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Abstract—Distributed key-value and always-in-memory store
is employed by large and demanding services, such as Facebook
and Amazon. It is apparent that generic implementations of such
caches can not meet the needs of every application, therefore
further research for optimizing or speeding up cache operations
is required. In this paper, we present an incremental optimization
strategy for accelerating the most popular key-value store, namely
memcached.

First we accelerate the computational unit by utilizing com-
modity GPUs, which offer a significant performance increase
on the CPU-bound part of memcached, but only moderate
performance increase under intensive I/O. We then proceed
to improve I/O performance by replacing TCP with a fast
UDP implementation in user-space. Putting it all together, GPUs
for computational operations instead of CPUs, and UDP for
communication instead of TCP, we are able to experimentally
achieve 20 Gbps line-rate, which significantly outperforms the
original implementation of memcached.

I. INTRODUCTION

Modern Internet applications have to serve millions of
clients simultaneously, while it has been shown that most
of the clients behave as consumers most of the time [1].
Obviously, the addition of new data in Internet applications
is disproportionally smaller compared to fetching. As a result,
the idea of keeping frequently-accessed data objects in a
distributed memory-based cache in order to speed up querying
and data fetching appears very attractive.

One of the most popular implementations of such a dis-
tributed memory-based cache is memcached [2]. 1 Originally
implemented for the needs of LiveJournal, the software is now
employed by the most popular applications, such as YouTube,
Wikipedia, Twitter, and Facebook. memcached is based on
simple, yet powerful, foundations. The cache is essentially
composed by a large key-value store, resident always in
memory, and it basically supports two simple operations, get
and set. 2 The communication model is a typical client-server
one. Once a client needs to fetch data, it communicates a key
to a memcache server, the server quickly locates the object
in memory, and if it exists it sends the object back to the
client, otherwise the fetch involves locating the object on the

1We usually refer to memcached as the software program, which provides
the cache, namely memcache.

2A richer operation set is supported, which we omit here for brevity.
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Fig. 1. Network I/O and CPU utilization of memcached. The objects size
affects significantly the overall performance. Specifically, the performance
bottleneck shifts from the network I/O to the CPU, for objects that are greater
than 25 KB.

disk and transferring it to memory. The cache never accesses
directly the disk. Once an object is modified in the disk, then
the key-value store has to be updated by the application.

The software in its original form can substantially optimize
data accessing. However, not all applications have the same
requirements and, more importantly, data can substantially
differ from service to service. Therefore, the need to optimize
the key-value store itself is emerging. Currently, memcached
has been designed for taking advantage the most widely
adopted technologies available. All computation is based on
commodity CPUs and networking operations are transferred
using TCP. Although these choices seem reasonable enough,
in certain cases they can cause bottlenecks, either in CPU or
in network I/O. For instance, as we can see in Figure 1, the
performance bottleneck is shifted from network I/O to CPU,
when the responses size increases.

In this paper, we explore the space of optimizations for
memcached. Initially, we start by utilizing GPUs to speed
up computation. Our approach offers significant performance
gains for the computational part of memcached but unfortu-
nately under intensive network I/O the modified GPU-based
memcached is again constrained. Therefore, we proceed to
replace TCP with UDP, which significantly boosts perfor-
mance. Not satisfied by the achieved acceleration we push a
step further and use netmap [3], a user-space UDP imple-



TABLE I. COMPARISON OF THE MODIFIED PROTOTYPE PRESENTED IN
THIS PAPER WITH SIMILAR RESEARCH EFFORTS FOR ACCELERATING

memcached.

Platform KOps/s Lat. Watt Design
(msec)

TilePRO [5] 1340 0.2–0.4 231 FPGA

Intel Xeon [6] 410 30 143
6-core CPU

in-kernel TCP/IP stack

Intel Atom [6] 58 800 35
2x SMT CPU

in-kernel TCP/IP stack

MegaPipe [4] 1000 2.2 -
2x 4-core CPUs

new networking I/O
TSSP [6] 282 - 16 SoC

This work 1665 0.6 188
CPUs/GPUs

user-level UDP stack

mentation which avoids redundant copies to kernel space. This
results in dramatic improvements of memcached in terms of
throughput and latency. Our prototype is able to outperform
the original implementation of memcached by achieving a
20 Gbps line-rate. Similar speedups for memcached have
been reported with MegaPipe [4], and therefore our paper
experimentally validates a maxima in memcached acceler-
ation, which is mainly driven by boosting network I/O, and
independently confirms a past architectural design.

Our optimization strategies revealed a lot of interesting
insights, which we summarize in the following contributions:

• The benefits stemming from using GPUs in
memcached are not significant. A commodity
GPU outperforms a high-end CPU in parallel
computation, such as hashing, something that we
demonstrate in this paper using three different GPU
models. However, the computational overhead in
memcached is low. Therefore, a design choice of
replacing CPUs with GPUs for the computational
part is not justified in the context of memcached.
Nevertheless, the energy and cost savings related to
using GPUs instead of CPUs for memcahed can
make the GPU choice more attractive.

• As previously reported, we verify that memcached
dominant overhead is due to network I/O. By replacing
the TCP stack with a custom user-space UDP stack
implementation we are able to achieve 20 Gbps line-
rate, and therefore, we experimentally validate a max-
ima in memcached acceleration – mainly driven by
boosting network I/O – as it was shown in [4].

II. PREVIOUS WORK

Many services leverage memcached as a caching layer
between a web server tier and back-end databases. Such
applications are demanding, therefore a series of changes are
needed for fully taking advantage of the caching system.
Table I provides a summary of the various research efforts
into accelerating memcached.

The most common approach is optimizing memcached
using reconfigurable hardware [5]–[8]. These systems offer
a scalable method of processing incoming requests in high-
speed environments. However, most implementations require

specialized programming, and are usually tied to the underly-
ing device. Lim et al. [6] differentiate their work by relying on
hardware to only accelerate the common case (i.e., serving of
the GET requests), while relying on software for the remaining
memcached features.

Other studies have focused on improving the network I/O
of memcached using either non-commodity networking hard-
ware like Infiniband and RDMA interfaces [9], or software-
based RDMA over commodity network cards [10]. Compared
to these approaches, which can push the performance load
to the clients, our design supports the standard memcached
interface with no modifications. MegaPipe [4] provides a new
programming interface for high-performance networking I/O,
targeting applications that typical use persistent connections to
servers, such as memcached.

Recently, graphics cards have provided a substantial per-
formance boost to many network-related workloads [11]–[16].
The first work that utilized GPUs to offload the hashing com-
putations of memcached is [17]. Both discrete and integrated
GPUs were used, however their evaluation did not cover the
networking I/O operations, which is a significant bottleneck
for memcached performance.

III. ACCELERATION STRATEGIES

Our architecture comprises of commodity hardware only,
including one or more CPUs, a discrete GPU and one or more
10 GbE NICs, which communicate for handling incoming
requests. The CPU analyses incoming packets to extract key,
value and metadata information. Both ASCII and binary pro-
tocols are supported, while additional protocols can be easily
added without any performance penalty. The information is
passed to the GPU which produces an index into the value
store for any given key. The value store supports read or
write operations: in SET operations, the corresponding value is
written into the store, while for GET operations, the retrieved
value is added to the response (comprised of one or more
packets) that is forwarded back to the client.

The practical challenges of mapping the aforementioned
operations to commodity hardware are (a) support for high
performance hashing computations, and (b) minimizing the
execution paths in the networking stack. These observations
lead us to two design principles: (i) key hashing is offloaded to
massively parallel many-core computational devices (GPUs),
and (ii) networking stack is moved to user-space, to reduce
data movements and context switches.

A. Offloading Hashing to the GPU

Figure 2 depicts the workflow of the design for the GPU-
assisted memcached. In this initial design, we modified the
original memcached to offload all hashing computations
to the GPU. memcached uses libevent [18] for asyn-
chronous I/O, and maintains different threads (fixed to four by
default) for processing incoming connections. Specifically, a
single thread is responsible for receiving incoming connections
via the traditional socket() interface and distribute them to
the remainder active threads on a simple round-robin basis;
upon assigning to a thread, the connection is served solely by
that thread until its completion.
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Fig. 2. Workflow architecture of the GPU-assisted memcached for handling
GET requests.

We modified the default execution flow for leveraging the
massively parallel compute capabilities of GPUs. Specifically,
each request is analyzed by its assigned thread and the proto-
col’s command is extracted. In the case of a GET command,
the corresponding key is stored in a shared buffer which
is processed in parallel by the GPU every time it fills up.
For this, a separate thread is spawned, which is responsible
for passing the filled buffer to the GPU, launching the GPU
kernel that hashes the keys, and transferring the resulting hash
checksums from the GPU memory back to the host memory.
Thereafter, the host thread iterates through computed hashes
and performs the necessary lookups to the hash table, to find
the requested response objects, if any. The aforementioned
objects are crafted in appropriate responses that are sent
back to the client via the network socket that received the
corresponding request. To further improve parallelism, we used
a double buffering scheme. When the first buffer becomes full,
it is transferred to the global memory of the GPU that can be
read later through the kernel invocation. While the GPU is
performing computations on the keys of the first buffer, the
CPU will copy newly arrived keys in the second buffer.

To compute the key hashes of a single buffer in the GPU,
a number of threads equal to the size of the buffer is created.
As the hashing algorithm used by memcached cannot be
parallelized internally – for example by splitting a single key
to different portions and assigning each portion to a different
thread – a single key is assigned to a separate thread. As
we will see in Section IV-C, the larger the buffer, the more
the parallelism that will be exposed by the GPU. Each thread
executes the hashing algorithm – we have ported the same

hash function used by the original version of memcached
– to its input key. An important optimization of the GPU
execution is related to the way the input keys are loaded from
the device memory. Since the input symbols belong to the
ASCII alphabet, they are represented with 8 bits. However, the
minimum size for every device memory transaction is 32 bytes.
Thus, by reading the input stream one byte at a time, the overall
memory throughput would be reduced by a factor of up to 32.
To utilize the memory more efficiently, we redesigned the input
reading process such that each thread is fetching 16 bytes at a
time, using the int4 built-in data type, instead of one byte.
When a thread computes the hash of its assigned key, it copies
the resulted 32-bit checksum in an array allocated in device
memory. After the computation is completed, the array with
the hash checksums is transferred back to the host’s memory.

Each 32-bit checksum is used as an index to a lockless
hashtable – we use the hashtable implementation used by the
original memcached. The objects that are stored in are multi-
versioned internally and reference counted, hence no client can
block any other client’s actions. In addition, the hashtable is
implemented as an array of buckets. Each bucket contains a
list of nodes, with each node containing a (key, value) pair.
Upon a match, the full key, which is stored in the hash table
entry, is compared to the requested key, and if they match the
corresponding metadata is updated, for example the last-access
timestamp used for LRU replacement. If no match is found, a
miss response is sent.

B. Speeding Up Network I/O

A significant portion of the overall execution is spent on
network I/O. To optimize the poor performance of the Linux
networking stack we leveraged several common characteristics
of the memcached behavior. Particularly, we focused on
accelerating GET requests, since they vastly outnumber SET
requests in real-world scenarios [5], [19]. To that end, we used
UDP, instead of TCP, for handling GET requests, in-line with
the majority of previous research [6], [7].

UDP is a much lighter protocol than TCP, because it offers
more relaxed packet delivery guarantees. Typically it is used
for operations that are not required to succeed, such as GET
requests where a missing or incomplete response can simply
be treated as a cache miss; requests that must be reliable, like
SET operations, should be transmitted using TCP.

Switching from TCP to UDP, offers a clear throughput
advantage, that can be explained by the fact that TCP is
a transaction-based protocol that suffers additional overhead,
especially for small packets [5], [6]. Still, a lot of CPU
cycles are spent on the OS networking stack, as we verify
in Section IV. The main reason behind this is the complicated
memory management and the several copies that occur for each
data sent or received. Traditionally, networking applications
use the socket interface to allow messages to be transmitted
between hosts. Each message is passed through a multi-layer
networking stack (UDP, IP, and Ethernet protocols), and, at
any level of the stack, the associated protocol encapsulates the
message into its own format, adding a header containing extra
control information. Although the networking stack abstraction
simplifies development, the costs in terms of performance
when operating in multi-10Gbps environments are not negligi-
ble. The main reason behind that is the frequent per-packet
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Fig. 3. The high-end setup used for carrying out the evaluation of the custom
memcache prototype.

buffer allocations and deallocations that stress the memory
subsystem of the kernel, as well as the context switches that
occur every time a new packet is received [20].

1) User-space UDP Stack: As described above, excess
data movements and context switches cause significant CPU
overhead. To avoid the problem, we leveraged a user-space
UDP stack implementation, which completely bypasses the
kernel. In our design, all of the packet processing and framing
occurs inside the context of the memcached application.
Specifically, we have modified memcached for interacting
with the network interface directly, and send or receive fully-
formed packets (including the UDP/IP headers) directly to the
network interface. To achieve this, we utilized the netmap
module [3], which gives userspace applications a very fast
channel for exchanging raw packets with the network adapter.
The netmap module maps the Rx and Tx packet buffers,
which are allocated initially at start-up for performance rea-
sons, and all necessary metadata structures to the process
address space. As a result, a user-space application can easily
receive incoming packets by polling on the mapped Rx packet
buffers. In case a new packet is received it is passed to the
upper layers for analysis.

In the current memcached implementation, requests must
be contained in a single UDP datagram [21]. The only common
requests that would span multiple datagrams are huge multi-
key GET requests and SET requests, both of which are more
suitable to TCP transport for reliability reasons [21]. As such,
we do not need to keep any state in the receive side to reassem-
ble requests that span multiple packets. On the transmission
side, the program simply writes the corresponding raw packets
(with the appropriate UDP and IP headers) to the mapped
Tx buffers. In case the response spans several datagrams,
we contain a simple frame header in each UDP datagram,
right before the actual data. The frame header, defined in
memcached protocol [21], is 8-byte long and contains the
request ID (as supplied by the client), the sequence number of
the current datagram, and the total number of datagrams for
this message. Using the data provided in the frame header, the
client is able to keep track and reassemble the full response
correctly.

IV. PERFORMANCE EVALUATION

We evaluate the performance of our system, using a variety
of workloads and hardware setups. We first describe the
experimental testbed (Section IV-A) and the corresponding
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Fig. 4. The low-end setup used for carrying out the evaluation of the custom
memcache prototype.

workloads (Section IV-B). We then analyze the sustained
performance under different scenarios using micro-benchmarks
(Section IV-C), as well as high-level end-to-end performance
measurements (Section IV-D). We also provide an energy and
cost analysis (Section IV-E).

A. Systems under test

We perform all the experiments using two radically dif-
ferent server setups: a high-end Xeon-based server and a
low-end, low-power AMD APU-based server. Both setups are
summarized in Table II.

The high-end system is equipped with two Intel Xeon
E5520 2.27 GHz NUMA nodes, each of which contains four
cores. This totals to 8 physical threads or 16 virtual threads
with SMT enabled. Each NUMA node is equipped with 6 GB
of memory, and is also connected to the peripherals via a
separate I/O hub, linked to multiple PCIe slots (see Figure 3).
For our network needs, we utilize two Intel 82599EB 10-
GbE network adapters, both placed on the same domain. We
also place a GTX 770 GPU on the second domain; after
experimentation, we found that it is better to keep the NIC
packet buffers and the GPU to remove domains.

The APU-based system represents a low-power alternative
to the Xeon-based setup and its main purpose is to improve
the energy efficiency within a fixed data center power budget.
It is equipped with a AMD A10-7850K APU with Radeon R7
Graphics running (shown in Figure 4) at 3.7 GHz and 6 GB
of memory. We also utilize two Intel 82599EB 10-GbE NICs.

We note that even though the two systems are equipped
with different amounts of memory (12 GB in the high-end
against 6 GB in the low-end), memory capacity has no direct
effect neither on latency nor on throughput because the share
of a cluster’s overall load directed to a particular node is
proportional to the node’s share of the overall cluster memory
capacity. Both systems ran Linux 3.5, with CUDA v5.0 and
Intel SDK for OpenCL Applications XE 2013 installed. We
also used our custom version of netmap [3].

B. Workloads

The behavior of memcache varies considerably based on
the size of the keys and values it stores; the actual contents of
both keys and values are opaque byte strings and therefore do
not affect the behavior of the system. To that end, we design
four different synthetic workloads that represent a wide range
of possible key-value samples. Our aim is to create a set of
realistic workloads that expose the sensitivity of memcached
performance in the context of particular applications.



TABLE II. SYSTEMS UNDER TEST. WE USED TWO DIFFERENT SYSTEM ARCHITECTURES. A XEON BASED CPU SERVER WITH DISCRETE GPU AND A
LOW-POWER APU BASED SERVER WITH INTERGRATED GPU.

Components High End Low End
Processor 2x Intel Xeon E5520 @ 2.27GHz 1x AMD A10-7850K APU with Radeon R7 Graphics @ 3.7 GHz
DRAM 2x banks 6 GB DDR3 (NUMA) @ 1066 MHz 1x bank 6 GB DDR3 @ 1333 MHz
10-GbE 2x Intel 82599EB 10-GbE NICs 2x Intel 82599EB 10-GbE NICs
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Fig. 5. Performance sustained for hash operations for different computational devices, as a function of (a) keys processed at once (batch size) and (b) key
size.

TABLE III. WORKLOAD CHARACTERISTICS. WE CONSTRUCTED DIFFERENT WORKLOADS TO EXPOSE THE BROAD RANGE OF MEMCACHED BEHAVIOR.

Name Avg. Size Description
FixedSize 250 B Fixed objects that place the greatest stress on memcached performance [6].
MicroBlog 1 KB Queries for short snippets of text, like for example user updates, similar to the size of tweets used by Twitter.
Wiki 2.8 KB Represents portions of articles found in Wikipedia.
ImgPreview 25 KB Comprises of photo objects (thumbnails) found in photo-sharing sites.

1) Key Selection: For typical use-cases the key-size was
between 6 to 168 bytes with an average of 30.7 bytes as
was recently reported for several production clusters at Face-
book [19]. We use the same key-size distribution for all of our
experiments.

2) Value Selection: We design four different value-
workloads that represents a wide range of possible scenarios
adapted from [6]. Each one is defined by an object-size dis-
tribution which represents realistic workloads for a particular
application assisted by a memcache. We notice that even
though we synthetically create the workloads, they maintain
the same notation and attributes introduced by earlier work [6].
Table III briefly re-introduces the reader to the workload
characteristics.

a) FixedSize: The simplest workload uses a fixed object
size of 250 bytes and uniform popularity distribution. We
include this workload because small objects place the greatest
stress on memcached performance [6].

b) MicroBlog: This workload comprises queries for
short snippets of text, like for example user updates, similar
to the size of tweets used by Twitter. The text of a tweet is
restricted to 140 characters, however the average size grows to
approximately 1 KB when associated meta-data are included.

c) Wiki: This workload represents portions of articles
found in Wikipedia. Particularly, each object represents an
individual article in HTML format of an average size equal
to 2.8 KB.

d) ImgPreview: This workload comprises of photo ob-
jects found in photo-sharing sites. Typically, photo sharing
sites use memcached to serve thumbnails; larger files of
high-resolution images are served from other data stores (see
for example Facebook’s Haystack system [22]). As such, the
average object size for this workload is 25 KB.

C. Micro-benchmarks

We first measure the key hashing throughput when execut-
ing on the GPU. We use three different GPU models, each of
which had different energy and computational characteristics.
Specifically, we utilize a low-end NVidia GT 630, a high-
end NVidia GTX 480, and a high-end NVidia GTX 770.
Figure 5(a) shows the overall hashing throughput achieved
for each device. We observe that the performance of GPUs
increases proportionally to the number of keys that are pro-
cessed at once (batch size), reaching a plateau at 128K keys.
For comparison, we also plot the performance achieved by a
single CPU core of the high-end setup, shown in Table 3. All
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Fig. 6. Overall performance sustained for the workloads presented in Table III. The high-end setup is able to reach theoretical rate for Wiki and ImgPreview
workloads with batch size larger than 512.

GPUs perform better compared to the CPU, however they have
different behavior. For instance, high-end GPUs are able to
sustain up to 12.8 times better compared to the CPU, with GTX
770 being about 10% better than GTX 480 in the common case
scenario. The performance of the low-end GT 630 lies in the
middle. We notice that GT 630 has worse performance than
the CPU for keys larger than 100 bytes. Nevertheless, 200-
and 250-byte long keys is the worst case scenario, and GT
630 outperforms the CPU in the typical key sample reported
in [19].

We also explore the performance of hash computations
using a set of seven different key workloads. The first six
workloads contain fixed sized random alphanumeric keys with
sizes of 10 up to 250 bytes, which is the maximum key
size according to memcached semantics. In order to increase
parallelism on the GPU, we process 128K keys at once.
Figure 5(b) shows the performance for each device. As the key
size increases the throughput of the system drops, as expected,
due to the heavier computations needed. We also use keys of
various lengths produced randomly from a random distribution
(last bar), in order to measure how the irregularities in the
key lengths—that occur in a real case scenarios— affect the
GPU performance. Fortunately, GPU execution is able to hide
such discrepancies, without requiring extra scheduling or more
sophisticated placement.

D. Macro-benchmarks

In this section we evaluate how our proposed modifications
perform in a real-network setup, using the four different
workloads that are described in Section IV-B. Keys are random
strings of size between 6 to 168 bytes with an average of 30.7
bytes, again, as was recently reported for several production
clusters at Facebook [19]. A series of GET requests are
generated from two clients with 10-GbE network interfaces,
connected back-to-back with the base machine. Each time,
memcached is initialized with 10,000 objects, which the
clients request in a round-robin fashion; this way we stress
the hashtable lookup mechanisms, while the CPU caches were
outgrown, forcing access to memory on the critical path.
This is important because memory references create traffic
on the interconnecting links and may sometimes interfere
with the overall system’s performance in unexpected ways.
For comparison, we also plot the performance of the vanilla
implementation.

Figures 6(a)- 6(d) show the overall performance (measured
as operations that completed successfully per second) for each
of the workloads described previously. We also show the corre-
sponding latency in Figures 7(a)- 7(d). In our implementation,
we utilize four CPU cores (out of the eight): two CPU-cores
were used to handle the reception and transmission of data
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Fig. 7. Overall latency sustained for the workloads presented in Table III. Latency form stabilazes for workloads higher than 2.8 Kbytes.

(one per network port), and two CPU-cores were used for
serving (i.e. hashing and lookup) each connection. We used
the same number of cores in vanilla memcached for a fair
comparison. Please note that by increasing the size of objects,
the performance bottleneck shifts from the computing units
to the network. Particularly, as the size of objects increases,
the sustained throughput approaches the maximum line-rate
capacity. In contrast, when the size of objects decreases we see
that the network performance becomes less and less important
because the corresponding compute device becomes dominant.
By increasing the number of keys (batch size) that are hashed
at once, both CPU and GPU execution benefits in terms
of throughput. Due to the small size of the keys, assigning
more computations to each computing unit, pays off the static
cost of threads creation, resulting to about 1.47–5.71 times
speedup compared to the vanilla memcached. We note that
the batching of keys results to increased latency, that grows
proportionally to the size of batch. Still, using a batch size of
around 512 requests effectively balances the trade-off between
throughput and latency in most cases. Leveraging a GPU to
offload hashing does not pay off, due to the extra data transfers
involved, over the PCIe bus.

E. Energy benefit

We evaluate the power consumption characteristics and the
price of the components of our system. The power reported

here is measured using an external meter, without applying any
frequency/voltage scaling. In the high-end setup the Xeon core
consumes 10–15 W as indicated in Table IV. The GT 630 GPU
consumes a total of 50 W when active, that is comparable to
four Xeon cores that consume about 48 W. Higher performance
alternatives are the GTX 480 and GTX 770 GPUs with
123.5 W and 134.5 W respectively. The low-end setup utilizes
the intergrated GPU of the A10-7850K APU thus not needing
a discrete GPU. The total consumption of the APU is 95 W
on full load which is 242% lower than the high-end setup in
terms of performance and 529% lower in terms of purchase
cost.

V. LIMITATIONS

Since netmap maps the network interface to the process,
bypassing the kernel, it is implied that the NIC must be used
solely by memcached. We anticipate that the design proposed
in this paper will be used by demanding applications which
consider the operation of memcache critical, and therefore,
dedicated hardware can be afforded for this operation. In
more complicated setups where memcache serves more than
one key-value store, certain network packets might need to
be handled by other processes. Relaying particular network
packets to the kernel for further delivery is possible and it is
addressed in the original implementation of netmap [3].



TABLE IV. PER-DEVICE POWER CONSUMPTION AND COST.

Device Power Cost
Intel Xeon E5520 250 $
first core +15 W
subsequent core +11 W
AMD A10-7850K APU 95 W 170 $
NVIDIA GTX 770 400 $
idle 23.5 W
active 134.5 W
NVIDIA GTX 480 500 $
idle 48.5 W
active 123.5 W
NVIDIA GT 630 60 $
idle 8 W
active 23.5 W
Intel 82599EB 10-GbE 7 W 430 $

Moreover, the modified prototype presented in this paper is
based on UDP. Therefore, to support operations which require
reliability such as Set or Update, we have to either change the
memcached protocol and add logic to it, or implement TCP
in user-space. Fortunately, there are recent promising results
towards implementations of TCP in user-space [23].

VI. CONCLUSION

We have applied different acceleration strategies for opti-
mizing the performance of memcached in terms of through-
put, latency and power consumption. We initially started by
utilizing GPUs to speed up computation, which gave us signifi-
cant performance gains, but unfortunately – in case of intensive
network I/O – memcached was again critically constrained.
We proceeded and replaced TCP with UDP, which boosted
performance significantly. Not satisfied by the achieved ac-
celeration we pushed a step further and used netmap [3].
Our prototype was able to outperform vanilla memcached by
recording 20 Gbps line-rate.
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