch efficiently by putting all references to all
different implementations of to_string in tables (usually called VTables) stored in read-only pages; objects
allocated in the heap or stack contain a pointer towards these tables. An iterator that hosts a variable that
calls to_string needs to simply be pointed to the right table, which holds the compatible implementation
of the method.

In Figure 7, we depict an example code that involves Rust traits. In lines 18-20, the trait, called Animal,
is defined and supports a method called make_sound. Furthermore, in lines 22-27 and in lines 29-34, two new
types are defined, namely Cat and Dog, which both implement the Animal trait. Now, in lines 2-16 there is
the implementation of frust (in the same fashion we have done in Figure 4 and Figure 6), which allocates a
Rust vector (Vec), named v, and stores an instance of Cat (cat) and an instance of Dog (dog). Both of these
instances are allocated in the heap of the program.

Furthermore, in lines 9-12 we assume that frust calls a C/C++ vulnerable function, namely bug. We
use this form of interaction, here, for demonstration purposes, only. The actual PoC exploit we deliver for
Mozilla Firefox in Section 7 does not contain such explicit form of interaction between Rust and C/C++.
Manuscript submitted to ACM

N O U WN =

00~ O Utk WN -

Exploiting Mixed Binaries 15

/* C/Unsafe part. */

extern void fgo(void(x)(void));

int main(int argc, char xargv([]){
fgo () ;
return O0;

}

/* Go/Safe part. */

func func_int(a int){

}

func func_ float(a float64){

}

// export fgo
func fgo () {
var a int = 0
var fp func(int) = func_int
C.bug()
/* CFI should prevent this call. */
fp(a)

Fig. 8. Toy example of how Go can attack hardened C/C++ code. In the upper part of the figure (lines: 1-7) we depict
the C/C++ part and in the bottom one (lines: 1-17) the Go part. Once compiled, all code is mapped to a single address
space. The attack alters a Go function pointer, through a memory-corruption vulnerability (see Figure 2), to point to a new
target. Unlike all C/C++ function pointers that are CFl-protected, this pointer is not constrained and can be used to call
any function (including ROP gadgets [72]).

The bug function takes as an input the address of the last object pushed in the Rust vector (dog) and,
internally (not shown in the figure), it corrupts memory and alters the VTable pointer stored in dog. Later in
the code, in line 14, when make_sound is called, control can reach any place the attacker likes. We stress here
that exploitation is possible due to the co-location of Rust and C/C++. A Rust-only program, equivalent
to the one in Figure 7, protects all (Rust) VTable pointers (at compile-time), while a hardened C/C++
program protects all VTable pointers using CFI.

5 ATTACK PRIMITIVES IN GO

In Section 4 we have discussed Rust programming concepts which can provide the attacker with primitives,
that can be used in order to introduce malicious control flows in the process. In this section, we discuss Go
programming concepts which can provide the attacker similar primitives to those observed in Rust. These
programming concepts produce indirect branches that can be influenced by C/C++, since they are not

safe-guarded, for bypassing hardening.

5.1 Function Pointers

Similar to Rust, C and C++, Go also supports function pointers, namely variables that can point to a
function entry point and change dynamically during a process’ life-time. These function pointers much like
other types of variables, should be declared in advance before use, following a particular prototype. For
instance, fp, below, is a function pointer that can point to any function that takes a single integer as an
input and returns nothing.
var fp func(int)
Manuscript submitted to ACM

OO0 U WN —

16 M. Papaevripides and E. Athanasopoulos

func sum(x int) func(int) int{
temp := x

C.bug ()

return func(y int) int{
return temp + y

}

// export fgo
func fgo ()
fmt.Println (sum(5) (6))

}

Fig. 9. The attack presented in Section 5.1 using Go closures instead of function pointers. This listing can be used to
replace the safe part in Figure 8 if the vulnerable program contains closures instead of function pointers. In line 13, fgo calls
sum and passes the first argument. Furthermore, in line 4, we assume that sum calls a C/C++ vulnerable function, namely
bug, which alters the Go indirect branch that would be used to call the anonymous function, through a memory-corruption
error to point to a new target. Finally, in line 13, the altered indirect branch calls the new target.

As we discussed in Section 4, function pointers are dangerous when memory corruption is possible. Software
hardening, such as CFI, can safe-guard these pointers so that they can, at least, point only to functions
with a compatible signature. However, like in Rust, functions pointers in Go are not safe-guarded neither by
hardening nor by its memory-model, and thus being susceptible to memory-corruption.

In Figure 8, we depict an example code that involves Go function pointers. This is a toy example of how
Go can attack hardened C/C++ code. In the upper part of the figure (lines: 1-7) we depict the C/C++
part and in the bottom one (lines: 1-17) the Go part. Furthermore, in line 14 we assume that fgo calls a
C/C++ vulnerable function, namely bug. The bug function, internally (not shown in the figure), alters a Go
function pointer, through a memory-corruption vulnerability (see Figure 2), to point to a new target which

is indirectly called in line 16 by the altered fp.

5.2 Closures

Go supports closures which are a special case of anonymous functions or function literals. Closures can
reference the variables of their enclosing environment [5] and interact with them without the need of receiving
them as input. For instance, sum, below, is a function that takes a single integer as an input and returns a
closure which both takes as input and returns, a single integer. Because the closure can access variables
of its enclosing environment, it can access the variable temp which holds the value of x. As a result, the

anonymous function returns the sum of its input y and the value of temp.

func sum(x int) func(int) int{
temp := x
return func(y int) int{

return temp + y

}

In Figure 9, we depict an example code that involves Go closures. Function sum takes as input a single
integer and returns an anonymous function that both takes as input and returns, a single integer. In line 4 we

assume that sum calls a C/C++ vulnerable function, namely bug, which alters the Go indirect branch that
Manuscript submitted to ACM

Exploiting Mixed Binaries 17

type Animal interface {
make_sound () string
}

type Cat struct {}
type Dog struct {}
func (c *Cat) make_sound() string {

return "meow"

func (d xDog) make_sound() string {
return "woof"
}

//export fgo

func fgo () {
var v [2] Animal
v[0] = new(Cat)
v[1l] = new(Dog)
C.bug()
for i := range v {

fmt.Println(v[i].make_ sound())

Fig. 10. In lines 1-3, the interface, called Animal, is defined and supports a method called make_sound implemented by
Cat (lines 8-10) and Dog (lines 12-14). Furthermore, in line 23 we assume that fgo calls a C/C++ vulnerable function,
namely bug. The bug function, internally (not shown in the figure), corrupts memory and when make_sound is called (line
26), control can reach any place the attacker likes. Exploitation is possible due to the co-location of Go and C/C++. A
Go-only program, equivalent to the one in Figure 10, protects all (Go) VTable pointers (at compile-time), while a hardened
C/C++ program protects all VTable pointers using CFI.

would be used to call the anonymous function, through a memory-corruption error to point to a new target.

Finally, in line 13, the altered indirect branch calls the new target, instead of the anonymous function.

5.3 Interfaces

Go supports interfaces [7], which are a set of method signatures that can be implemented through methods
by struct types. When implemented, these methods can be called by objects of different struct type using
both static and dynamic dispatch. For dynamic dispatch, a level of indirection is usually involved. Assume
an interface that has a method signature which converts an object to a string. All struct types that support
this interface have to implement this particular method that converts them to a string, let’s assume that
this method is called make_sound.

In Figure 10, we depict an example code that involves Go interfaces. In lines 1-3, the interface called
Animal is defined and has a method signature called make_sound. Furthermore, in lines 8-10 and in lines
12-14, two new struct types are defined, namely Cat and Dog, which both implement the Animal interface.
Now, in lines 17-28, there is the implementation of fgo, which defines an instance of Cat (v[0]) and an
instance of Dog (v[1]). Both of these instances are allocated in the heap of the program and can be accessed
by iterating the array v.

Furthermore, in line 23 we assume that fgo calls a C/C++ vulnerable function, namely bug. We use this
form of interaction here for demonstration purposes only. The bug function corrupts memory and alters the
VTable pointer stored in dog. Later in the code, in line 26, when make_sound is called, control can reach

Manuscript submitted to ACM

18 M. Papaevripides and E. Athanasopoulos

type fn_int func() int

func foo_go(ch <—chan fn_int) {
fp := <—ch
C.bug ()
fp ()

func bar_go(ch chan<— fn_int) {
ch <— func() int {
return O
}
}

//export fgo

func fgo () {
ch := make(chan fn_int, 2)
go foo_go(ch)
bar_go(ch)

}

Fig. 11. In line 17, the channel called ch is defined and can hold up to two function pointers which can point to any
function that receives nothing as input and returns a single integer. Next, in line 18, fgo calls foo_go using goroutines and
passes the channel defined earlier as argument. Furthermore, in line 5 we assume that foo_go calls a C/C++ vulnerable
function, namely bug. The bug function, internally (not shown in the figure), corrupts memory and when £p is called (line
6), control can reach any place the attacker likes. Exploitation is possible due to the co-location of Go and C/C++.

any place the attacker likes. We stress here that exploitation is possible due to the co-location of Go and
C/C++. A Go-only program, equivalent to the one in Figure 10, protects all (Go) VTable pointers (at
compile-time), while a hardened C/C++ program protects all VTable pointers using CFI.

5.4 Channels

Go supports channels [4] which are pipes that enable the exchange of values between goroutines [6], namely
threads that run concurrently. For instance, ch, below is a channel that can hold a single integer and uses

the <- operator to receive a value from y and consequently send it to x.

ch := make(chan int)
ch <-y
X :=<-ch

In Figure 11 we depict an example code that involves Go channels. Function fgo defines a channel named ch,
which can hold up to two function pointers, which in turn can point to any function that receives nothing as
input and returns a single integer. Next, in line 18, fgo calls foo_go using goroutines and passes the channel
defined earlier as argument. Function foo_go now runs in parallel with the thread of the main program.
Then, in line 19, fgo calls bar_go and passes the channel defined earlier as argument. Furthermore, line 10,
bar_go defines an anonymous function which passes it to ch. Once ch receives the anonymous function, it
passes it to fp in line 4. Next, in line 5 we assume that foo_go calls a C/C++ vulnerable function, namely
bug, which alters the Go indirect branch that would be used to call the anonymous function, through a
memory-corruption vulnerability to point to a new target. Finally, in line 6 the altered fp will call the new
target.

Manuscript submitted to ACM

Exploiting Mixed Binaries 19

6 DISCOVERY OF PRIMITIVES

In this section we discuss the methodology we use for finding attack primitives in Rust and Go code. Because
this methodology is the same for the two programming languages, we elaborate only on the methodology for
finding attack primitives in Rust code that ships with Mozilla Firefox. In practice, we need to analyze all Rust
code and find patterns that encapsulate function pointers, closures, and traits, as discussed in Section 4. The
methodology is based on two phases. First, we analyze the code statically, for finding interesting functions.
These are functions that contain indirect branches as a result of using either Rust function pointers, closures,
or traits. Then, we dynamically analyze the code for inferring if identified indirect branches can be influenced

by overwriting memory. Below, we discuss each of the two analysis phases in detail.

6.1 Static Analysis

Our static analysis methodology starts by locating all the functions that contain at least one indirect branch.
To do that, we set the environment variable RUSTFLAGS="-emit asm" to extract the Rust code of the target
program in assembly form. Notice, that this is the assembly produced by the Rust compiler and not the
(approximated) output of a disassembler [38].

Then, we collect all the assembly files created from the above action and we run a python script which
performs static analysis. Our script reads all the assembly files and creates data structures containing all the
functions with their names and instructions. Afterwards, it finds all the functions that contain at least one
callq * instruction (e.g., callq *rax) which resembles an indirect branch in the disassembly. Then, the
script produces a list of the names of the functions that were found containing at least one indirect branch.

A common incident we noticed during this analysis is that the majority of indirect branches are based
on the value of the rip register. These branches are emitted by the Rust compiler for generating Position
Independent Executable (PIE) code [67] for x86 64. This type of indirect branches is considered not
exploitable, so we added an extra step for excluding such cases in order to make the dynamic analysis
(discussed later) a lot faster. Given an identified indirect branch, the static-analysis script performs a
backwards analysis, in order to determine if the target address of the branch originates from rip. If this is
the case, then these indirect branches are marked and are excluded from the final function list produced.

The final output of the static analysis is a list of functions containing all their indirect branches, due to

Rust function pointers, closures, and traits and not due to PIE code.

6.2 Dynamic Analysis

Static analysis produces a list of Rust functions that contain indirect branches. All these branches are
vulnerable from C/C++ code, however, in order to attack them, the given input should be able to trigger
the corresponding Rust code. For this, we use dynamic analysis in order to infer how the identified Rust
code can be triggered.

Our dynamic analysis starts by reading the list of functions created by the static analysis. We implement
dynamic analysis on top of gdb [27], so we run Mozilla Firefox with breakpoints to a number of functions
from the aforementioned list. For faster analysis, we add breakpoints only to a set of identified functions

and repeat this process until we add breakpoints to all the functions of the list. A debugging session with

Manuscript submitted to ACM

20 M. Papaevripides and E. Athanasopoulos

several breakpoints incurs significant overhead. For each session, Mozilla Firefox is directed to open a set of
web pages for 10 minutes [14]. After each session is done, we record which breakpoints have been triggered.

During dynamic analysis, the script stops at breakpoints (Rust functions containing indirect branches)
that are triggered by user input. When it reaches a breakpoint, the script steps in the execution, instruction
by instruction, until it reaches an indirect branch. Then, it adds breakpoints to all the mov instructions
that move the targeted function address to the register used in the indirect call (i.e., the data flow reaching
the register used in the indirect branch). The execution continues until it reaches these mov instructions
and tries to determine the location of the target function address using the information located in the
/proc/<pid>/maps, where <pid> is the process id of the analyzed Firefox. We do this because we want to
locate all the indirect branches that are initialized by a heap address, which can be easily influenced by
C/C++ code without interacting with the Rust part. Finally, the output of the dynamic analysis is a list of

functions with their indirect branches and the name and address space of the target function.

Table 1. Results of static and dynamic analysis, as performed in Mozilla Firefox. Observe that there are 174,790 Rust
functions that contain more than 670,000 branches. However, most of them are emitted due to PIE code. If we deduct all
branches, plus remove all branches contained in the unsafe drop_in_place function (used for object release), we remain
with 2,755 branches due to Rust function pointers, closures and traits. Finally, only 18 indirect branches are produced when
a Rust function calls indirectly a C function.

Analysis #
functions 174,790
indirect branches | 672,264
based on rip 669,073
not based on rip 3,191
no drop_in_place | 2,755
Rust calls C 18

Table 2. Indirect branches in Rust are distributed in some major components. In particular, about 248 are found in Stylo
(the CSS engine), 324 in WebRenderer (the now default rendering engine), and 438 in Crane (the WebAssembly compiler).
Several more, about 1,745, are in other Rust code, included in the browser.

Library Volume
Stylo 248
WebRender 324
Crane 438
Other 1,745
Total 2,755

6.3 Results

We depict the results of the static and dynamic analysis in Table 1. Observe that there are 174,790 Rust
functions that contain more than 670,000 branches. This is a vast amount of identified indirect branches,
however, most of them are emitted due to PIE code [67]. These branches cannot be influenced by memory,
since they just assist the executable code to be relocatable at run-time. If we deduct all these (relocation)
branches, and if we remove all branches contained in the unsafe drop_in_place function (used for object
Manuscript submitted to ACM

OO U W~

Exploiting Mixed Binaries 21

style :: media__queries :: media_ feature__expression:: MediaFeatureExpression :: matches:
[26 instructions |

mov 0x10(%rax),%rcx
mov Y%rcx ,0x108(%rsp)

[88 instructions]
mov 0x108(%rsp),%rax
[6 instructions |

callq *«%rax

Fig. 12. The skeleton of the Rust function which contains the indirect branch (line 14), used to exploit a hardened Firefox,
and the data flow reaching the branch (lines 5, 6, and 10).

release), we remain with 2,755 branches. Now, all of these branches are contained in safe Rust code and are
emitted due to the use of (Rust) function pointers, closures and traits. The targets of these branches are all
based on (control) data stored in the heap and the stack of the executing process. Several of these can be,
easily, modified by C/C++ code (due to memory-corruption bugs) with no interaction between the C/C++
and Rust part. In addition, through dynamic analysis, we found that only 18 indirect branches are produced
when a Rust function calls indirectly a C function.

Furthermore, in Table 2 we list all identified indirect branches in Rust as they are distributed in some
major components. In particular, about 248 are found in Stylo (the CSS engine), 324 in WebRenderer (the
now default rendering engine), and 438 in Crane (the WebAssembly compiler). Several more, about 1,745,
are in other Rust code, included in the browser. Therefore, we conclude that these branches are in core

functionality of the web browser, which can be triggered by user input.

7 EXPLOITING FIREFOX

In this section, based on our methodology outlined in Section 6, we exploit Mozilla Firefox 66.0al (2019-03-13,
64-bit) using CVE-2018-6126 [22]. We built Firefox with the following options written in the mozconfig file:
ac_add_options --disable-optimize

ac_add_options --enable-debug

7.1 Challenges
Here we discuss the main challenges of the exploitation process.

(1) The main challenge is finding indirect branches in Rust, which are initiated with addresses from the
heap of the process. As we discussed in Section 6.3, despite the fact that there are over 670,000 indirect
branches in Rust, most of them are not exploitable (they are related to PIE [67]), and those that
are, can be loaded with addresses either from the stack or heap. However, indirect branches that are
loaded from the stack are much harder to exploit, since they require a particular interaction between
Rust and C/C++ code.

(2) Another common event we noticed is that many indirect branches are initialized and executed in a

very tight fashion. An example of such case is the following.

Manuscript submitted to ACM

22 M. Papaevripides and E. Athanasopoulos

0x00007fffec220d8e <+3374>: mov %rdx ,0x218(%rsp)
0x00007fffec220d96 <+3382>: mov %r8,%rdx
0x00007fffec220d99 <+3385>: mov 0x218(%rsp),%r8
0x00007fffec220dal <+3393>: callq *%r8

LI

Notice, that the above indirect branch is executed using r8, however, r8 is loaded with an address in
the previous instruction, and this address is overwritten just two instructions earlier, with the contents
of rdx. Now, influencing rdx is not always possible. Therefore, the memory used for loading r8 cannot

be overwritten, or it is very hard to be overwritten by a different thread.

7.2 \Vulnerability
The vulnerability we use for delivering the exploit is based on CVE-2018-6126 [22]. The particular bug

was originally reported for Mozilla Firefox 60.0.2. Therefore, we port the vulnerability to Mozilla Firefox
66.0al (2019-03-13, 64-bit). Notice, that reproducing actual CVEs is often fairly hard and tedious [61] due to
limited information, already applied patches and further code changes that have occurred since the original
posting of the bug. Porting real vulnerabilities to recent software, using similar to real vulnerabilities or even
entirely artificial bugs to demonstrate proof-of-concept attacks is common to the research community [69, 70].
CVE-2018-6126 [22] is a typical heap buffer overflow, which can be triggered by providing the browser
with a specially crafted SVG image. Depending on the contents of the HT'ML document that contains
the SVG image, the overflow can be controlled and the pointer of the overflowed buffer can thus write to
arbitrary memory. For understanding the mechanics and reproducing the CVE we heavily used Mozilla
Firefox compiled with Address Sanitizer [71]. The PoC, of course, targets Mozilla Firefox with Address
Sanitizer disabled. The PoC uses the CVE for both single-process and multiple-process Firefox builds [29].

7.3 PoC Exploit

Using the methodology outlined in Section 6, we know which Rust functions contain indirect branches and how
these branches are loaded (either from heap or stack). For the particular PoC outlined here, we exploit an in-
direct branch contained in the Rust function style: :media_queries ::media_feature_expression: :Media
FeatureExpression: :matches, which is located at servo/components/style/media_queries/media_feature
_expression.rs. The data flow reaching the indirect branch contained in this function is depicted in Fig-
ure 12.

There are 62 functions called until our target function is called, the first 43 are C/C++ functions and
the last 20 including our target function are Rust. For delivering the exploit we use CVE-2018-6126 [22], a
typical heap buffer overflow, which can be triggered by providing the browser with a specially crafted SVG
image. Depending on the contents of the HTML document that contains the SVG image, the overflow can
be controlled and the pointer of the overflowed buffer can thus write to arbitrary memory.

Furthermore, the analysis of the targeted indirect branch reveals that it eventually calls style: :gecko::
media_features::eval_width. The address of this method is loaded by reading the address 0x7fffd2e2d220
from Rust’s heap. Using the arbitrary write (CVE-2018-6126 [22]) we re-write this heap address with the
address of a new function that we control. Therefore, Firefox calls our function, instead of the legitimate

target function, without crashing due to the CFI policy in place.
Manuscript submitted to ACM

Exploiting Mixed Binaries 23

CFl Safe Stack

Rust

Fig. 13. CFl is vulnerable when Rust co-exists with C/C++, while SafeStack is practically hard to exploit. In the CFI case,
there is no need for C/C++ and Rust interoperability; the vulnerable C/C++ code can execute and alter control data
injected in the process image by Rust code. As a result, the exploit will work when the Rust code is eventually executed
given that the function pointer is already overwritten by the C/C++ code. In contrast, for bypassing SafeStack, Rust code
needs to explicitly call a C/C++ function with a stack vulnerability. Such code patterns are hard to find in existing software
(e.g., Mozilla Firefox).

7.4 Failing to exploit SafeStack

In order to bypass SafeStack, we need patterns like those depicted in Figure 5. Using the methodology
explained in Section 6.2, we know which Rust functions contain indirect branches and whether the target
function called indirectly is written in Rust or C/C++. We depict the results of the static and dynamic
analysis in Table 1. Observe that there are only 18 indirect branches that display the pattern depicted in
Figure 5, namely, a Rust function calling a C++ function indirectly. In short, bypassing SafeStack needs
the specific pattern in which code written in Rust calls a C/C++ function, but as we showed in Table 1
there are very few cases with this pattern. As a result, SafeStack cannot be bypassed in practice. This is an
experimental observation based on the results we have on Mozilla Firefox.

For a generic assessment, we need to analyze more mixed binaries. Since this is not possible due to the
fact that all, except Mozilla Firefox, mixed binaries are closed source, at the moment, we can only infer
that SafeStack is much harder to bypass in practice. This means that the mixed binary should include
very unique code patterns as shown earlier, that permit an attacker to bypass SafeStack. Notice, also, that
Morzilla Firefox is not only a large project, in terms of analyzed code patterns, but also a reference project
for integrating Rust with C/C+4. We therefore anticipate that most projects will attempt to integrate Rust
with C/C++ similarly to Mozilla Firefox.

8 DISCUSSION

In this section, we present a PoC exploit for a hardened mixed binary attacked through a Go library named
go-stats. Furthermore, we argue that hardening safe code while being possible, is not a trivial process since
additional passes must be implemented for Rust and Go. In addition, we discuss several important points
that stem from the PoC exploit presented in Section 7. Finally, we discuss the compile time and run-time
checks for Rust, Go and C/C++.

Manuscript submitted to ACM

24 M. Papaevripides and E. Athanasopoulos

8.1 Go PoC Exploit

Using the methodology outlined in Section 6, we know which Go functions contain indirect branches. For the
particular PoC outlined here, we exploit an indirect branch contained in the Go library go-stats [8]. This in-
direct branch is contained in the go-stats. (*Stats) .Write function which is located in go-stats.stats.go.
In order to exploit this indirect branch, we created a mixed binary which combines Go and C/C++. The
go-stats is invoked from within the part of the binary which is written in Go. Before go-stats is invoked,
we firstly call a function located in C/C++ which emulates an arbitrary write primitive like is depicted
in Figure 2. Through this function, we re-write the address of the indirect branch with the address of a
new function that we control. As a result, the program calls our function, instead of the legitimate target

function, without crushing due to the CFI policy in place.

8.2 Hardening Safe Code

One option to counter the attacks presented in this paper is to extend hardening so that the whole process
is protected. Notice that there are existing attempts towards hardening directly binaries, when source code
is not available [76-78]. Therefore, hardening could be enabled in the overall mixed binary using one of
those techniques, for instance TypeArmor [76]. We stress here that CFI hardening is based on computing
correctly the CFG of a program; this computation can be done using the source code, the bitcode (LLVM)
or just the machine code. Each option is a security trade-off. An analysis closer to the original source code
produces much more accurate results in terms of the computed CFG. In this paper, we used binaries that
utilize the CFI implementation as available in Clang/Clang++. For this particular implementation, the
produced LLVM bitcode, after compiling a program, is carefully annotated in order to receive the CFI
instrumentation during link-time optimizations. This annotation should be different if Rust or Go code is
compiled instead of C/C++.

Therefore, we understand that extending CFI to the entire mixed binary is possible. Nevertheless,
additional passes should be implemented for Rust and Go, and in particular for Go, since the original
compiler is based on GCC and the LLVM-based one is less mature 2 a compiler modification should be
more appropriate [52]. These additional passes and compiler modifications should be further explored.

Finally, we stress that, at least, the Rust community has explored enabling some hardening techniques,
but has done so only for the very basic ones [15, 16, 23], and not for any of the advanced ones available
today [17, 19, 31].

8.3 Hardening bypass

The exploit uses Rust or Go code to easily bypass CFI, compared to generic CFI bypasses, such as COOP [70],
where the attacker needs to locate particular COOP gadgets to launch the attack. While it is already proven
that CFI can be bypassed [49], the attacks presented in this paper are easier to perform. This is because, the
main prerequisite to execute these attacks is that the hardened code co-exists with a memory-safe system.
In contrast, other attacks require the discovery of COOP gadgets that are included within the program’s

statically computed CFG, thus making it a cumbersome task.

2See discussion at https://golang.org/doc/faq#Do_ Go_ programs_ link_ with_ Cpp_ programs.
Manuscript submitted to ACM

https://golang.org/doc/faq#Do_Go_programs_link_with_Cpp_programs

Exploiting Mixed Binaries 25

Furthermore, the exploit does not work if Firefox is free of Rust, since CFI can contain the introduced
malicious control flows. Nevertheless, it is the nature of CFI, as a hardening technique, that is vulnerable to
Rust co-existing with C/C++ in the same address space. For instance, SafeStack [3] is shown not to be
affected by the Rust code. The reason behind this, is the particular execution model, in terms of C/C++
and Rust executing code, required for the exploit to work. In the CFI case, there is no need for C/C++ and
Rust interoperability; the vulnerable C/C++ code can execute and alter control data injected in the process
image by Rust code. As a result, the exploit will work when the Rust code is eventually executed given that
the function pointer is already overwritten by the C/C++ code. In contrast, for bypassing SafeStack, Rust
code needs to explicitly call a C/C++ function with a stack vulnerability. Such code patterns are hard to
find in existing software (e.g., Mozilla Firefox). Schematically, the difference between those two execution
models is depicted in Figure 13.

8.4 Hardened Firefox

Throughout this paper, we assume that Firefox is hardened using standard techniques available in Clang.
However, this is not true with current Firefox releases. The source code is not compiled using CFI or
SafeStack, as provided by Clang. However, we anticipate that in the coming years binaries will employ
advanced hardening futures provided by compilers. Our anticipation stems, primarily, from: (a) the fact
that deployment of past hardening techniques (stack canaries [46] and ASLR [66]) took a while, (b) big
projects, such as Android, have started employing advanced hardening (based on CFI) by default [10],
and (c) although deployment of mitigations can be slow, we are not hopeless, since numbers in hardening

adoption are improving [74].

8.5 Compile time - run-time checks

Throughout this paper, we discuss software that is produced using multiple compilers which follow a different
memory model, the memory-safe model and the memory-unsafe model. In this section we discuss their

differences in terms of compile time and run-time checks.

Table 3. Compile time and run-time checks performed to each programming language. On the one hand, Rust/Go imposes
memory safety mostly at compile time except with bounds checks in which it emits code that gets triggered during run-time.
On the other hand, C/C++ programs with no hardening enabled, have no checks at all. However, when CFl is enabled,
it ensures that the indirect calls are included within the program'’s statically computed CFG and thus preventing invalid
control flows.

Checks Rust
Memory Safety
Compile time Bounds
Indirect Branches
Memory Safety
Run-time Bounds
Indirect Branches

C/C++ with CFI

EINEIENENEN
RN NENEN|®

WX X% X %

In Table 3 we depict the various checks performed by each memory model during compile time and
run-time. As we know, C/C++ does not perform any checks during compile time nor on run-time without
Manuscript submitted to ACM

26 M. Papaevripides and E. Athanasopoulos

any hardening enabled. However, when CFI is enabled, it ensures that the indirect calls are included within
the program’s statically computed CFG and thus, preventing any invalid control flows.

In contrast, Rust and Go perform several checks during compile time to ensure that there will not be any
potential memory errors in the code. Nevertheless, observe that while both Rust and Go perform most of
their checks during compile time, they also emit code that performs bounds checks during run-time, such as

array bounds checks.

9 COUNTERMEASURES AND FUTURE WORK

The attack presented in this paper directly affects mixed software. Until now, hardening techniques are
capable of analysing programs that originate from a single programming language, usually C/C++ or
Objective-C. Nevertheless, in this paper we stress that there is a need for developing tools that can analyse
mixed binaries or mixed code, in general. These tools should be able to handle programs that combine
more than one high-level programming language, as an example consider the common case where C/C++ is
mixed with Rust. Such tools can produce defenses that protect mixed software holistically and, at least,
raise the bar for attacks like the one presented in this paper.

In particular, our attacks focus on bypassing hardening techniques, such as CFI and SafeStack. The core
weakness of the current implementations of these techniques is that they do not account for all source code
that reaches the final binary. The analysis behind the instrumentation offered by CFI/SafeStack could be
expanded for protecting parts outsourced to code that is not written in unsafe C/C++. Clearly, as already
mentioned in this paper, merging the analysis of Rust code with the analysis of the C/C++ code is not a
trivial process, nevertheless, it is vital for securing the entire running process when C/C++ and Rust code
are mixed.

Beyond, analysis for software hardening through instrumentation, like CFI/SafeStack, other defenses could
be also assisted by analysis tools that target mixed software. Consider, for instance, memory allocators 35,
43, 62-64] and memory sanitizers [71]. These hardening techniques, again, are based solely on the assumption
that all the code is originally written in C/C++ and account only for unsafe allocations without considering
allocations that are used by code that is written using a different system. In that case, a mixed-software
hardened allocator could be realized by defining a single memory allocator that could coordinate the memory
allocators of each language and have an overall picture of the whole program’s data.

Finally, feedback-based fuzzing [1, 39, 40], where the target program is instrumented before being analyzed,
can be also re-targeted for processing mixed binaries. Especially for fuzzing, the need to develop mixed-
software analysis tools is important for performance, as well. Consider that, when fuzzing Mozilla Firefox, a
significant part of Rust code should be completely avoided by the fuzzer, without of course omitting code
that encapsulates interactions between C/C++ and Rust.

Therefore, analysis tools for mixed software can heavily assist in both countering attacks, like the one
presented in this paper, and improving other existing defense techniques based on hardened memory
allocators, sanitizers and fuzzing tools. Clearly, such analysis tools cannot be produced by trivially extending

the tools we currently have. We plan to explore the design and development of such tools in our future work.

Manuscript submitted to ACM

Exploiting Mixed Binaries 27

10 RELATED WORK

Software hardening by means of CFI [34] has been realized in different flavors and levels. For instance, the
granularity of CFI may vary and the instrumentation can be applied either at the source code (much more
visibility, which affects the accuracy of computing the valid CFG) or at the binary level. It is true that
several flavors of academic CFI-based prototypes have been bypassed in the past [45, 47, 49, 50]. Ultimately,
even very fine-grained CFI techniques can be bypassed using counterfeit objects found in C++ [70] or
Objective-C [57]. We stress, here, that all the aforementioned attacks are fairly sophisticated and questionable
if they can always be carried out in practice with actual vulnerabilities found in the wild.

Today, CFI can be enabled at the compiler level, and in particular in Clang, while projects have started
using the offered protection [10]. In this paper, we do not claim a new attack for CFI, but we rather focus
on easily nullifying CFI hardening when non-instrumented, but safe, code is also present in the process’
address space. In the same spirit of this paper, there have been published works that bypass CFI using
non-instrumented code of JIT engines in web browsers [20, 41, 58]. In that sense, a memory snapshot of a
browser that supports JIT compilation could be also classified as a mized binary.

Beyond CFI hardening, today Clang also supports SafeStack [3], which is a subset of Code-pointer Integrity
(CPI) [56] and, in practice, prevents stack overflows from corrupting control data. This defense has a much
more broad scope than stack canaries [46], which protect return addresses from linear overflows. The idea is
to separate all unsafe buffers from control data that happens to be allocated in the stack (not just return
addresses) [18]. CFI and SafeStack in Clang could be seen as complementary protections for securing both
the forward and backward edge. SafeStack, like CFI, is also vulnerable [51], however, as we show in this
paper, non-instrumented Rust/Go code, does not pose any threat to the current implementation supported
by Clang.

Finally, Rust and Go are core elements of this paper. We stress that, for delivering the attack presented in
this paper, we do not rely on unsafe interactions between Rust/Go and C/C++ [36]. We rather exploit the
fact that Rust/Go and C/C++ share the same address space but with different assumptions for the imposed
memory model. Furthermore, we do not exploit weaknesses of techniques employed by the Rust compiler to

infer safety at compile time. There are interesting works towards formally proving such guarantees [55, 68].

11 CONCLUSION

In this paper, we consider mized binaries, i.e., machine code that has been produced from different compilers
and, in particular, from hardened C/C++ and Rust/Go. A prime example of such binary is Mozilla Firefox.
Mixed binaries realize two different approaches towards reducing exploitation through memory corruption.
On one hand, software hardening contains vulnerabilities during exploitation, on the other hand, Rust
and Go prevent spatial/temporal vulnerabilities by checking the code, and enforcing certain programming
patterns, at compile time or by utilizing a limited run-time support. Both software hardening and fast
memory-safe systems, like Rust/Go, look promising directions for reducing software exploitation through
memory corruption. Our research question, in this paper, is if both approaches can be combined.

Towards answering the question, we argue that outsourcing certain functionality of an unsafe program
to safe code may actually degrade the overall security of the program. Especially for hardened (unsafe)

processes, the consequences may be negative, since vulnerabilities of the unsafe part, which otherwise could

Manuscript submitted to ACM

28 M. Papaevripides and E. Athanasopoulos

be contained by the hardening (e.g., CFI/SafeStack) involved, can be used for exploiting the running process.
We demonstrated this through several artificial examples and two PoC exploits. The first PoC exploit
is based on CVE-2018-6126 that can bypass CFI and attack the browser, through the Rust sub-part of
Mozilla Firefox. The second one, attacks a hardened mixed binary and bypasses CFI through the Go library
go-stats. Our attacks would not have been possible if machine code produced by the Rust/Go compiler
was not present in the address space of the victim program. On the other hand, SafeStack is unlikely to be
practically affected since the code patterns needed for bypassing it are hard to find in existing software (e.g.,
Mozilla Firefox).

Finally, we delivered a tool that can scan Rust and Go software for identifying safe code that, if co-located
with (hardened) unsafe code, can be leveraged to exploit vulnerabilities of the unsafe code, bypassing all

hardening in place.

ARTIFACTS

The paper is accompanied by the following artifacts, which are available at https://bitbucket.org/srecgrp/

mixed-binaries-attacks-artifacts.

(1) Several PoC examples that combine C/C++ hardened code (with CFI and SafeStack) with Rust/Go
code, and artificial exploits. The Rust programs come in the form of archives that are automatically
built using the cargo tool and utilize function pointers, closures, and traits. The Go programs utilize
function pointers, closures, interfaces and channels.

(2) Scripts that perform the static and dynamic analysis, as outlined in Section 6, in any version of Mozilla
Firefox, as well as in any C/C++ software that is partially composed by Rust/Go. The scripts are
written in Python.

(3) The PoC exploits, as outlined in Section 7 and in Section 8.1, for Mozilla Firefox 66.0al (2019-03-13)
(64-bit) and go-stats, respectively.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for helping us to improve the final version of this paper. This work
was supported by the European Union’s Horizon 2020 research and innovation programme under grant
agreements No. 786669 (ReAct), and No. 830929 (CyberSec4Europe), and by the RESTART programmes of
the research, technological development and innovation of the Research Promotion Foundation, under grant
agreement ENTERPRISES/0916/0063 (PERSONAS).

REFERENCES

[1] American fuzzy lop. http://lcamtuf.coredump.cx/afl, last accessed in November 2019.
[2] Clang - control flow integrity. https://clang.llvim.org/docs/ControlFlowIntegrity.html, last accessed in November 2019.
[3] Clang - safestack. https://clang.llvim.org/docs/SafeStack.html, last accessed in November 2019.
[4] Go Channels. https://tour.golang.org/concurrency/2, last accessed in May 2020.
[5] Go Closures. https://tour.golang.org/moretypes/25, last accessed in May 2020.
[6] Go Goroutines. https://tour.golang.org/concurrency/1, last accessed in May 2020.
[7] Go Interfaces. https://tour.golang.org/methods/9, last accessed in May 2020.
[8] Go-stats. https://github.com/segmentio/go-stats, last accessed in May 2020.
[9] Golang. https://golang.org/, last accessed in May 2020.
[10] Kernel Control Flow Integrity. https://source.android.com/devices/tech/debug/kcfi, last accessed in November 2019.

Manuscript submitted to ACM

https://bitbucket.org/srecgrp/mixed-binaries-attacks-artifacts
https://bitbucket.org/srecgrp/mixed-binaries-attacks-artifacts
http://lcamtuf.coredump.cx/afl
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/SafeStack.html
https://tour.golang.org/concurrency/2
https://tour.golang.org/moretypes/25
https://tour.golang.org/concurrency/1
https://tour.golang.org/methods/9
https://github.com/segmentio/go-stats
https://golang.org/
https://source.android.com/devices/tech/debug/kcfi

Exploiting Mixed Binaries 29

(11]
(12]
(13]

(14]

(37]

(38]

[39]
[40]
[41]
[42]

(43]

Mozilla Research — Rust. https://research.mozilla.org/rust/.

Rust in Production. https://www.rust-lang.org/production, last accessed in January 2020.

Stack overflow: Developer survey results 2020. https://insights.stackoverflow.com/survey /2020, last accessed in August
2020.

Kraken JavaScript Benchmark, 2010. https://krakenbenchmark.mozilla.org/kraken-1.1/driver.html, last accessed in
November 2019.

Memory exploit mitigations #15179, 2014. https://github.com/rust-lang/rust/issues/15179.

RFC: Memory exploit mitigation #145, 2014. https://github.com/rust-lang/rfcs/pull/145.

Sanitize memory and CPU registers for sensitive data #17046, 2014. https://github.com/rust-lang/rust/issues/17046.
Strengths and Weaknesses of LLVM’s SafeStack Buffer Overflow Protection. http://blog.includesecurity.com/2015/11/
LLVM-SafeStack-buffer-overflowprotection.html, last accessed in November 2019.

Update LLVM and add the safestack attribute to all generated functions. #26612, 2015. https://github.com/rust-
lang/rust/issues/26612.

Disarming Control Flow Guard Using Advanced Code Reuse Attacks, 2017. https://www.endgame.com/blog/technical-
blog/disarming-control-flow-guard-using-advanced -code-reuse-attacks, last accessed in March 2019.

Safe Rust code miscompilation due to a bug in LLVM’s Global Value Numbering #45839, 2017. https://github.com/rust-
lang/rust/issues/45839, last accessed in March 2019.

CVE-2018-6126: Heap buffer overflow rasterizing paths in SVG with Skia, 2018. https://bugzilla.mozilla.org/show__bug.
cgi?id=1462682.

Enabling Windows exploit mitigations by default in Rust programs?, 2018. https://internals.rust-lang.org/t/enabling-
windows-exploit-mitigations -by-default-in-rust-programs/8716, last accessed in March 2019.

As input parameters. https://doc.rust-lang.org/rust-by-example/fn/closures/input__parameters.html, last accessed in
November 2019.

Closures. https://doc.rust-lang.org/rust-by-example/fn/closures.html, last accessed in November 2019.

Community makes Rust an easy choice for npm, 2019. https://www.rust-lang.org/static/pdfs/Rust-npm-Whitepaper.pdf,
last accessed in January 2020.

Gdb: The gnu project debugger, 2019. https://www.gnu.org/software/gdb, last accessed in November 2019.
Implications of Rewriting a Browser Component in Rust, 2019. https://hacks.mozilla.org/2019/02/rewriting-a-browser-
component-in-rust/.

Multiprocess Firefox, 2019. https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Multiprocess_ Firefox.

Rust - Foreign Function Interface. https://doc.rust-lang.org/nomicon/ffi.html, last accessed in November 2019.

Rust 2019: security, 2019. https://snf.github.io/2019/01/10/rust-2019-security /.

The Rust Programming Language. https://doc.rust-lang.org/book/, last accessed in November 2019.

AARON TURON. Abstraction without overhead: traits in Rust. https://blog.rust-lang.org/2015/05/11/traits.html, last
accessed in November 2019.

ABADI, M., BubpIu, M., ERLINGSSON, U., AND LIGATTI, J. Control-Flow Integrity. In Proc. of ACM CCS (2005), pp. 340-353.
AxrITIDIS, P. Cling: A Memory Allocator to Mitigate Dangling Pointers. In Proc. of USENIX SEC (2010), pp. 177-192.
ALMOHRI, H. M. J., AND EvaANs, D. Fidelius charm: Isolating unsafe rust code. In Proceedings of the Eighth ACM
Conference on Data and Application Security and Privacy (New York, NY, USA, 2018), CODASPY ’18, ACM,
pp. 248-255.

ANDERSEN, S., AND ABELLA, V. Changes to Functionality in Microsoft Windows XP Service Pack 2, Part 3: Memory
Protection Technologies, Data Execution Prevention. Microsoft TechNet Library, September 2004. http://technet.
microsoft.com/en-us/library /bb457155.aspx.

ANDRIESSE, D., CHEN, X., VAN DER VEEN, V., SLOWINSKA, A.; AND Bos, H. An In-Depth Analysis of Disassembly on
Full-Scale x86/x64 Binaries. In Proceedings of the 25th USENIX Security Symposium (USENIX Sec’16) (Austin, TX,
USA, August 2016), USENIX.

ASCHERMANN, C., FrRAssETTO, T., HOLZ, T., JAUERNIG, P., SADEGHI, A.-R., AND TEUCHERT, D. Nautilus: Fishing for deep
bugs with grammars. In NDSS (2019).

ASCHERMANN, C., SCHUMILO, S., BLAZYTKO, T., GAWLIK, R., AND HorLz, T. Redqueen: Fuzzing with input-to-state
correspondence. In NDSS (2019).

ATHANASAKIS, M., ATHANASOPOULOS, E., POLYCHRONAKIS, M., PORTOKALIDIS, G., AND I0ANNIDIS, S. The devil is in the
constants: Bypassing defenses in browser jit engines. In NDSS (2015), The Internet Society.

BALASUBRAMANIAN, A., BARANOWSKI, M. S., BURTSEV, A., PANDA, A., RAKAMARI, Z., AND RyzHYK, L. System programming
in rust: Beyond safety. SIGOPS Oper. Syst. Rev. 51, 1 (Sept. 2017), 94-99.

BERGER, E. D., AND ZORN, B. G. DieHard: Probabilistic Memory Safety for Unsafe Languages. In Proc. of ACM PLDI
(2006), pp. 158-168.

Manuscript submitted to ACM

https://research.mozilla.org/rust/
https://www.rust-lang.org/production
https://insights.stackoverflow.com/survey/2020
https://krakenbenchmark.mozilla.org/kraken-1.1/driver.html
https://github.com/rust-lang/rust/issues/15179
https://github.com/rust-lang/rfcs/pull/145
https://github.com/rust-lang/rust/issues/17046
http://blog.includesecurity.com/2015/11/LLVM-SafeStack-buffer-overflowprotection.html
http://blog.includesecurity.com/2015/11/LLVM-SafeStack-buffer-overflowprotection.html
https://github.com/rust-lang/rust/issues/26612
https://github.com/rust-lang/rust/issues/26612
https://www.endgame.com/blog/technical-blog/disarming-control-flow-guard-using-advanced
https://www.endgame.com/blog/technical-blog/disarming-control-flow-guard-using-advanced
-code-reuse-attacks
https://github.com/rust-lang/rust/issues/45839
https://github.com/rust-lang/rust/issues/45839
https://bugzilla.mozilla.org/show_bug.cgi?id=1462682
https://bugzilla.mozilla.org/show_bug.cgi?id=1462682
https://internals.rust-lang.org/t/enabling-windows-exploit-mitigations
https://internals.rust-lang.org/t/enabling-windows-exploit-mitigations
-by-default-in-rust-programs/8716
https://doc.rust-lang.org/rust-by-example/fn/closures/input_parameters.html
https://doc.rust-lang.org/rust-by-example/fn/closures.html
https://www.rust-lang.org/static/pdfs/Rust-npm-Whitepaper.pdf
https://www.gnu.org/software/gdb
https://hacks.mozilla.org/2019/02/rewriting-a-browser-component-in-rust/
https://hacks.mozilla.org/2019/02/rewriting-a-browser-component-in-rust/
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Multiprocess_Firefox
https://doc.rust-lang.org/nomicon/ffi.html
https://snf.github.io/2019/01/10/rust-2019-security/
https://doc.rust-lang.org/book/
https://blog.rust-lang.org/2015/05/11/traits.html
http://technet.microsoft.com/en-us/library/bb457155.aspx
http://technet.microsoft.com/en-us/library/bb457155.aspx

30

[44]
[45]

[46]

[47]

(48]

(49]
(50]
(51]

(52

(53]
(54]
55]

[56]

[57]

(58]

(59]
[60]

[61]

(62]
(63]

(64]
(65]

(66]
(67]
(68]

(69]

M. Papaevripides and E. Athanasopoulos

BLANCHON, V. Go: Memory safety with bounds check. https://medium.com/a-journey-with-go/go-memory-safety-with-
bounds-check-1397bef748b5, last accessed in May 2020.

CARLINI, N., BARRESI, A., PAYER, M., WAGNER, D., AND Gross, T. R. Control-Flow Bending: On the Effectiveness of
Control-Flow Integrity. In Proc. of USENIX SEC (2015), pp. 161-176.

CowaN, C., Pu, C., MAIER, D., HINTON, H., WALPOLE, J., BAKKE, P., BEATTIE, S., GRIER, A., WAGLE, P., ZHANG, Q., ET AL.
StackGuard: Automatic adaptive detection and prevention of buffer-overflow attacks. In Proceedings of the 7th USENIX
Security Symposium (1998), vol. 81, pp. 346-355.

Dav1, L., SADEGHI, A.-R., LEHMANN, D., AND MONROSE, F. Stitching the Gadgets: On the Ineffectiveness of Coarse-Grained
Control-Flow Integrity Protection. In Proc. of USENIX SEC (2014), pp. 401-416.

Evans, L., LoNG, F., OTGONBAATAR, U., SHROBE, H., RINARD, M., OKHRAVI, H., AND SIDIROGLOU-DOUSKOS, S. Control jujutsu:
On the weaknesses of fine-grained control flow integrity. In Proceedings of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security (New York, NY, USA, 2015), CCS ’15, ACM, pp. 901-913.

Evans, I., LONG, F., OTGONBAATAR, U., SHROBE, H., RINARD, M., OKHRAVI, H., AND SIDIROGLOU-DOUSKOS, S. Control Jujutsu:
On the Weaknesses of Fine-Grained Control Flow Integrity. In Proc. of ACM CCS (2015), pp. 901-913.

GOKTAS, E., ATHANASOPOULOS, E., Bos, H., AND PORTOKALIDIS, G. Out Of Control: Overcoming Control-Flow Integrity. In
Proc. of IEEE S&P (2014), pp. 575-589.

GOKTAS, E., OIKONOMOPOULOS, A., GAWLIK, R., KOLLENDA, B., ATHANASOPOULOS, E., PORTOKALIDIS, G., GIUFFRIDA, C., AND
Bos, H. Bypassing Clang’s SafeStack for Fun and Profit. In Black Hat Europe (Nov. 2016).

HALLER, 1., GOKTAS, E., ATHANASOPOULOS, E., PORTOKALIDIS, G., AND Bos, H. Shrinkwrap: Vtable protection without
loose ends. In ACSAC (2015), ACM, pp. 341-350.

HuDpsoN, R. Getting to go: The journey of go’s garbage collector, 2018. https://blog.golang.org/ismmkeynote, last
accessed in May 2020.

JANG, D., TATLOCK, Z., AND LERNER, S. Safedispatch: Securing c++ virtual calls from memory corruption attacks. In
NDSS (2014), The Internet Society.

JuNg, R., JOURDAN, J.-H., KREBBERS, R., AND DREYER, D. Rustbelt: Securing the foundations of the rust programming
language. Proc. ACM Program. Lang. 2, POPL (Dec. 2017), 66:1-66:34.

KUzNETSOV, VOLODYMYR AND SZEKERES, LASzZLO AND PAYER, MATHIAS AND CANDEA, GEORGE AND SEKAR, R. AND SONG,
DawN. Code-pointer Integrity. In Proceedings of the 11th USENIX Conference on Operating Systems Design and
Implementation (Berkeley, CA, USA, 2014), OSDI'14, USENIX Association, pp. 147-163.

LETTNER, J., KOLLENDA, B., HOMESCU, A., LARSEN, P., SCHUSTER, F., Davi, L., SADEGHI, A.-R., HoLz, T., AND FrRANZ, M.
Subversive-C: Abusing and Protecting Dynamic Message Dispatch. In Proc. of USENIX ATC (2016), pp. 209-221.
MAISURADZE, G., BACKES, M., AND Rossow, C. Dachshund: Digging for and securing (non-)blinded constants in JIT code.
In 24th Annual Network and Distributed System Security Symposium, NDSS 2017, San Diego, California, USA,
February 26 - March 1, 2017 (2017).

MaTsAkis, N. D., AND Krock, II, F. S. The rust language. Ada Lett. 34, 3 (Oct. 2014), 103-104.

MEYEROVICH, L. A., AND RABKIN, A. S. Empirical analysis of programming language adoption. In Proceedings of the 2013
ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications
(New York, NY, USA, 2013), OOPSLA ’13, ACM, pp. 1-18.

Mu, D., Cukvas, A., YANG, L., Hu, H., Xing, X., Mao, B., AND WANG, G. Understanding the reproducibility of crowd-
reported security vulnerabilities. In 27th USENIX Security Symposium (USENIX Security 18) (Baltimore, MD, Aug.
2018), USENIX Association, pp. 919-936.

NAGARAKATTE, S., ZHAO, J., MARTIN, M. M., AND ZDANCEWIC, S. Softbound: Highly compatible and complete spatial
memory safety for c. ACM Sigplan Notices 44, 6 (2009), 245-258.

NAGARAKATTE, S., ZHAO, J., MARTIN, M. M. K., AND ZDANCEWIC, S. CETS: Compiler-Enforced Temporal Safety for C. In
Proc. of ISMM (2010), pp. 31-40.

NOVARK, G., AND BERGER, E. D. DieHarder: Securing the Heap. In Proc. of ACM CCS (2010), pp. 573-584.
OIKONOMOPOULOS, A., ATHANASOPOULOS, E., Bos, H., AND GIUFFRIDA, C. Poking holes in information hiding. In 25th
USENIX Security Symposium (USENIX Security 16) (Austin, TX, 2016), USENIX Association, pp. 121-138.

PAX TeAM. Address Space Layout Randomization (ASLR), 2003. http://pax.grsecurity.net/docs/aslr.txt.

PAYER, M. Too much PIE is bad for performance. Technical report 766 (2012).

REED, E. C. Patina: A formalization of the rust programming language. Master’s thesis. University of Washington
(2015).

RupD, R., SKOWYRA, R., BiGELOw, D., DEDHIA, V., HOBSON, T., CRANE, S., LIEBCHEN, C., LARSEN, P., Davi, L., FrRaNz, M.,
SADEGHI, A., AND OKHRAVI, H. Address oblivious code reuse: On the effectiveness of leakage resilient diversity. In 24th
Annual Network and Distributed System Security Symposium, NDSS 2017, San Diego, California, USA, February
26 - March 1, 2017 (2017).

Manuscript submitted to ACM

https://medium.com/a-journey-with-go/go-memory-safety-with-bounds-check-1397bef748b5
https://medium.com/a-journey-with-go/go-memory-safety-with-bounds-check-1397bef748b5
https://blog.golang.org/ismmkeynote
http://pax.grsecurity.net/docs/aslr.txt

Exploiting Mixed Binaries 31

[70]
[71]
[72]
[73]
[74]
[75]

[76]

[77]

[78]

SCHUSTER, F., TENDYCK, T., LIEBCHEN, C., Davl, L., SADEGHI, A.-R., AND HoLz, T. Counterfeit Object-oriented Programming:
On the Difficulty of Preventing Code Reuse Attacks in C++ Applications. In Proc. of IEEE S&P (2015).
SEREBRYANY, K., BRUENING, D., POTAPENKO, A., AND VYUKOV, D. AddressSanitizer: A Fast Address Sanity Checker. In
Proc. of USENIX ATC (2012), pp. 309-318.

SHACHAM, H. The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the x86). In
Proceedings of the 14th ACM conference on Computer and Communications security (October 2007), pp. 552—61.
SZEKERES, L., PAYER, M., WEI, T., AND SONG, D. Sok: Eternal war in memory. In Proceedings of the 2013 IEEE
Symposium on Security and Privacy (Washington, DC, USA, 2013), SP ’13, IEEE Computer Society, pp. 48-62.
THEOFILOS PETSIOS. Millions of Binaries Later: a Look Into Linux Hardening in the Wild, 2019. https://capsule8.com/
blog/millions-of-binaries-later-a-look-into-linux-hardening-in-the-wild/, last accessed in November 2019.

Ticg, C., ROEDER, T., COLLINGBOURNE, P., CHECKOWAY, S., ERLINGSSON, U., LozANO, L., AND PIKE, G. Enforcing Forward-
Edge Control-Flow Integrity in GCC & LLVM. In Proc. of USENIX SEC (2014), pp. 941-955.

VAN DER VEEN, V., GOKTAS, E., CONTAG, M., PAWLOSKI, A., CHEN, X., RAwWAT, S., Bos, H., HoLz, T., ATHANASOPOULOS, E.,
AND GIUFFRIDA, C. A Tough call: Mitigating Advanced Code-Reuse Attacks At The Binary Level. In Proc. of IEEE
SéP (May 2016), pp. 934-953.

ZHANG, C., WEL, T., CHEN, Z., DUAN, L., SZEKERES, L., MCCAMANT, S., SONG, D., AND Zou, W. Practical Control Flow
Integrity & Randomization for Binary Executables. In Proc. of IEEE S€P (2013), pp. 559-573.

ZHANG, M., AND SEKAR, R. Control Flow Integrity for COTS Binaries. In Proc. of USENIX SEC (2013), pp. 337-352.

Manuscript submitted to ACM

https://capsule8.com/blog/millions-of-binaries-later-a-look-into-linux-hardening-in-the-wild/
https://capsule8.com/blog/millions-of-binaries-later-a-look-into-linux-hardening-in-the-wild/

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Paper Organization

	2 Background and Threat Model
	2.1 Exploiting Unsafe Code
	2.2 Hardening Unsafe Code
	2.3 Safe Code
	2.4 Threat Model

	3 High-level Attack Mechanics
	3.1 Control-flow Integrity
	3.2 SafeStack
	3.3 Rust Basics
	3.4 Rust Calling Unsafe Code
	3.5 Toy-attack Example

	4 Attack Primitives in Rust
	4.1 Function Pointers
	4.2 Closures
	4.3 Traits

	5 Attack Primitives in Go
	5.1 Function Pointers
	5.2 Closures
	5.3 Interfaces
	5.4 Channels

	6 Discovery of Primitives
	6.1 Static Analysis
	6.2 Dynamic Analysis
	6.3 Results

	7 Exploiting Firefox
	7.1 Challenges
	7.2 Vulnerability
	7.3 PoC Exploit
	7.4 Failing to exploit SafeStack

	8 Discussion
	8.1 Go PoC Exploit
	8.2 Hardening Safe Code
	8.3 Hardening bypass
	8.4 Hardened Firefox
	8.5 Compile time - run-time checks

	9 Countermeasures and Future Work
	10 Related Work
	11 Conclusion
	References

